CN110489729B - Automatic conversion method and system for D5000-matpower grid multi-disaster coupling cascading failure model - Google Patents
Automatic conversion method and system for D5000-matpower grid multi-disaster coupling cascading failure model Download PDFInfo
- Publication number
- CN110489729B CN110489729B CN201910728975.9A CN201910728975A CN110489729B CN 110489729 B CN110489729 B CN 110489729B CN 201910728975 A CN201910728975 A CN 201910728975A CN 110489729 B CN110489729 B CN 110489729B
- Authority
- CN
- China
- Prior art keywords
- data
- voltage
- parameters
- model
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 35
- 238000010168 coupling process Methods 0.000 title claims abstract description 35
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 31
- 230000005540 biological transmission Effects 0.000 claims abstract description 79
- 238000004364 calculation method Methods 0.000 claims abstract description 25
- 238000004804 winding Methods 0.000 claims description 36
- 239000003990 capacitor Substances 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 16
- 238000012544 monitoring process Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 6
- 238000004088 simulation Methods 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 8
- 238000007726 management method Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 230000001052 transient effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000012502 risk assessment Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/901—Indexing; Data structures therefor; Storage structures
- G06F16/9024—Graphs; Linked lists
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Economics (AREA)
- Databases & Information Systems (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开一种D5000‑matpower的电网多灾种耦合连锁故障模型的自动转换方法,包括:从D5000系统中获取第一数据;从继电保护整定计算系统中获取第二数据;将第一数据的变压器模型转换为输电线路模型;取第一数据中的变压器的容量,作为输电线路模型中的输电线路的极限载流量,更新到第一数据中;判断第二数据中的元件名称与第一数据中元件名称是否匹配;从第一数据中,选取描述matpower一次模型和二次模型所需的参数作为成员变量,分别建立一次模型和二次模型;获取多灾种耦合条件下的电网元件故障集及集合中每一个故障的概率,确定电网元件故障集中描述各故障所需的参数作为成员变量,得到电网多灾种耦合连锁故障模型。本发明提高了模型生成的效率和模型生成的准确性。
The invention discloses an automatic conversion method of a D5000-matpower power grid multi-disaster coupling cascading fault model, comprising: obtaining first data from the D5000 system; obtaining second data from a relay protection setting calculation system; converting the first data to Transform the transformer model of the transmission line model into the transmission line model; take the capacity of the transformer in the first data as the limit current carrying capacity of the transmission line in the transmission line model, and update it to the first data; judge the component name in the second data and the first Whether the component names in the data match; from the first data, select the parameters required to describe the primary model and the secondary model of matpower as member variables, and establish the primary model and the secondary model respectively; obtain the power grid component failure under the multi-hazard coupling condition Set and the probability of each fault in the set, determine the parameters required to describe each fault in the grid component fault set as member variables, and obtain the multi-disaster coupling cascading fault model of the power grid. The invention improves the efficiency and accuracy of model generation.
Description
技术领域technical field
本发明涉及电力系统分析控制领域,尤其涉及用于D5000-matpower的电网多灾种耦合连锁故障模型的自动转换方法及系统。The invention relates to the field of power system analysis and control, in particular to an automatic conversion method and system for a D5000-matpower grid multi-disaster coupling cascading failure model.
背景技术Background technique
随着电网灾害的频发发生,人们对供电可靠性、暂态过程仿真精细度、实时性要求的不断提高,对多灾种耦合条件下的电网风险分析的需求也越来越迫切。D5000是目前广泛采用的电网状态信息采集软件,可以为电网风险分析提供实时的数据。matpower软件是广泛应用的电网网架结构规划软件,能够开展潮流分析、暂态稳定计算等功能,其特点是可以自定义开发功能。With the frequent occurrence of power grid disasters, people's requirements for power supply reliability, transient process simulation precision, and real-time performance have been continuously improved, and the demand for power grid risk analysis under multi-disaster coupling conditions has become more and more urgent. D5000 is currently widely used power grid status information collection software, which can provide real-time data for power grid risk analysis. matpower software is a widely used power grid structure planning software, which can carry out power flow analysis, transient stability calculation and other functions, and its feature is that it can customize the development function.
D5000系统由各个网省公司调控部门建立,数据繁琐,操作复杂,而且由系统开发单位针对各网省公司的实际电网结构(如有无直流线路、SVG等情况)、使用规范而专门开发功能与数据结构,价格昂贵。而且存在关键数据泄密的可能,电网系统外单位无法使用该系统。其导出生成的E格式文件由各网省公司的电网数据综合而成,包含的元件可以达到数百万个。Matpower软件开源,可以开展潮流计算、电磁暂态仿真、级联故障分析等仿真分析,功能强大,计算速度快、操作简单,使用非常广泛。The D5000 system is established by the control departments of various network provincial companies, with cumbersome data and complicated operation, and the system development unit specially develops functions and specifications according to the actual grid structure (such as whether there is a DC line, SVG, etc.) and usage specifications of each network provincial company. Data structures, expensive. Moreover, there is a possibility of key data leakage, and units outside the grid system cannot use the system. The E-format file generated by the export is synthesized from the grid data of various grid companies, and can contain millions of components. Matpower software is open source, and can carry out simulation analysis such as power flow calculation, electromagnetic transient simulation, and cascading fault analysis. It has powerful functions, fast calculation speed, simple operation, and is widely used.
目前,采用matpower为工具的研究过程中,都是采用开发者提供的118节点、2383节点的标准case文件,未有针对中国实际电网的仿真分析实例。潮流计算、机电暂态、电磁暂态以及连锁故障分析的数据复杂,如果要利用matpower仿真分析中国实际电网数据,一般需要由经验丰富的专业人员进行逐元件进行数据处理和录入,这是一项复杂而繁重的工作。更为严重的是,限于软件仿真规模和仿真对象,针对不同的问题需要搭建不同复杂程度的模型,这无疑增添了建模的难度,造成转换过程极易出错且错误难以查验,影响了仿真建模的效率。同时,现有方法未能考虑继电保护的动作特性以及外部灾害环境(如山火、外破和冰灾)的发展蔓延实时情况,无法为电网风险实时分析提供数据基础。At present, in the research process using matpower as a tool, the standard case files of 118 nodes and 2383 nodes provided by developers are used, and there is no simulation analysis example for China's actual power grid. The data of power flow calculation, electromechanical transient state, electromagnetic transient state and cascading fault analysis are complex. If you want to use matpower to simulate and analyze the data of China's actual power grid, it generally requires experienced professionals to process and input data component by component. This is a Complicated and heavy work. What's more serious is that, limited to the scale of software simulation and simulation objects, models of different complexity need to be built for different problems, which undoubtedly increases the difficulty of modeling, making the conversion process extremely error-prone and difficult to check, which affects the simulation construction. model efficiency. At the same time, the existing methods fail to consider the action characteristics of relay protection and the real-time development and spread of external disaster environments (such as wildfires, external disasters, and ice disasters), and cannot provide a data basis for real-time analysis of power grid risks.
发明内容Contents of the invention
本发明提供了一种电网多灾种耦合连锁故障模型的自动转换方法,用以解决目前利用matpower仿真分析实际电网数据,所需参数匮乏,需要由经验丰富的专业人员进行逐元件进行数据处理和录入,且建模过程复杂繁重、建模易出错以及错误难以勘验的技术问题。The present invention provides an automatic conversion method of multi-disaster coupled cascading failure models of the power grid, which is used to solve the problem of lack of required parameters in the current analysis of actual power grid data using matpower simulation, and requires experienced professionals to perform data processing and component-by-component data processing. input, and the modeling process is complicated and heavy, the modeling is error-prone, and the technical problems are difficult to inspect.
为解决上述技术问题,本发明提出的技术方案为:In order to solve the problems of the technologies described above, the technical solution proposed by the present invention is:
一种D5000-matpower的电网多灾种耦合连锁故障模型的自动转换方法,包括以下步骤:An automatic conversion method of a D5000-matpower power grid multi-disaster coupling cascading failure model, comprising the following steps:
从D5000系统中获取第一数据;从继电保护整定计算系统中获取第二数据;Obtain the first data from the D5000 system; obtain the second data from the relay protection setting calculation system;
以第一数据为基础,将第一数据的变压器模型转换为输电线路模型;取第一数据中的变压器的容量,作为输电线路模型中的输电线路的极限载流量,更新到第一数据中;Based on the first data, the transformer model of the first data is converted into a transmission line model; the capacity of the transformer in the first data is taken as the limit current carrying capacity of the transmission line in the transmission line model, and updated in the first data;
判断第二数据中的元件名称与第一数据中元件名称是否匹配,当不匹配时保留第一数据中的元件名称及参数;当匹配时,取第二数据的元件名称对应的参数替换第一数据中的对应的参数;Determine whether the component name in the second data matches the component name in the first data, and keep the component name and parameters in the first data if they do not match; when they match, take the parameter corresponding to the component name in the second data to replace the first The corresponding parameters in the data;
从第一数据中,选取描述matpower一次模型和二次模型所需的参数作为成员变量,分别建立一次模型和二次模型;From the first data, select the parameters required to describe the primary model and the secondary model of matpower as member variables, and establish the primary model and the secondary model respectively;
获取多灾种耦合条件下的电网元件故障集及集合中每一个故障的概率,确定电网元件故障集中描述各故障所需的参数作为成员变量,在一次模型和二次模型的基础上,建立电网多灾种耦合连锁故障模型。Obtain the power grid component fault set and the probability of each fault in the set under the multi-hazard coupling condition, determine the parameters required to describe each fault in the power grid component fault set as member variables, and establish a power grid based on the primary model and the secondary model Multi-hazard coupled cascading failure model.
优选地,还包括,从继电保护定值管理系统或者故障信息管理系统采集变压器和输电线路的继电保护定值;将变压器和输电线路的继电保护定值更新到第一数据中;Preferably, it also includes collecting the relay protection settings of the transformer and the transmission line from the relay protection setting management system or the fault information management system; updating the relay protection settings of the transformer and the transmission line into the first data;
进行判断第二数据中的元件名称与第一数据中元件名称及参数是否匹配之前,方法还包括:读取电网一次数据和电网二次数据,电网一次数据包括第一数据和第二数据,电网二次数据包括变压器和输电线路的继电保护定值;Before judging whether the component name in the second data matches the component name and parameters in the first data, the method also includes: reading the primary data of the power grid and the secondary data of the power grid, the primary data of the power grid includes the first data and the second data, and the power grid Secondary data includes relay protection settings for transformers and transmission lines;
继电保护定值包括每一条输电线路的继电保护设定值,继电保护设定值包括:距离保护、电流保护、温度保护和电压保护。The relay protection setting value includes the relay protection setting value of each transmission line, and the relay protection setting value includes: distance protection, current protection, temperature protection and voltage protection.
优选地,多灾种耦合条件下的电网元件故障集从以下的一个或者多个系统中获取:输电线路山火预报系统、输电线路山火监测、冰灾在线监测系统、覆冰预报系统或外力破坏监测系统;Preferably, the power grid component fault set under the multi-hazard coupling condition is obtained from one or more of the following systems: transmission line wildfire forecasting system, transmission line wildfire monitoring, ice disaster online monitoring system, ice coverage forecasting system or external force sabotage the monitoring system;
电网元件故障集包括:受威胁的线路名称、受威胁的时间区间以及在受威胁的时间区间内相应时间节点的跳闸概率。The grid element fault set includes: threatened line name, threatened time interval and trip probability of corresponding time node in the threatened time interval.
优选地,第一数据包括:电网的拓扑数据、输电线路参数、变压器参数和负荷参数;第二数据包括:电网的拓扑数据、输电线路参数、变压器参数和负荷参数;第二数据中的输电线路参数还包括:线路长度。Preferably, the first data includes: grid topology data, transmission line parameters, transformer parameters, and load parameters; the second data includes: grid topology data, transmission line parameters, transformer parameters, and load parameters; the transmission line parameters in the second data Parameters also include: line length.
优选地,建立一次模型、二次模型和\或电网多灾种耦合连锁故障模型时,包括调用写入函数将电网的拓扑数据写入到matpower文件中;Preferably, when establishing a primary model, a secondary model and/or a grid multi-disaster coupled cascading failure model, including calling a write function to write the topology data of the grid into the matpower file;
matpower一次模型所需的成员变量包括:发电机参数、输电线路参数、母线参数、变压器参数;一次模型的成员变量即变电站参数、母线参数、电容器参数、电抗器参数以及发电机参数、负荷参数等元件的参数类型。The required member variables of the matpower primary model include: generator parameters, transmission line parameters, bus parameters, and transformer parameters; the member variables of the primary model are substation parameters, bus parameters, capacitor parameters, reactor parameters, generator parameters, load parameters, etc. The parameter type of the component.
matpower二次模型所需的成员变量包括:发电机、输电线路、母线和变压器所对应的保护装置参数,具体包括过流保护定值、低压保护定值、低频保护定值以及阻抗保护定值。The required member variables of the matpower quadratic model include: protection device parameters corresponding to generators, transmission lines, busbars and transformers, specifically including overcurrent protection settings, low voltage protection settings, underfrequency protection settings, and impedance protection settings.
优选地,电网的拓扑数据包括:变电站参数、母线参数、电容器参数、电抗器参数、发电机参数以及负荷参数;Preferably, the topology data of the grid includes: substation parameters, bus parameters, capacitor parameters, reactor parameters, generator parameters and load parameters;
其中,变电站参数包括:序号、厂站名、电压等级以及厂站类型;Among them, substation parameters include: serial number, station name, voltage level and station type;
母线参数包括:母线名、电压等级、所在拓扑节点、电压、相角、停运标志以及计算节点;Bus parameters include: bus name, voltage level, topological node, voltage, phase angle, outage flag and calculation node;
电容器参数包括名称、电压等级、额定容量、额定电压、连接位置、所在拓扑节点、有功功率、无功功率、停运标志以及计算节点;Capacitor parameters include name, voltage level, rated capacity, rated voltage, connection location, topological node, active power, reactive power, outage flag, and computing node;
电抗器参数包括名称、电压等级、额定容量、额定电压、连接位置、所在拓扑节点、有功功率、无功功率、停运标志以及计算节点;Reactor parameters include name, voltage level, rated capacity, rated voltage, connection location, topological node, active power, reactive power, outage flag, and computing node;
发电机参数包括:发电机名、等值发电机标志、等值位置、额定电压、额定容量、接入电网电压等级、所在拓扑节点、有功功率、无功功率、机端电压、机端电压相角、停运标志、有功功率上限、有功功率下限、无功功率上限、无功功率下限、额定功率因数以及计算节点。Generator parameters include: generator name, equivalent generator logo, equivalent position, rated voltage, rated capacity, voltage level connected to the grid, topological node, active power, reactive power, machine terminal voltage, machine terminal voltage phase angle, outage flag, active power upper limit, active power lower limit, reactive power upper limit, reactive power lower limit, rated power factor, and computing nodes.
优选地,变压器参数包括:变压器名、绕组类型、高压端电压等级、中压端电压等级、低压端电压等级、高压端额定容量、中压端额定容量、低压端额定容量、高压端分接头最高档位、高压端分接头最低档位、高压端分接头额定档位、高压端分接头级差、高压端额定电压、中压端分接头最高档位、中压端分接头最低档位、中压端分接头额定档位、中压端分接头级差、中压端额定电压、低压端额定电压、高压绕组电阻、高压绕组电抗、中压绕组电阻、中压绕组电抗、低压绕组电阻、低压绕组电抗、高压端所在拓扑节点、中压端所在拓扑节点、低压端所在拓扑节点、高压侧开断标志、中压侧开断标志、低压侧开断标志、高压端计算节点、中压端计算节点、低压端计算节点、高压绕组电抗标么值、中压绕组电阻标么值、中压绕组电抗标么值、低压绕组电阻标么值、低压绕组电抗标么值;Preferably, the transformer parameters include: transformer name, winding type, high-voltage terminal voltage level, medium-voltage terminal voltage level, low-voltage terminal voltage level, high-voltage terminal rated capacity, medium-voltage terminal rated capacity, low-voltage terminal rated capacity, high-voltage terminal tap max. Gear position, the lowest gear position of the high-voltage end tap, the rated gear position of the high-voltage end tap, the differential level of the high-voltage end tap, the rated voltage of the high-voltage end, the highest gear position of the medium-voltage end tap, the lowest gear of the medium-voltage end tap, medium voltage End tap rated gear, medium voltage end tap differential, medium voltage end rated voltage, low voltage end rated voltage, high voltage winding resistance, high voltage winding reactance, medium voltage winding resistance, medium voltage winding reactance, low voltage winding resistance, low voltage winding reactance , the topological node where the high-voltage side is located, the topological node where the medium-voltage side is located, the topological node where the low-voltage side is located, the disconnection mark of the high-voltage side, the disconnection mark of the medium-voltage side, the disconnection mark of the low-voltage side, the computing node of the high-voltage side, the computing node of the medium-voltage side, Low-voltage computing node, high-voltage winding reactance standard unit value, medium-voltage winding resistance standard unit value, medium-voltage winding reactance standard unit value, low-voltage winding resistance standard unit value, low-voltage winding reactance standard unit value;
输电线路参数包括交流输电线路参数,交流输电线路参数包括:交流线路名、电压等级、等值线路标志、线路电阻、线路电抗、线路单端电纳、I端所在拓扑节点、J端所在拓扑节点、I端开断标志、J端开断标志、允许载流量、I端电气岛号、J端电气岛号、线路电阻标幺值、线路电抗标幺值以及线路单端电纳标幺值;Transmission line parameters include AC transmission line parameters, AC transmission line parameters include: AC line name, voltage level, equivalent line sign, line resistance, line reactance, line single-ended susceptance, topological node where I end is located, and topological node where J end is located , I-terminal breaking sign, J-terminal breaking sign, allowable ampacity, I-terminal electrical island number, J-terminal electrical island number, line resistance per unit value, line reactance per unit value and line single-end susceptance per unit value;
负荷参数包括:负荷名、电压等级、等值负荷标志、等值连接位置、所在拓扑节点、有功功率、无功功率、停运标志以及计算节点。Load parameters include: load name, voltage level, equivalent load symbol, equivalent connection location, topological node, active power, reactive power, outage symbol, and computing node.
优选地,将第一数据的变压器参数转换为输电线路,包括:将两卷变转换为一条输电线路,和\或将三卷变转换为三条输电线路。Preferably, converting the transformer parameters of the first data into transmission lines includes: converting two transformers into one transmission line, and/or converting three transformers into three transmission lines.
优选地,按第一周期从D5000系统中的E格式文件,包括以下步骤:Preferably, from the E format file in the D5000 system according to the first cycle, the following steps are included:
读取substation数据卡,获得变电站类集合;Read the substation data card to obtain the collection of substations;
读取bus数据卡,获得母线类集合;Read the bus data card to obtain the bus class collection;
读取ACline数据卡,获得交流线路类集合;Read the ACline data card to obtain the collection of AC lines;
读取DCline数据卡,获得直流线路类集合;Read the DCline data card to obtain the collection of DC lines;
读取transformer数据卡,获得变压器类集合;Read the transformer data card to obtain the transformer class collection;
读取unit数据卡,获得电机类集合;Read the unit data card to obtain the motor class collection;
读取Compensator_P、Compensator_S数据卡,获得电容器类、电抗器类集合;Read the Compensator_P and Compensator_S data cards to obtain the collection of capacitors and reactors;
解析E格式文件获取电网的第一数据,包括根据E格式文件生成电网的拓扑数据,包括以下步骤:Analyzing the E format file to obtain the first data of the power grid includes generating the topology data of the power grid according to the E format file, including the following steps:
判断母线元件A的名称和交流线路、直流线路元件B的I端所在拓扑节点属性或者J端所在拓扑节点是否一致,假如一致则B的I端或者J端连接母线A;Determine whether the name of the bus element A is consistent with the topological node attribute of the I end of the AC line or the DC line element B or the topological node where the J end is located. If they are consistent, then the I end or J end of B is connected to the bus A;
判断母线元件A的名称和二卷变压器元件C的I端所在拓扑节点属性或者J端所在拓扑节点是否一致,假如一致则C的I端或者J端连接母线A;Determine whether the name of the bus element A is consistent with the topological node attribute of the I terminal of the second-volume transformer element C or the topological node of the J terminal. If they are consistent, the I terminal or J terminal of C is connected to the bus A;
判断母线元件A的名称和三卷变压器元件D的高压端所在拓扑节点或中压端所在拓扑节点或低压端所在拓扑节点是否一致,假如一致则元件D对应的高压端或者中压端或者低压端连接母线A;Determine whether the name of the bus element A is consistent with the topological node where the high-voltage end, the medium-voltage end, or the low-voltage end of the three-volume transformer element D is located. If they are consistent, the corresponding high-voltage end, medium-voltage end, or low-voltage end of element D Connect bus A;
判断母线元件A的名称和发电机元件E的所在拓扑节点名称是否一致,假如一致则E的出线端连接母线A;Determine whether the name of the bus element A is consistent with the name of the topological node where the generator element E is located. If they are consistent, the outlet end of E is connected to the bus A;
判断母线元件A的名称和电容器或电抗器元件F的所在拓扑节点名称是否一致,假如一致则F连接母线A;Determine whether the name of the bus element A is consistent with the name of the topological node where the capacitor or reactor element F is located, and if they are consistent, then F is connected to the bus A;
为各元件编号,形成电网的拓扑数据。Number each component to form the topology data of the power grid.
本发明还提供一种计算机系统,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述任一方法的步骤。The present invention also provides a computer system, including a memory, a processor, and a computer program stored in the memory and operable on the processor. When the processor executes the computer program, the steps of any of the above-mentioned methods are realized.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明的D5000-matpower的电网多灾种耦合连锁故障模型的自动转换方法,在D5000的E格式数据进行解析的基础上获取电网的设备参数,通过数据转换实现了matpower的文件的电网的拓扑参数赋值;实现了电网多灾种耦合连锁故障模型的自动转换,为电网连锁故障风险分析提供数据基础。该方法可避免人工进行matpower建模是参数转换和录入的繁重工作以及仿真参数错误难以勘验的弊端,提高了模型生成的效率和模型生成的准确性,可提高电磁暂态仿真建模的效率和可信性。The automatic conversion method of the D5000-matpower grid multi-disaster coupling cascading failure model of the present invention obtains the equipment parameters of the grid on the basis of analyzing the E-format data of D5000, and realizes the topological parameters of the grid of the matpower file through data conversion Value assignment; realize the automatic conversion of the multi-disaster coupled cascading failure model of the power grid, and provide a data basis for the risk analysis of the cascading failure of the power grid. This method can avoid the disadvantages of manual matpower modeling, which is a heavy work of parameter conversion and input, and simulation parameter errors are difficult to inspect, improves the efficiency and accuracy of model generation, and can improve the efficiency of electromagnetic transient simulation modeling and credibility.
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照附图,对本发明作进一步详细的说明。In addition to the objects, features and advantages described above, the present invention has other objects, features and advantages. The present invention will be described in further detail below with reference to the accompanying drawings.
附图说明Description of drawings
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings constituting a part of this application are used to provide further understanding of the present invention, and the schematic embodiments and descriptions of the present invention are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached picture:
图1是本发明优选实施例的D5000-matpower的电网多灾种耦合连锁故障模型的自动转换方法的流程示意图。Fig. 1 is a schematic flow chart of the automatic conversion method of the D5000-matpower grid multi-disaster coupling cascading failure model of the preferred embodiment of the present invention.
具体实施方式detailed description
以下结合附图对本发明的实施例进行详细说明,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the present invention can be implemented in many different ways defined and covered by the claims.
而本实施例中所称的E语言为ICS 35.040国家电网公司企业标准Q/GDW 215-2008电力系统数据标记语言;The E language referred to in the present embodiment is ICS 35.040 State Grid Corporation Enterprise Standard Q/GDW 215-2008 Power System Data Markup Language;
本实施例中所称的继电保护整定计算系统为省级电网公司、区域电网公司或总部调控中心继电保护处室运维管理,该部门既是继电保护整定计算系统数据的归口部门也是数据的使用部门。由于D5000系统的数据为从现场设备采集,易受设备可靠性、网络可用性、人为维护等因素影响,准确性相比于继电保护整定计算系统差。故障信息管理系统为省级电网公司、区域电网公司或总部调控中心继电保护处室运维管理,通过该系统可以读取现场继电保护装置的定值,从而相比于继电保护整定计算系统的定值更为准确。但不是所有的现场保护定值均可以被采集读取,因此,故障信息管理系统的定值只能作为继电保护整定计算系统定值的一个校核。The relay protection setting calculation system referred to in this embodiment is the operation and maintenance management of the relay protection department of the provincial power grid company, regional power grid company or headquarters control center. This department is not only the centralized department of the relay protection setting calculation system data but also the use department. Since the data of the D5000 system is collected from on-site equipment, it is easily affected by factors such as equipment reliability, network availability, and human maintenance, and its accuracy is poorer than that of the relay protection setting calculation system. The fault information management system is the operation and maintenance management of the relay protection department of the provincial power grid company, regional power grid company or headquarters control center. Through this system, the fixed value of the on-site relay protection device can be read, so that compared with the relay protection setting calculation The value of the system is more accurate. But not all on-site protection setting values can be collected and read, therefore, the setting value of the fault information management system can only be used as a check of the setting value of the relay protection setting calculation system.
本实施例的D5000-matpower的电网多灾种耦合连锁故障模型的自动转换方法,包括以下步骤:The automatic conversion method of the D5000-matpower power grid multi-disaster coupling cascading failure model of this embodiment includes the following steps:
从D5000系统中获取第一数据;从继电保护整定计算系统中获取第二数据;Obtain the first data from the D5000 system; obtain the second data from the relay protection setting calculation system;
以第一数据为基础,将第一数据的变压器模型转换为输电线路模型;取第一数据中的变压器的容量,作为输电线路模型中的输电线路的极限载流量,更新到第一数据中;Based on the first data, the transformer model of the first data is converted into a transmission line model; the capacity of the transformer in the first data is taken as the limit current carrying capacity of the transmission line in the transmission line model, and updated in the first data;
判断第二数据中的元件名称与第一数据中元件名称是否匹配,当不匹配时保留第一数据中的元件名称及参数;当匹配时,取第二数据的元件名称对应的参数替换第一数据中的对应的参数;Determine whether the component name in the second data matches the component name in the first data, and keep the component name and parameters in the first data if they do not match; when they match, take the parameter corresponding to the component name in the second data to replace the first The corresponding parameters in the data;
从第一数据中,选取描述matpower一次模型和二次模型所需的参数作为成员变量,分别建立一次模型和二次模型;From the first data, select the parameters required to describe the primary model and the secondary model of matpower as member variables, and establish the primary model and the secondary model respectively;
获取多灾种耦合条件下的电网元件故障集及集合中每一个故障的概率,确定电网元件故障集中描述各故障所需的参数作为成员变量,在一次模型和二次模型的基础上,建立电网多灾种耦合连锁故障模型。Obtain the power grid component fault set and the probability of each fault in the set under the multi-hazard coupling condition, determine the parameters required to describe each fault in the power grid component fault set as member variables, and establish a power grid based on the primary model and the secondary model Multi-hazard coupled cascading failure model.
在D5000的E格式数据进行解析的基础上获取电网的设备参数,通过数据转换实现了matpower的文件的电网的拓扑参数赋值;实现了电网多灾种耦合连锁故障模型的自动转换,为电网连锁故障风险分析提供数据基础。On the basis of analyzing the E-format data of D5000, the equipment parameters of the power grid are obtained, and the topological parameter assignment of the power grid in the matpower file is realized through data conversion; the automatic conversion of the multi-disaster coupling cascading failure model of the power grid is realized, and cascading failures of the power grid are realized. Risk analysis provides the data basis.
实际实施时,以上的方法还能进行以下的扩充或应用,以下实施例中的技术特征都能相互组合,实施例仅作为示例,不作为对技术特征的正常组合限制。In actual implementation, the above methods can also be expanded or applied as follows, and the technical features in the following embodiments can be combined with each other, and the embodiments are only examples, and are not intended to limit the normal combination of technical features.
实施例1:Example 1:
本实施例的D5000-matpower的电网多灾种耦合连锁故障模型的自动转换方法,包括以下步骤:The automatic conversion method of the D5000-matpower power grid multi-disaster coupling cascading failure model of this embodiment includes the following steps:
S1:按第一周期从D5000系统中的E格式文件;第一周期为5-15分钟。按第一周期从D5000系统中的E格式文件,包括以下步骤:S1: From the E format file in the D5000 system according to the first cycle; the first cycle is 5-15 minutes. From the E-format file in the D5000 system in the first cycle, the following steps are included:
读取substation数据卡,获得变电站类集合;Read the substation data card to obtain the collection of substations;
读取bus数据卡,获得母线类集合;Read the bus data card to obtain the bus class collection;
读取ACline数据卡,获得交流线路类集合;Read the ACline data card to obtain the collection of AC lines;
读取DCline数据卡,获得直流线路类集合;Read the DCline data card to obtain the collection of DC lines;
读取transformer数据卡,获得变压器类集合;Read the transformer data card to obtain the transformer class collection;
读取unit数据卡,获得电机类集合;Read the unit data card to obtain the motor class collection;
读取Compensator_P、Compensator_S数据卡,获得电容器类、电抗器类集合。Read the Compensator_P and Compensator_S data cards to obtain the collection of capacitors and reactors.
上述七类数据卡都是从D5000或者BPA系统中的数据卡转换而来。电网第一数据从数据卡解析而来,一个数据卡对应第一数据中的一个类型的数据,具体包含了变电站、母线类、交流线路类、直流线路类、变压器类、电机类、电容器类、电抗器类等元件类型。The above seven types of data cards are converted from the data cards in the D5000 or BPA system. The first data of the power grid is analyzed from the data card. A data card corresponds to a type of data in the first data, which specifically includes substations, busbars, AC lines, DC lines, transformers, motors, capacitors, Component types such as reactors.
还可按照第二周期从继电保护定值管理系统或者故障信息管理系统采集变压器和输电线路的继电保护定值;将变压器和输电线路的继电保护定值更新到第一数据中;第二周期为1天-5天。继电保护定值包括每一条输电线路的继电保护设定值,继电保护设定值包括:距离保护、电流保护、温度保护和电压保护。It is also possible to collect relay protection fixed values of transformers and transmission lines from the relay protection fixed value management system or fault information management system according to the second cycle; update the relay protection fixed values of transformers and transmission lines to the first data; The second cycle is 1 day to 5 days. The relay protection setting value includes the relay protection setting value of each transmission line, and the relay protection setting value includes: distance protection, current protection, temperature protection and voltage protection.
S2:解析所述E格式文件获取电网的第一数据。第一数据包括:电网的拓扑数据、输电线路参数、变压器参数和负荷参数。其中,电网的拓扑数据包括:变电站参数、母线参数、电容器参数、电抗器参数、发电机参数以及负荷参数;S2: Analyzing the E-format file to obtain the first data of the power grid. The first data includes: grid topology data, transmission line parameters, transformer parameters and load parameters. Among them, the topology data of the grid includes: substation parameters, bus parameters, capacitor parameters, reactor parameters, generator parameters and load parameters;
其中,变电站参数包括:序号、厂站名、电压等级以及厂站类型;Among them, substation parameters include: serial number, station name, voltage level and station type;
母线参数包括:母线名、电压等级、所在拓扑节点、电压、相角、停运标志以及计算节点;Bus parameters include: bus name, voltage level, topological node, voltage, phase angle, outage flag and calculation node;
电容器参数包括名称、电压等级、额定容量、额定电压、连接位置、所在拓扑节点、有功功率、无功功率、停运标志以及计算节点;Capacitor parameters include name, voltage level, rated capacity, rated voltage, connection location, topological node, active power, reactive power, outage flag, and computing node;
电抗器参数包括名称、电压等级、额定容量、额定电压、连接位置、所在拓扑节点、有功功率、无功功率、停运标志以及计算节点;Reactor parameters include name, voltage level, rated capacity, rated voltage, connection location, topological node, active power, reactive power, outage flag, and computing node;
发电机参数包括:发电机名、等值发电机标志、等值位置、额定电压、额定容量、接入电网电压等级、所在拓扑节点、有功功率、无功功率、机端电压、机端电压相角、停运标志、有功功率上限、有功功率下限、无功功率上限、无功功率下限、额定功率因数以及计算节点。Generator parameters include: generator name, equivalent generator logo, equivalent position, rated voltage, rated capacity, voltage level connected to the grid, topological node, active power, reactive power, machine terminal voltage, machine terminal voltage phase angle, outage flag, active power upper limit, active power lower limit, reactive power upper limit, reactive power lower limit, rated power factor, and computing nodes.
变压器参数包括:变压器名、绕组类型、高压端电压等级、中压端电压等级、低压端电压等级、高压端额定容量、中压端额定容量、低压端额定容量、高压端分接头最高档位、高压端分接头最低档位、高压端分接头额定档位、高压端分接头级差、高压端额定电压、中压端分接头最高档位、中压端分接头最低档位、中压端分接头额定档位、中压端分接头级差、中压端额定电压、低压端额定电压、高压绕组电阻、高压绕组电抗、中压绕组电阻、中压绕组电抗、低压绕组电阻、低压绕组电抗、高压端所在拓扑节点、中压端所在拓扑节点、低压端所在拓扑节点、高压侧开断标志、中压侧开断标志、低压侧开断标志、高压端计算节点、中压端计算节点、低压端计算节点、高压绕组电抗标么值、中压绕组电阻标么值、中压绕组电抗标么值、低压绕组电阻标么值、低压绕组电抗标么值;Transformer parameters include: transformer name, winding type, high-voltage end voltage level, medium-voltage end voltage level, low-voltage end voltage level, high-voltage end rated capacity, medium-voltage end rated capacity, low-voltage end rated capacity, high-voltage end tap highest gear position, The lowest gear position of the high-voltage end tap, the rated gear position of the high-voltage end tap, the differential level of the high-voltage end tap, the rated voltage of the high-voltage end, the highest gear position of the medium-voltage end tap, the lowest gear of the medium-voltage end tap, and the medium-voltage end tap Rated gear, tap differential at medium voltage end, rated voltage at medium voltage end, rated voltage at low voltage end, high voltage winding resistance, high voltage winding reactance, medium voltage winding resistance, medium voltage winding reactance, low voltage winding resistance, low voltage winding reactance, high voltage end The topology node where the medium voltage side is located, the topology node where the low voltage side is located, the high voltage side disconnection flag, the medium voltage side disconnection flag, the low voltage side disconnection flag, the high voltage side calculation node, the medium voltage side calculation node, the low voltage side calculation Node, high voltage winding reactance standard value, medium voltage winding resistance standard value, medium voltage winding reactance standard value, low voltage winding resistance standard value, low voltage winding reactance standard value;
输电线路参数包括交流输电线路参数,交流输电线路参数包括:交流线路名、电压等级、等值线路标志、线路电阻、线路电抗、线路单端电纳、I端所在拓扑节点、J端所在拓扑节点、I端开断标志、J端开断标志、允许载流量、I端电气岛号、J端电气岛号、线路电阻标幺值、线路电抗标幺值以及线路单端电纳标幺值;Transmission line parameters include AC transmission line parameters, AC transmission line parameters include: AC line name, voltage level, equivalent line sign, line resistance, line reactance, line single-ended susceptance, topological node where I end is located, and topological node where J end is located , I-terminal breaking sign, J-terminal breaking sign, allowable ampacity, I-terminal electrical island number, J-terminal electrical island number, line resistance per unit value, line reactance per unit value and line single-end susceptance per unit value;
负荷参数包括:负荷名、电压等级、等值负荷标志、等值连接位置、所在拓扑节点、有功功率、无功功率、停运标志以及计算节点。Load parameters include: load name, voltage level, equivalent load symbol, equivalent connection location, topological node, active power, reactive power, outage symbol, and computing node.
上述的解析E格式文件获取电网的第一数据,包括根据E格式文件生成电网的拓扑数据,包括以下步骤:The above-mentioned analysis of the E format file to obtain the first data of the power grid includes generating the topology data of the power grid according to the E format file, including the following steps:
判断母线元件A的名称和交流线路、直流线路元件B的I端所在拓扑节点属性或者J端所在拓扑节点是否一致,假如一致则B的I端或者J端连接母线A;Determine whether the name of the bus element A is consistent with the topological node attribute of the I end of the AC line or the DC line element B or the topological node where the J end is located. If they are consistent, then the I end or J end of B is connected to the bus A;
判断母线元件A的名称和二卷变压器元件C的I端所在拓扑节点属性或者J端所在拓扑节点是否一致,假如一致则C的I端或者J端连接母线A;Determine whether the name of the bus element A is consistent with the topological node attribute of the I terminal of the second-volume transformer element C or the topological node of the J terminal. If they are consistent, the I terminal or J terminal of C is connected to the bus A;
判断母线元件A的名称和三卷变压器元件D的高压端所在拓扑节点或中压端所在拓扑节点或低压端所在拓扑节点是否一致,假如一致则元件D对应的高压端或者中压端或者低压端连接母线A;Determine whether the name of the bus element A is consistent with the topological node where the high-voltage end, the medium-voltage end, or the low-voltage end of the three-volume transformer element D is located. If they are consistent, the corresponding high-voltage end, medium-voltage end, or low-voltage end of element D Connect bus A;
判断母线元件A的名称和发电机元件E的所在拓扑节点名称是否一致,假如一致则E的出线端连接母线A;Determine whether the name of the bus element A is consistent with the name of the topological node where the generator element E is located. If they are consistent, the outlet end of E is connected to the bus A;
判断母线元件A的名称和电容器或电抗器元件F的所在拓扑节点名称是否一致,假如一致则F连接母线A;Determine whether the name of the bus element A is consistent with the name of the topological node where the capacitor or reactor element F is located, and if they are consistent, then F is connected to the bus A;
为各元件编号,形成电网的拓扑数据。Number each component to form the topology data of the power grid.
通过上述解析步骤,是为了根据母线元件与输电线路、变压器、电容器、电抗器、发电机等元件之间的连接关系,确定电网的拓扑结构。例如母线:云田变500千伏I母编号为5539,团山变500千伏II母编号为5860,云团线的I端连接的母线编号为5539,J端连接的母线编号为5870,则可知云团线的I端连接云田变500千伏I母,J端不是连接的团山变500千伏II母。Through the above analysis steps, it is to determine the topological structure of the power grid according to the connection relationship between the busbar components and the transmission lines, transformers, capacitors, reactors, generators and other components. For example, bus: Yuntian substation 500 kV I bus number is 5539, Tuanshan substation 500 kV II bus number is 5860, the bus number connected to terminal I of Yuntuan line is 5539, and the bus number connected to J terminal is 5870, then It can be seen that the I end of the Yuntuan line is connected to the 500 kV I bus of the Yuntian substation, and the J end is not connected to the 500 kV II bus of the Tuanshan substation.
S3:读取继电保护整定计算系统中的第二数据,第二数据包括:电网的拓扑数据、输电线路参数、变压器参数、负荷参数以及线路长度。S3: Read the second data in the relay protection setting calculation system, the second data includes: grid topology data, transmission line parameters, transformer parameters, load parameters and line length.
S4:转换所述第一数据的变压器参数为输电线路;包括:将两卷变转换为一条输电线路,和\或将三卷变转换为三条输电线路。S4: converting the transformer parameters of the first data into transmission lines; including: converting two transformers into one transmission line, and/or converting three transformers into three transmission lines.
S5:获取第二数据中的变压器参数中每一条输电线路的允许载流量属性值(变压器的容量),将所述允许载流量属性值作为所述输电线路模型中的输电线路的极限载流量,更新到所述第一数据的输电线路参数中;S5: Obtain the allowable ampacity attribute value (capacity of the transformer) of each transmission line in the transformer parameter in the second data, and use the allowable ampacity attribute value as the limit ampacity of the transmission line in the transmission line model, update to the transmission line parameters of the first data;
S6:从所述第一数据中选取各元件描述matpower一次模型所需的参数作为成员变量,建立一次模型,调用写入函数将参数的数据写入到matpower文件中;matpower一次模型所需的成员变量包括:发电机参数、输电线路参数、母线参数以及变压器参数。一次模型的成员变量即变电站参数、母线参数、电容器参数、电抗器参数以及发电机参数、负荷参数等元件的参数类型。S6: from the first data, select the parameters required by each element to describe the matpower primary model as member variables, set up a primary model, call the write function to write the data of the parameters into the matpower file; the required members of the matpower primary model Variables include: generator parameters, transmission line parameters, bus parameters, and transformer parameters. The member variables of the primary model are the parameter types of components such as substation parameters, bus parameters, capacitor parameters, reactor parameters, generator parameters, and load parameters.
S7:读取电网一次数据和电网二次数据,所述电网一次数据包括所述第一数据和第二数据,所述电网二次数据包括变压器和输电线路的继电保护定值,判断第二数据中的元件名称与第一数据中元件名称是否匹配,当不匹配时保留第一数据中的元件名称及参数,匹配的时候,取第二数据的内容替换第一数据中的对应内容,取第二数据的元件名称对应的参数替换所述第一数据中对应的参数。继电保护整定计算系统中的参数比D5000系统中参数更为准确。这样的名称比对以相互印证数据的数值,确保电网数据的准确。S7: read the grid primary data and the grid secondary data, the grid primary data includes the first data and the second data, the grid secondary data includes the relay protection fixed value of the transformer and the transmission line, and judges the second Whether the component name in the data matches the component name in the first data, if it does not match, keep the component name and parameters in the first data, if it matches, take the content of the second data to replace the corresponding content in the first data, take The parameter corresponding to the component name of the second data replaces the corresponding parameter in the first data. The parameters in the relay protection setting calculation system are more accurate than those in the D5000 system. This kind of name comparison is used to mutually confirm the value of the data to ensure the accuracy of the grid data.
S8:根据matpower文件的要求,确定各个元件描述matpower二次模型所需的成员变量和进行数据处理的成员函数;调用写入函数将电网的拓扑数据写入到matpower文件中。matpower二次模型所需的成员变量包括:发电机、输电线路、母线和变压器所对应的保护装置参数,具体包括过流保护定值、低压保护定值、低频保护定值以及阻抗保护定值。S8: According to the requirements of the matpower file, determine the member variables required by each component to describe the matpower quadratic model and the member functions for data processing; call the write function to write the topology data of the power grid into the matpower file. The required member variables of the matpower quadratic model include: protection device parameters corresponding to generators, transmission lines, busbars and transformers, specifically including overcurrent protection settings, low voltage protection settings, underfrequency protection settings, and impedance protection settings.
S9:根据输电线路山火预报系统、输电线路山火监测、冰灾在线监测系统、覆冰预报系统或外力破坏监测系统形成多灾种耦合条件下的电网元件故障集;所述电网元件故障集包括:受威胁的线路名称、受威胁的时间区间以及在受威胁的时间区间内相应时间节点的跳闸概率;S9: According to the transmission line mountain fire forecasting system, transmission line mountain fire monitoring, ice disaster online monitoring system, icing forecast system or external force damage monitoring system, a power grid component fault set under multi-disaster coupling conditions is formed; the power grid component fault set Including: the threatened line name, the threatened time interval and the trip probability of the corresponding time node in the threatened time interval;
S10:根据matpower文件的要求,确定各个故障描述所需的成员变量和进行数据处理的成员函数。多灾种耦合连锁计算所需要的数据包括电网本体数据和电网运行外部环境数据二大类。电网本体数据为电网一次数据和二次数据,其中电网一次数据指的是变电站、母线、变压器、输电线路、电容器、电抗器、发电机以及负荷等元件的参数;电网二次数据指的是在上述元件的保护定值(变电站除外);两类数据的产生、转换相互不影响。电网运行外部环境数据即外部灾害威胁的电网元件和威胁的程度等参数,用于给电网仿真提供输入数据。S10: According to the requirements of the matpower file, determine the member variables required for each fault description and the member functions for data processing. The data required for multi-hazard coupling chain calculation include two categories: grid ontology data and grid operation external environment data. The main data of the power grid is the primary data and secondary data of the power grid. The primary data of the power grid refers to the parameters of components such as substations, busbars, transformers, transmission lines, capacitors, reactors, generators, and loads; the secondary data of the power grid refers to the parameters in the The protection setting of the above components (except the substation); the generation and conversion of the two types of data do not affect each other. The external environmental data of power grid operation, that is, the parameters of the power grid components threatened by external disasters and the degree of threat, are used to provide input data for power grid simulation.
S11:调用成员函数中的写入函数将电网拓扑数据写入到matpower文件中。S11: call the write function in the member function to write the grid topology data into the matpower file.
上述的步骤中,步骤的顺序可以依需要进行调整,S1-S11不表示对步骤顺序的限定。In the above steps, the order of the steps can be adjusted as needed, and S1-S11 does not represent a limitation on the order of the steps.
实施例2:Example 2:
本实施例为实施例1对应的电网多灾种耦合连锁故障模型的自动转换系统,本实施例的D5000-matpower的电网多灾种耦合连锁故障模型的自动转换系统,包括:This embodiment is the automatic conversion system of the power grid multi-disaster coupling cascading failure model corresponding to Embodiment 1. The automatic conversion system of the D5000-matpower power grid multi-disaster coupling cascading failure model in this embodiment includes:
数据参数获取模块,用于每隔5分钟采用ftp方式国家电网智能电网调度技术支持系统D5000获取以E语言(电力系统数据标记语言)描述的文件,该文件中应包括:变压器参数、交流输电线路、直流输电线路、负荷参数,电网的拓扑数据中的变电站、母线、电容器、电感器等参数。The data parameter acquisition module is used to obtain the file described in E language (electric power system data markup language) by the national grid smart grid dispatching technical support system D5000 by ftp every 5 minutes. The file should include: transformer parameters, AC transmission lines , DC transmission lines, load parameters, substations, busbars, capacitors, inductors and other parameters in the topology data of the power grid.
数据参数获取模块,还用于每天自动召唤现场定值采集变压器和输电线路的继电保护装置定值到数据库,并生成xml文件传输到服务器指定文件夹;The data parameter acquisition module is also used to automatically call the on-site setting value collection transformer and the relay protection device setting value of the transmission line to the database every day, and generate an xml file and transmit it to the designated folder of the server;
电网一二次系统转换模块,用于获得电网一次系统参数,步骤如下:The primary and secondary system conversion module of the power grid is used to obtain the parameters of the primary system of the power grid. The steps are as follows:
解析E格式文件进行解析获取电网的拓扑数据、线路参数、变压器参数和负荷数据;Analyze the E format file to analyze and obtain the topology data, line parameters, transformer parameters and load data of the power grid;
读取继电保护整定计算系统电网的拓扑数据、线路参数、变压器参数和负荷参数;Read the topology data, line parameters, transformer parameters and load parameters of the power grid of the relay protection setting calculation system;
转换电网拓扑参数中的变压器为输电线路,其中两卷变转换为一条输电线路,三卷变转换为三条输电线路;Convert the transformer in the topology parameters of the power grid to a transmission line, where two transformers are converted into one transmission line, and three transformers are converted into three transmission lines;
获取D5000系统中每一条输电线路(包括直流输电线路和交流输电线路)的允许载流量属性值,将允许载流量属性值设置为输电线路的极限容量;Obtain the allowable ampacity attribute value of each transmission line (including DC transmission line and AC transmission line) in the D5000 system, and set the allowable ampacity attribute value to the limit capacity of the transmission line;
根据matpower仿真文件“.m”的格式要求,编写各个元件描述matpower一次模型所需的成员变量和进行数据处理的成员函数;According to the format requirements of the matpower simulation file ".m", write the member variables required by each component to describe the matpower primary model and the member functions for data processing;
异构信息系统数据匹配模块,读取电网一次/二次数据,判断继电保护整定计算系统中的元件名称、参数和D5000系统中元件名称、参数的匹配性,确保电网拓扑参数、二次保护数据完整可靠;The heterogeneous information system data matching module reads the primary/secondary data of the power grid, judges the matching of the component names and parameters in the relay protection setting calculation system and the component names and parameters in the D5000 system, and ensures the grid topology parameters and secondary protection. The data is complete and reliable;
根据matpower仿真文件“.m”的格式要求,编写各个元件描述matpower二次模型所需的成员变量和进行数据处理的成员函数;According to the format requirements of the matpower simulation file ".m", write the member variables required by each component to describe the matpower quadratic model and the member functions for data processing;
调用各类中的成员函数matpower_Write将字符串写入到.m文件中。Call the member function matpower_Write in each category to write the character string into the .m file.
获取多灾种耦合条件下的电网元件故障集,确定所述电网元件故障集中描述各故障所需的参数作为成员变量,根据matpower仿真文件“.m”的格式要求,编写各个故障描述所需的成员变量和进行数据处理的成员函数,得到电网多灾种耦合连锁故障模型。Obtain the grid component fault set under the multi-disaster coupling condition, determine the parameters required to describe each fault in the grid component fault set as member variables, and write the required parameters for each fault description according to the format requirements of the matpower simulation file ".m" The member variables and member functions for data processing are used to obtain the multi-disaster coupling cascading failure model of the power grid.
其中,D5000系统、继电保护整定计算系统和定值召唤系统中的匹配方法采用已公开的通用方法。Among them, the matching methods in the D5000 system, the relay protection setting calculation system and the fixed value calling system adopt the published general method.
本实施例在对D5000的E格式数据进行解析的基础上获取设备参数,通过数据转换实现了“.m”中文件的拓扑参数赋值;通过整定计算系统中定值的导出以及外部环境参数的自动生成,实现了电网多灾种耦合连锁故障模型的自动转换,为电网连锁故障风险分析提供数据基础。该方法可避免人工进行matpower建模是参数转换和录入的繁重工作以及仿真参数错误难以勘验的弊端,提高了模型生成的效率和模型生成的准确性。This embodiment obtains device parameters on the basis of parsing the E-format data of D5000, and realizes the assignment of topological parameters in files in ". It realizes the automatic conversion of the multi-disaster coupling cascading failure model of the power grid, and provides a data basis for the risk analysis of the cascading failure of the power grid. This method can avoid the heavy work of manual parameter conversion and input for matpower modeling and the disadvantages of difficult inspection of simulation parameter errors, and improves the efficiency and accuracy of model generation.
实施例3:Example 3:
本发明还提供一种计算机系统,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述任一实施例的步骤。The present invention also provides a computer system, including a memory, a processor, and a computer program stored in the memory and operable on the processor. When the processor executes the computer program, the steps in any of the above embodiments are realized.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910728975.9A CN110489729B (en) | 2019-08-08 | 2019-08-08 | Automatic conversion method and system for D5000-matpower grid multi-disaster coupling cascading failure model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910728975.9A CN110489729B (en) | 2019-08-08 | 2019-08-08 | Automatic conversion method and system for D5000-matpower grid multi-disaster coupling cascading failure model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110489729A CN110489729A (en) | 2019-11-22 |
CN110489729B true CN110489729B (en) | 2022-12-06 |
Family
ID=68550295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910728975.9A Active CN110489729B (en) | 2019-08-08 | 2019-08-08 | Automatic conversion method and system for D5000-matpower grid multi-disaster coupling cascading failure model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110489729B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112115606B (en) * | 2020-09-15 | 2022-10-04 | 电子科技大学中山学院 | Conversion method and system for steady-state model of D5000-BPA (D5000-BPA) power system |
CN115115220B (en) * | 2022-06-27 | 2024-04-26 | 山东大学 | New energy cascading failure risk assessment method and system for Direct Current (DC) transmitting end system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102567603A (en) * | 2010-12-16 | 2012-07-11 | 安徽省电力公司 | Method for automatically generating BPA calculation file based on actual measurement topology and measured data |
WO2014173131A1 (en) * | 2013-04-23 | 2014-10-30 | 国家电网公司 | Large power grid overall situation on-line integrated quantitative evaluation method based on response |
CN106356846A (en) * | 2016-10-18 | 2017-01-25 | 国网山东省电力公司烟台供电公司 | A time-based simulation method for cascading faults in initial power grid |
CN108847973A (en) * | 2018-06-08 | 2018-11-20 | 国网四川省电力公司信息通信公司 | The method for building up of the cascading failure analysis model of electric power CPS based on cellular automata |
CN110070286A (en) * | 2019-04-19 | 2019-07-30 | 国网湖南省电力有限公司 | Disaster-ridden kind of coupling grid cascading failure analysis method of power grid and system |
-
2019
- 2019-08-08 CN CN201910728975.9A patent/CN110489729B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102567603A (en) * | 2010-12-16 | 2012-07-11 | 安徽省电力公司 | Method for automatically generating BPA calculation file based on actual measurement topology and measured data |
WO2014173131A1 (en) * | 2013-04-23 | 2014-10-30 | 国家电网公司 | Large power grid overall situation on-line integrated quantitative evaluation method based on response |
CN106356846A (en) * | 2016-10-18 | 2017-01-25 | 国网山东省电力公司烟台供电公司 | A time-based simulation method for cascading faults in initial power grid |
CN108847973A (en) * | 2018-06-08 | 2018-11-20 | 国网四川省电力公司信息通信公司 | The method for building up of the cascading failure analysis model of electric power CPS based on cellular automata |
CN110070286A (en) * | 2019-04-19 | 2019-07-30 | 国网湖南省电力有限公司 | Disaster-ridden kind of coupling grid cascading failure analysis method of power grid and system |
Also Published As
Publication number | Publication date |
---|---|
CN110489729A (en) | 2019-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104123271B (en) | Intelligent substation secondary design system based on Excel | |
CN102184209B (en) | Simulation data accessing method based on power grid CIM (Common Information Model) interface | |
CN105022874B (en) | A kind of power distribution network Digital Simulation method for automatic modeling and system | |
CN111160868A (en) | Unified distribution network frame topology construction method based on graph fusion technology | |
CN102368634A (en) | Unified information platform system for state monitoring of intelligent transformer substation | |
CN102063651A (en) | Urban power grid risk evaluation system based on on-line data acquisition | |
CN104463696A (en) | Power grid operating risk recognition and prevention method and system | |
CN115395643B (en) | Low-voltage distribution network fault early warning positioning device and system based on full data acquisition and state sensing | |
CN104201774A (en) | Method for integrating power primary and secondary equipment state monitoring system | |
CN111563304B (en) | Power distribution network frame meta-model construction method | |
CN112465168B (en) | Automatic configuration method of graph-model integrated intelligent wave recorder based on configuration | |
CN114239291B (en) | Intelligent substation simulation test method, device, equipment and storage medium | |
CN110489729B (en) | Automatic conversion method and system for D5000-matpower grid multi-disaster coupling cascading failure model | |
Poudel et al. | A two‐stage service restoration method for electric power distribution systems | |
CN106528968A (en) | Intelligent substation automatic dynamic simulation test method based on SSD file | |
Sahoo | Recent trends and advances in power quality | |
CN116070383B (en) | Main wiring diagram automatic generation method based on virtual loop connection relation | |
CN103647279A (en) | Plant wiring information based anticipatory fault set generation method | |
CN105119367A (en) | Digital spare power automatic switching simulation method based on dynamic topology | |
CN105184676A (en) | Power utilization data processing method and apparatus | |
Bhandari et al. | Ranking of bulk transmission assets for maintenance decisions | |
CN115169231A (en) | Single-phase grounding fault determination method for small current grounding system based on Bi-LSTM | |
Ding et al. | A transparent translation from legacy system model into common information model | |
CN117271375B (en) | Power grid diagram module test sample generation, maintenance and management methods and related devices | |
CN110110379A (en) | Power grid full-view modeling method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |