CN110408680A - Single quantum dot nanosensors based on ligase amplification reaction catalytic assembly for detection of alkaline phosphatase and its applications - Google Patents
Single quantum dot nanosensors based on ligase amplification reaction catalytic assembly for detection of alkaline phosphatase and its applications Download PDFInfo
- Publication number
- CN110408680A CN110408680A CN201910576733.2A CN201910576733A CN110408680A CN 110408680 A CN110408680 A CN 110408680A CN 201910576733 A CN201910576733 A CN 201910576733A CN 110408680 A CN110408680 A CN 110408680A
- Authority
- CN
- China
- Prior art keywords
- alkaline phosphatase
- probe
- detection
- quantum dot
- ligase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 102000002260 Alkaline Phosphatase Human genes 0.000 title claims abstract description 109
- 108020004774 Alkaline Phosphatase Proteins 0.000 title claims abstract description 109
- 239000002096 quantum dot Substances 0.000 title claims abstract description 68
- 238000001514 detection method Methods 0.000 title claims abstract description 56
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 49
- 230000003321 amplification Effects 0.000 title claims abstract description 48
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 48
- 102000003960 Ligases Human genes 0.000 title claims abstract description 35
- 108090000364 Ligases Proteins 0.000 title claims abstract description 35
- 230000003197 catalytic effect Effects 0.000 title description 3
- 239000000523 sample Substances 0.000 claims abstract description 94
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims abstract description 32
- 239000011616 biotin Substances 0.000 claims abstract description 27
- 229960002685 biotin Drugs 0.000 claims abstract description 27
- 238000002866 fluorescence resonance energy transfer Methods 0.000 claims abstract description 20
- 235000020958 biotin Nutrition 0.000 claims abstract description 16
- 102000012410 DNA Ligases Human genes 0.000 claims abstract description 6
- 108010061982 DNA Ligases Proteins 0.000 claims abstract description 6
- 238000001917 fluorescence detection Methods 0.000 claims abstract description 6
- 230000000694 effects Effects 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 24
- 108020004414 DNA Proteins 0.000 claims description 14
- 238000002474 experimental method Methods 0.000 claims description 11
- 239000000872 buffer Substances 0.000 claims description 10
- 239000000047 product Substances 0.000 claims description 8
- 238000012216 screening Methods 0.000 claims description 8
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- 238000011534 incubation Methods 0.000 claims description 6
- 238000006209 dephosphorylation reaction Methods 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 5
- 238000012986 modification Methods 0.000 claims description 5
- 229940122720 Alkaline phosphatase inhibitor Drugs 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 238000006366 phosphorylation reaction Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 230000026731 phosphorylation Effects 0.000 claims description 2
- 238000011895 specific detection Methods 0.000 claims description 2
- 238000006555 catalytic reaction Methods 0.000 claims 2
- 238000003367 kinetic assay Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 21
- 230000009977 dual effect Effects 0.000 abstract description 10
- 125000004122 cyclic group Chemical group 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 4
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 abstract description 4
- 230000003993 interaction Effects 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 description 17
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 229940088598 enzyme Drugs 0.000 description 12
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 229940098773 bovine serum albumin Drugs 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 108010015776 Glucose oxidase Proteins 0.000 description 7
- 239000004366 Glucose oxidase Substances 0.000 description 7
- 229940116332 glucose oxidase Drugs 0.000 description 7
- 235000019420 glucose oxidase Nutrition 0.000 description 7
- 238000004557 single molecule detection Methods 0.000 description 7
- 230000029087 digestion Effects 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 238000003556 assay Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- 230000004544 DNA amplification Effects 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000002795 fluorescence method Methods 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 4
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 3
- 108060002716 Exonuclease Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000003271 compound fluorescence assay Methods 0.000 description 3
- 102000013165 exonuclease Human genes 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000012933 kinetic analysis Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 2
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 2
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 2
- 208000002109 Argyria Diseases 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 230000030609 dephosphorylation Effects 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 108010055863 gene b exonuclease Proteins 0.000 description 2
- RQFCJASXJCIDSX-UUOKFMHZSA-N guanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O RQFCJASXJCIDSX-UUOKFMHZSA-N 0.000 description 2
- 235000013928 guanylic acid Nutrition 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- OSBLTNPMIGYQGY-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;boric acid Chemical compound OB(O)O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O OSBLTNPMIGYQGY-UHFFFAOYSA-N 0.000 description 1
- WRDABNWSWOHGMS-UHFFFAOYSA-N AEBSF hydrochloride Chemical compound Cl.NCCC1=CC=C(S(F)(=O)=O)C=C1 WRDABNWSWOHGMS-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- 108020001738 DNA Glycosylase Proteins 0.000 description 1
- 102000028381 DNA glycosylase Human genes 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 208000029663 Hypophosphatemia Diseases 0.000 description 1
- 108700011259 MicroRNAs Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 201000002661 Spondylitis Diseases 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 239000008051 TBE buffer Substances 0.000 description 1
- 108010001244 Tli polymerase Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002038 chemiluminescence detection Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000007834 ligase chain reaction Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000003616 phosphatase activity assay Methods 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 108091005981 phosphorylated proteins Proteins 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- JZLLRGCJEXHGNF-UHFFFAOYSA-M potassium;2-aminoacetic acid;hydroxide Chemical compound [OH-].[K+].NCC(O)=O JZLLRGCJEXHGNF-UHFFFAOYSA-M 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical group CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
- C12Q1/42—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving phosphatase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/6818—Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/682—Signal amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/6825—Nucleic acid detection involving sensors
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及用于检测碱性磷酸酶的、基于连接酶扩增反应催化组装的单量子点纳米传感器及应用。首次采用连接反应对碱性磷酸酶的活性信号进行识别和放大:在碱性磷酸酶存在时,催化检测探针的3’‑磷酸末端去磷酸化生成3’‑羟基末端,此后利用热稳定的DNA连接酶触发Cy5探针和生物素探针的循环重复连接,产生多个Cy5‑生物素双标记信号探针;信号探针通过链霉亲和素‑生物素的特异性相互作用在605量子点的表面完成自组装,实现从605量子点到Cy5的高效荧光共振能量转移(FRET),最后利用单分子荧光检测技术进行检测。相反,当不存在碱性磷酸酶时,则检测不到荧光共振能量转移信号。仅需一种热稳定连接酶即可实现超高的检测灵敏度,检测限低至5.63×10‑7单位每毫升。
The present invention relates to a single quantum dot nano-sensor for detecting alkaline phosphatase, catalyzed and assembled based on ligase amplification reaction, and its application. For the first time, the ligation reaction was used to identify and amplify the active signal of alkaline phosphatase: in the presence of alkaline phosphatase, the 3'-phosphate end of the catalyzed detection probe was dephosphorylated to generate a 3'-hydroxyl end, and then a thermostable DNA ligase triggers the cyclic and repeated ligation of Cy5 probes and biotin probes to generate multiple Cy5-biotin dual-labeled signal probes; the signal probes pass through the specific interaction of streptavidin-biotin at 605 quanta The surface of the dots is self-assembled to realize efficient fluorescence resonance energy transfer (FRET) from 605 quantum dots to Cy5, and finally the single-molecule fluorescence detection technology is used for detection. In contrast, in the absence of alkaline phosphatase, no fluorescence resonance energy transfer signal was detected. Only one thermostable ligase is needed to achieve ultra-high detection sensitivity with detection limits as low as 5.63 × 10 ‑7 units per milliliter.
Description
技术领域technical field
本发明属于酶活力检测领域,具体涉及基于连接酶扩增反应催化组装的单量子点纳米传感器用于检测碱性磷酸酶。The invention belongs to the field of enzyme activity detection, in particular to a single quantum dot nano-sensor catalyzed and assembled based on a ligase amplification reaction for detecting alkaline phosphatase.
背景技术Background technique
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。The information disclosed in this Background section is only for enhancement of understanding of the general background of the invention and should not necessarily be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person of ordinary skill in the art.
碱性磷酸酶(ALP)是一种在原核生物和真核生物中广泛存在的水解酶,可以在碱性条件下催化去除磷酸化的蛋白质、核酸、糖及其他生物分子上的磷酸基团,在细胞分裂、骨生成等正常生理功能中起着关键作用;同时,细胞内碱性磷酸酶水平失调与低磷血症、轴性脊柱炎、骨疾病及癌症等多种人类疾病密切相关,这使其成为临床相关疾病诊断的潜在生物标志物。此外,碱性磷酸酶也是酶免疫分析、组化染色和DNA杂交分析等生物分析中最常用的生物信标之一,因此,高效的碱性磷酸酶活性生物传感器对与其相关的生物学研究、临床诊断和生物分析应用具有重要的意义。Alkaline phosphatase (ALP) is a hydrolase widely present in prokaryotes and eukaryotes, which can catalyze the removal of phosphate groups on phosphorylated proteins, nucleic acids, sugars and other biomolecules under alkaline conditions. It plays a key role in normal physiological functions such as cell division and osteogenesis; meanwhile, the imbalance of intracellular alkaline phosphatase level is closely related to a variety of human diseases such as hypophosphatemia, axial spondylitis, bone disease and cancer. making it a potential biomarker for clinically relevant disease diagnosis. In addition, alkaline phosphatase is also one of the most commonly used biological beacons in biological analysis such as enzyme immunoassay, histochemical staining and DNA hybridization analysis. Clinical diagnostic and bioanalytical applications are of great significance.
此前,已经建立了各种基于比色检测、化学发光检测、表面增强拉曼散射检测和荧光检测的碱性磷酸酶活性测定方法。上述方法通常使用非核酸底物如对硝基苯酚磷酸盐(PNPP)、三磷酸腺苷(ATP)、鸟苷一磷酸(GMP)和5-溴-4-氯-3-吲哚磷酸盐等,尽管也有着出色的性能,但因为这些非核酸底物在检测过程中不能像核酸那样进行扩增以放大信号,使得这些方法的分析灵敏度很难再提升。目前,只有少数方法采用核酸扩增的策略来实现高灵敏度的碱性磷酸酶检测。然而,这些方法都需要引入多种酶才能完成信号放大步骤;如,分子信标启动的T7核酸外切酶介导的信号扩增方法需要使用KF聚合酶和T7核酸外切酶,循环指数扩增方法需要使用Vent聚合酶和Nt.BstNBI切口酶,转录反应介导的双信号扩增方法需要使用λ核酸外切酶和T7 RNA聚合酶以及双链特异性核酸酶,这不仅会增加分析成本,同时也使分析过程变得复杂。此外,由于非特异性的核酸外切酶消化和DNA背景扩增,这些分析方法的检测准确性也可能受到损害。Previously, various alkaline phosphatase activity assays based on colorimetric detection, chemiluminescence detection, surface-enhanced Raman scattering detection, and fluorescence detection have been established. The above methods typically use non-nucleic acid substrates such as p-nitrophenol phosphate (PNPP), adenosine triphosphate (ATP), guanosine monophosphate (GMP), and 5-bromo-4-chloro-3-indole phosphate, etc., although there are also However, because these non-nucleic acid substrates cannot be amplified like nucleic acids to amplify the signal during the detection process, it is difficult to improve the analytical sensitivity of these methods. Currently, only a few methods employ nucleic acid amplification strategies to achieve high-sensitivity alkaline phosphatase detection. However, these methods all require the introduction of multiple enzymes to complete the signal amplification step; for example, the T7 exonuclease-mediated signal amplification method initiated by molecular beacons requires the use of KF polymerase and T7 exonuclease, cyclic exponential amplification The amplification method requires the use of Vent polymerase and Nt.BstNBI nickase, and the transcription reaction-mediated dual-signal amplification method requires the use of λ exonuclease and T7 RNA polymerase and double-strand-specific nuclease, which not only increases the cost of analysis , but also complicates the analysis process. In addition, the detection accuracy of these assays may also be compromised due to nonspecific exonuclease digestion and DNA background amplification.
DNA连接酶通过在并列的5'-磷酸末端和3'-羟基末端之间形成磷酸二酯键来催化连接两条独立的DNA链。由于极高的保真度和连接效率,DNA连接酶被广泛应用于生物传感领域;此外,通过使用单一的热稳定连接酶重复进行链连接反应很容易地实现信号的循环放大。如,连接酶检测反应通过对2条靶标特异性探针的连接能实现信号的线性放大,而连接酶链式反应通过重复连接两对探针可以达到指数信号放大的效果。这些高特异性、高灵敏度的连接反应在DNA、RNA、microRNA、蛋白质和活性酶等生物分子的检测中有着广泛的应用,但目前连接反应用于碱性磷酸酶活性检测的方法还未见报道。DNA ligase catalyzes the joining of two independent DNA strands by forming a phosphodiester bond between the juxtaposed 5'-phosphate and 3'-hydroxyl termini. Due to the extremely high fidelity and ligation efficiency, DNA ligases are widely used in the field of biosensing; moreover, cyclic amplification of the signal is easily achieved by repeating the strand ligation reaction using a single thermostable ligase. For example, the ligase detection reaction can achieve linear signal amplification by connecting two target-specific probes, while the ligase chain reaction can achieve exponential signal amplification by repeatedly connecting two pairs of probes. These highly specific and highly sensitive ligation reactions are widely used in the detection of biomolecules such as DNA, RNA, microRNA, proteins, and active enzymes. However, there is no report on the detection of alkaline phosphatase activity by ligation reactions. .
量子点(QDs)具有高光稳定性、高量子产率、宽吸收光谱、窄尺寸可调谐发射光谱和大斯托克斯位移等优良的光物理性质,是一种很有吸引力的生物传感器构件。此外,引入单分子检测构建的基于单量子点的纳米传感器具有分析时间短、信噪比高、样品消耗量低、灵敏度超高等优良的分析性能。但目前基于量子点的碱性磷酸酶活性检测方法仍存在选择性低和灵敏度不高的问题。Quantum dots (QDs) have excellent photophysical properties such as high photostability, high quantum yield, broad absorption spectrum, narrow-size tunable emission spectrum, and large Stokes shift, making them attractive biosensor building blocks. . In addition, the single-molecule-based nanosensor constructed by introducing single-molecule detection has excellent analytical performance, such as short analysis time, high signal-to-noise ratio, low sample consumption, and ultra-high sensitivity. However, the current detection methods of alkaline phosphatase activity based on quantum dots still have the problems of low selectivity and low sensitivity.
发明内容SUMMARY OF THE INVENTION
为了克服上述问题,本发明开发了一种基于连接酶扩增反应催化组装的单量子点纳米传感器,可实现简单、灵敏的碱性磷酸酶活性分析。此纳米传感器只需要一种热稳定连接酶用于靶标碱性磷酸酶活性信号放大,具有高选择性和超高的灵敏度,检测限低至5.63×10-7单位每毫升,可进一步应用于酶活动力学分析、抑制剂筛选及肿瘤细胞中内源碱性磷酸酶活性检测。In order to overcome the above problems, the present invention develops a single quantum dot nanosensor catalyzed and assembled based on ligase amplification reaction, which can realize simple and sensitive alkaline phosphatase activity analysis. This nanosensor only needs one thermostable ligase for signal amplification of target alkaline phosphatase activity, with high selectivity and ultra-high sensitivity, with a detection limit as low as 5.63×10 -7 units per milliliter, which can be further applied to enzymes Activity kinetic analysis, inhibitor screening and detection of endogenous alkaline phosphatase activity in tumor cells.
为实现上述技术目的,本发明采用的技术方案如下:For realizing the above-mentioned technical purpose, the technical scheme adopted in the present invention is as follows:
一种用于检测碱性磷酸酶的、基于连接酶扩增反应催化组装的单量子点纳米传感器,包括:检测探针、鉴别探针、Cy5探针、生物素探针和量子点。A single quantum dot nanosensor for detecting alkaline phosphatase, catalyzed and assembled based on ligase amplification reaction, comprising: detection probe, identification probe, Cy5 probe, biotin probe and quantum dot.
本申请对检测探针的具体组成并不作特殊限定,只要能够识别碱性磷酸酶的活性信号并将其转化为DNA信号即可。在一些实施例中,所述检测探针由5’到3’的序列为:ATCGAGTGCACCTGACTCCTG-P,其中P为磷酸化修饰,在碱性磷酸酶存在时,能催化检测探针的3’-磷酸末端(3’-P)去磷酸化生成3’-羟基末端(3’-OH)。The application does not limit the specific composition of the detection probe, as long as it can recognize the activity signal of alkaline phosphatase and convert it into a DNA signal. In some embodiments, the sequence of the detection probe from 5' to 3' is: ATCGAGTGCACCTGACTCCTG-P, wherein P is a phosphorylation modification, which can catalyze the 3'-phosphate of the detection probe in the presence of alkaline phosphatase The terminal (3'-P) is dephosphorylated to generate the 3'-hydroxy terminal (3'-OH).
本申请中,二级模板经变性后,再与5’-磷酸末端的生物素探针和3’-羟基末端的Cy5探针进行退火,促其在连接酶的作用下连接形成生物素-Cy5双标记信号探针。因此,在一些实施例中,所述Cy5探针具有SEQ ID No.1的核苷酸序列:Cy5-ACGGCAGACTTCTCC;在热变性条件下,变性的二级模板可以进一步触发生物素探针和Cy5探针的循环连接,产生的大量Cy5-生物素双标记信号探针通过高效的链霉亲和素-生物素相互作用自组装于605量子点的表面。In this application, after the secondary template is denatured, it is annealed with the biotin probe at the 5'-phosphate end and the Cy5 probe at the 3'-hydroxyl end, so that it is linked under the action of ligase to form biotin-Cy5 Dual-labeled signaling probes. Therefore, in some embodiments, the Cy5 probe has the nucleotide sequence of SEQ ID No. 1: Cy5-ACGGCAGACTTCTCC; under thermal denaturation conditions, the denatured secondary template can further trigger the biotin probe and the Cy5 probe The cyclic ligation of the needles generates a large number of Cy5-biotin dual-labeled signal probes that self-assemble on the surface of 605 QDs through efficient streptavidin-biotin interactions.
在一些实施例中,所述鉴别探针具有SEQ ID No.1的核苷酸序列: P-GGAGAAGTCTGCCGTATCGAG;In some embodiments, the identification probe has the nucleotide sequence of SEQ ID No. 1: P-GGAGAAGTCTGCCGTATCGAG;
在一些实施例中,所述生物素探针由5’到3’的序列为:P-CAGGAGTCAGGTGCA-biotin;In some embodiments, the sequence of the biotin probe from 5' to 3' is: P-CAGGAGTCAGGTGCA-biotin;
双标记信号探针在605量子点的表面完成自组装,可诱导发生从605量子点到Cy5的有效荧光共振能量转移。因此,在一些实施例中,605量子点为:链霉亲和素修饰的量子点,最大发射波长为605nm,有效地提高了检测的灵敏度。The self-assembly of the double-labeled signal probe on the surface of 605 quantum dots can induce efficient fluorescence resonance energy transfer from 605 quantum dots to Cy5. Therefore, in some embodiments, the 605 quantum dots are: streptavidin-modified quantum dots, and the maximum emission wavelength is 605 nm, which effectively improves the detection sensitivity.
本发明还提供了一种基于连接酶扩增反应催化组装的单量子点纳米传感器检测碱性磷酸酶的方法,包括:The present invention also provides a method for detecting alkaline phosphatase based on a single quantum dot nanosensor catalyzed and assembled by a ligase amplification reaction, comprising:
将碱性磷酸酶与检测探针在缓冲液Ⅰ混合、孵育,形成去磷酸化反应产物;Mix and incubate alkaline phosphatase and detection probe in buffer I to form a dephosphorylation reaction product;
将上述磷酸化反应产物、鉴别探针、DNA模板、生物素探针、Cy5探针、缓冲液Ⅱ、DNA连接酶混合,进行热循环的连接反应,形成连接产物;Mixing the above-mentioned phosphorylation reaction product, identification probe, DNA template, biotin probe, Cy5 probe, buffer II, and DNA ligase to carry out a thermal cycle ligation reaction to form a ligation product;
将连接产物与605量子点在缓冲液Ⅲ中的混合,形成605量子点/Cy5纳米组件;Mixing the ligation product with 605 quantum dots in buffer III to form 605 quantum dots/Cy5 nanocomponents;
对605量子点/Cy5纳米组件进行单分子荧光检测,若检测到荧光共振能量转移信号,则存在碱性磷酸酶,并荧光共振能量转移信号强度确定碱性磷酸酶含量;若未检测到荧光共振能量转移信号,则不存在碱性磷酸酶。Perform single-molecule fluorescence detection on 605 quantum dots/Cy5 nanocomponents. If fluorescence resonance energy transfer signal is detected, there is alkaline phosphatase, and the intensity of fluorescence resonance energy transfer signal determines the content of alkaline phosphatase; if no fluorescence resonance energy transfer signal is detected energy transfer signal, alkaline phosphatase is absent.
上述方法的优势在于:本发明仅需一种热稳定的连接酶即可完成信号放大,简化了分析程序;同时避免了因非特异性消化和非特异性DNA扩增而产生的假阳性结果,提高了检测灵敏度。本发明还可进一步应用于酶活动力学分析、酶活性抑制剂的筛选及不同细胞系中内源性碱性磷酸酶活性的检测,为碱性磷酸酶相关的生物医学研究和临床应用研究提供了强有力的技术平台。The advantages of the above method are: the present invention only needs a thermostable ligase to complete the signal amplification, which simplifies the analysis procedure; at the same time, it avoids false positive results caused by non-specific digestion and non-specific DNA amplification, and improves the performance of the method. Detection sensitivity. The invention can also be further applied to the kinetic analysis of enzyme activity, the screening of enzyme activity inhibitors, and the detection of endogenous alkaline phosphatase activity in different cell lines, and provides the biomedical research and clinical application research related to alkaline phosphatase. Powerful technology platform.
在一些实施例中,所述孵育的具体条件为:在37~38摄氏度下孵育28~30分钟,在65~67 摄氏度下孵育4~5分钟以终止反应。In some embodiments, the specific conditions of the incubation are: incubation at 37-38 degrees Celsius for 28-30 minutes, and incubation at 65-67 degrees Celsius for 4-5 minutes to terminate the reaction.
在一些实施例中,所述热循环的连接反应的具体条件为按照95摄氏度1分钟、58摄氏度 2分钟的程序进行80个热循环的连接反应。In some embodiments, the specific conditions of the ligation reaction of the thermal cycle are to perform the ligation reaction of 80 thermal cycles according to the program of 95 degrees Celsius for 1 minute and 58 degrees Celsius for 2 minutes.
本发明还提供了任一上述的纳米传感器在碱性磷酸酶抑制剂筛选实验,碱性磷酸酶酶活动力学测定以及成分复杂的实际样品内碱性磷酸酶活性的高灵敏度、特异性检测中的应用。The invention also provides any of the above nanosensors in the alkaline phosphatase inhibitor screening experiment, the kinetic determination of the alkaline phosphatase enzyme activity, and the high-sensitivity and specific detection of the alkaline phosphatase activity in the actual sample with complex components. application.
本发明的有益效果在于:The beneficial effects of the present invention are:
(1)操作简单:相比其他采用核酸扩增检测碱性磷酸酶的方法,本发明无需引入多种酶而仅需一种连接酶即可完成信号放大,这不仅降低了分析成本,同时也简化了分析过程;此外,由于高保真热稳定连接酶的使用,避免了非特异性的核酸外切酶消化和非特异性的DNA背景扩增,因此本发明的检测准确性也得到了保证。(1) Simple operation: Compared with other methods for detecting alkaline phosphatase by nucleic acid amplification, the present invention does not need to introduce multiple enzymes but only needs one ligase to complete signal amplification, which not only reduces the analysis cost, but also reduces the cost of analysis. The analysis process is simplified; in addition, due to the use of high-fidelity thermostable ligase, non-specific exonuclease digestion and non-specific DNA background amplification are avoided, so the detection accuracy of the present invention is also guaranteed.
(2)效率高,效果好:本发明中的连接扩增反应在80个循环内即可达到较好的扩增效果,单分子检测方法的引入也大大降低了数据处理难度,提高了数据呈现的直观性和数据处理效率,实现了对碱性磷酸酶活性的高效简单测定。(2) High efficiency and good effect: the ligation and amplification reaction in the present invention can achieve a good amplification effect within 80 cycles, and the introduction of the single-molecule detection method also greatly reduces the difficulty of data processing and improves data presentation. The intuitiveness and data processing efficiency enable efficient and simple determination of alkaline phosphatase activity.
(3)灵敏度高,应用潜力巨大:本发明中,由于碱性磷酸酶诱导发生的连接酶扩增反应所产生的有效信号放大、通过将多个双标记信号探针组装到单个605量子点上所导致的高荧光共振能量转移效率和单分子检测本身所固有的高灵敏度,因此检测限低至5.63×10-7单位每毫升,优于多数现有的碱性磷酸酶活性检测方法;此外,本发明还能实现对碱性磷酸酶催化活性的定量检测,并能很好地开展关于碱性磷酸酶抑制剂筛选的实验,还可用于碱性磷酸酶酶活动力学的相关测定以及成分复杂的实际样品(癌细胞)内碱性磷酸酶活性的灵敏测定,应用范围广泛,研究潜力较大。(3) High sensitivity and huge application potential: In the present invention, due to the effective signal amplification generated by the ligase amplification reaction induced by alkaline phosphatase, multiple double-labeled signal probes are assembled on a single 605 quantum dot The resulting high fluorescence resonance energy transfer efficiency and the inherent high sensitivity of single-molecule detection result in a detection limit as low as 5.63 × 10 -7 units per milliliter, which is superior to most existing alkaline phosphatase activity detection methods; in addition, The invention can also realize quantitative detection of the catalytic activity of alkaline phosphatase, and can well carry out experiments on the screening of alkaline phosphatase inhibitors. The sensitive determination of alkaline phosphatase activity in actual samples (cancer cells) has a wide range of applications and great research potential.
(4)特异性好:由于本发明所使用的高保真热稳定连接酶对碱性磷酸酶活性信号的特异性识别和转换,使得本发明具有较高的检测特异性;此外,本发明对各项反应条件也做了细致的优化,因此检测特异性较为出色。(4) Good specificity: due to the specific recognition and conversion of the alkaline phosphatase activity signal by the high-fidelity thermostable ligase used in the present invention, the present invention has high detection specificity; The reaction conditions have also been carefully optimized, so the detection specificity is excellent.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。The accompanying drawings that form a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application and do not constitute improper limitations on the present application.
图1:实施例1中基于连接酶扩增反应催化组装的单量子点纳米传感器用于碱性磷酸酶分析的示意图。Figure 1: Schematic diagram of the single quantum dot nanosensor catalyzed and assembled based on the ligase amplification reaction in Example 1 for alkaline phosphatase analysis.
图2:实施例1中(A)缺乏(对照组)和存在碱性磷酸酶(1单位每毫升)时连接产物的凝胶电泳分析。(B)605量子点和Cy5在无(对照组,黑线)和有碱性磷酸酶(1单位每毫升,红线)的情况下的荧光发射光谱。插图放大显示了从650纳米到700纳米的荧光发射光谱。Figure 2: Gel electrophoretic analysis of ligation products in Example 1 (A) in the absence (control) and presence of alkaline phosphatase (1 unit per milliliter). (B) Fluorescence emission spectra of 605 QDs and Cy5 in the absence (control, black line) and with alkaline phosphatase (1 unit per milliliter, red line). The inset zoom shows the fluorescence emission spectrum from 650 nm to 700 nm.
图3:实施例1中不存在(A-C)和存在(D-F)碱性磷酸酶(0.1单位每毫升)的情况下,605量子点和Cy5的单分子荧光图像。605量子点的信号展示为绿色(A和D),Cy5的信号展示为红色(B和E),605量子点和Cy5的叠加信号展示为黄色(C和F)。比例尺长度为2微米。Figure 3: Single molecule fluorescence images of 605 quantum dots and Cy5 in the absence (A-C) and presence (D-F) of alkaline phosphatase (0.1 units per milliliter) in Example 1. The signal of 605 quantum dots is shown in green (A and D), the signal of Cy5 is shown in red (B and E), and the superimposed signal of 605 quantum dots and Cy5 is shown in yellow (C and F). Scale bar length is 2 μm.
图4:实施例1中在0-2单位每毫升的浓度范围内,随着碱性磷酸酶浓度的增加,Cy5单分子计数的增加。插图显示了Cy5单分子计数与碱性磷酸酶浓度的对数在1×10-6-0.1单位每毫升范围内的线性关系。误差棒表示三次重复实验的标准偏差。Figure 4: Increase in Cy5 single molecule counts with increasing alkaline phosphatase concentration in the concentration range of 0-2 units per milliliter in Example 1. The inset shows the linear relationship between Cy5 single molecule counts and the logarithm of alkaline phosphatase concentration in the range of 1 × 10 -6 -0.1 units per milliliter. Error bars represent the standard deviation of triplicate experiments.
图5:实施例1中在TDG(0.1单位每毫升)、HhaI(0.1单位每毫升)、GOX(50纳摩尔每升)、BSA(50纳摩尔每升)和碱性磷酸酶(0.1单位每毫升)存在下测定的Cy5单分子计数。误差棒表示三次重复实验的标准偏差。Figure 5: TDG (0.1 units per ml), HhaI (0.1 units per ml), GOX (50 nanomoles per liter), BSA (50 nanomoles per liter) and alkaline phosphatase (0.1 units per liter) in Example 1 Cy5 single molecule counts determined in the presence of milliliters. Error bars represent the standard deviation of triplicate experiments.
图6:实施例1中不同浓度的钒酸钠对碱性磷酸酶反应活性的抑制效果。碱性磷酸酶的浓度为0.1单位每毫升。误差条表示三次重复实验的标准偏差。Figure 6: Inhibitory effect of different concentrations of sodium vanadate on alkaline phosphatase activity in Example 1. The concentration of alkaline phosphatase was 0.1 units per milliliter. Error bars represent the standard deviation of triplicate experiments.
具体实施方式Detailed ways
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the application. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.
正如背景技术所介绍的,针对目前碱性磷酸酶活性检测方法存在的选择性低、灵敏度不高和操作复杂的问题。因此,本发明提出构建了一种基于连接酶扩增反应催化组装单量子点纳米传感器的新型简单、超灵敏的碱性磷酸酶检测方法。As described in the background art, the current alkaline phosphatase activity detection methods have the problems of low selectivity, low sensitivity and complicated operation. Therefore, the present invention proposes to construct a novel, simple and ultra-sensitive alkaline phosphatase detection method based on ligase amplification reaction to catalyze the assembly of single quantum dot nanosensors.
首次采用连接反应对碱性磷酸酶活性信号进行了准确的识别,并将其转化为DNA核酸信号,通过连接酶扩增反应可以有效地生成大量Cy5-生物素双标记信号探针。随后该双标记信号探针在605量子点的表面完成自组装,进而诱导发生从605量子点到Cy5的有效荧光共振能量转移。结合单分子检测,本纳米传感器具有超高的灵敏度,检测限低至5.63×10-7单位每毫升,与多种酶辅助扩增的碱性磷酸酶活性分析方法相比,本发明仅需一种热稳定的连接酶即可完成信号放大,简化了分析程序;同时避免了因非特异性消化和非特异性DNA扩增而产生的假阳性结果,提高了检测灵敏度。本发明还可进一步应用于酶活动力学分析、酶活性抑制剂的筛选及不同细胞系中内源性碱性磷酸酶活性的检测,为碱性磷酸酶相关的生物医学研究和临床应用研究提供了强有力的技术平台。For the first time, the alkaline phosphatase activity signal was accurately identified by ligation reaction and converted into DNA nucleic acid signal. A large number of Cy5-biotin double-labeled signal probes can be efficiently generated by ligase amplification reaction. Subsequently, the double-labeled signal probe completed self-assembly on the surface of 605 quantum dots, and then induced efficient fluorescence resonance energy transfer from 605 quantum dots to Cy5. Combined with single-molecule detection, the nanosensor has ultra-high sensitivity, and the detection limit is as low as 5.63×10 -7 units per milliliter. Compared with various enzyme-assisted amplification alkaline phosphatase activity analysis methods, the present invention only needs one A thermostable ligase can complete signal amplification, simplifying analysis procedures; at the same time, it avoids false positive results caused by non-specific digestion and non-specific DNA amplification, and improves detection sensitivity. The invention can also be further applied to the kinetic analysis of enzyme activity, the screening of enzyme activity inhibitors, and the detection of endogenous alkaline phosphatase activity in different cell lines, and provides the biomedical research and clinical application research related to alkaline phosphatase. Powerful technology platform.
本发明构建的纳米传感器由于碱性磷酸酶诱导发生的连接酶扩增反应所产生的有效信号放大、通过将多个双标记信号探针组装到单个605量子点上所导致的高荧光共振能量转移效率和单分子检测本身所固有的高灵敏度,因此检测限低至5.63×10-7单位每毫升。灵敏度相比无信号放大的碳量子点荧光方法(1.4×10-3单位每毫升)提高了2222倍,相比基于转录反应介导的双信号放大Taqman探针荧光方法(2×10-5单位每毫升)提高了35倍。The nanosensor constructed in the present invention is due to the efficient signal amplification generated by the alkaline phosphatase-induced ligase amplification reaction, and the high fluorescence resonance energy transfer caused by assembling multiple double-labeled signal probes on a single 605 quantum dot. The high sensitivity inherent in the efficiency and single molecule detection itself results in a detection limit as low as 5.63 x 10-7 units per milliliter. Compared with the carbon quantum dot fluorescence method without signal amplification (1.4 × 10 -3 units per milliliter), the sensitivity is increased by 2222 times, compared with the Taqman probe fluorescence method based on transcription reaction-mediated double signal amplification (2 × 10 -5 units per milliliter). per milliliter) was increased by 35 times.
此前报道的碱性磷酸酶活性分析方法由于易受无关生物分子的干扰,或因非特异性消化和非特异性DNA扩增而产生假阳性结果,因此其特异性往往比较受限。本发明由于所使用的高保真热稳定连接酶对碱性磷酸酶活性信号的特异性识别和转换,具有较高的检测特异性。Previously reported assays for alkaline phosphatase activity are often limited in specificity due to their susceptibility to interference from unrelated biomolecules, or to false-positive results due to nonspecific digestion and nonspecific DNA amplification. The invention has higher detection specificity due to the specific recognition and conversion of the alkaline phosphatase activity signal by the high-fidelity thermostable ligase used.
本发明既能实现对碱性磷酸酶催化活性的定量检测,也能很好地开展关于碱性磷酸酶抑制剂筛选的实验;此外,本发明还可用于碱性磷酸酶酶活动力学的相关测定以及成分复杂的实际样品(癌细胞)内碱性磷酸酶活性的灵敏测定,应用范围广泛。The invention can not only realize the quantitative detection of alkaline phosphatase catalytic activity, but also can well carry out experiments on alkaline phosphatase inhibitor screening; in addition, the invention can also be used for the relative determination of alkaline phosphatase enzyme activity kinetics As well as sensitive determination of alkaline phosphatase activity in real samples (cancer cells) with complex components, it has a wide range of applications.
以下通过具体的实施例对本申请的技术方案进行说明。其中,605量子点为605纳米的量子点(Qdot 605ITK)从赛默飞世尔公司(尤金、俄勒冈、美国)购买。The technical solutions of the present application will be described below through specific examples. Among them, 605 quantum dots are quantum dots of 605 nanometers (Qdot 605ITK) purchased from Thermo Fisher (Eugene, Oregon, USA).
实施例1:Example 1:
1.荧光检测实验1. Fluorescence detection experiment
细胞提取物的制备:将人乳腺癌细胞(MCF-7)和人胚肾细胞(HEK293T)分别用含有10%胎牛血清(FBS)和1%青霉素-链霉素双抗的达尔伯克改良伊格尔培养基(DMEM)在37摄氏度、含5%二氧化碳培养箱中进行培养并用于实际样品分析。待细胞生长到对数生长期时,利用胰蛋白酶收集细胞,并使用Countstar生物技术有限公司的自动细胞计数器IC1000进行计数。所得细胞用冰冷的PBS(pH7.4)洗涤两次,使用1000转每分的速度离心5分钟进行分离,然后将其悬浮在50微升的细胞裂解液(含10毫摩尔每升pH为8.0的三羟甲基氨基甲烷-盐酸、150毫摩尔每升的氯化钠、1%的NP-40,0.25毫摩尔每升的脱氧胆酸钠、1%的甘油和0.1毫摩尔每升的4-( 2-氨基乙基)苯磺酰氟盐酸盐)中,冰上孵育30分钟后在12000转每分的转速下于4摄氏度离心 20分钟。将上清液转移到新的预冷EP管中并在-80摄氏度冰箱中储存备用。使用 NanoDrop2000c分光光度计对提取液中的总蛋白质浓度进行测定。Preparation of cell extracts: Human breast cancer cells (MCF-7) and human embryonic kidney cells (HEK293T) were modified with Dulbecco's containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin antibody, respectively. Eagle's medium (DMEM) was grown at 37 degrees Celsius in a 5% carbon dioxide incubator and used for actual sample analysis. When the cells grew to the logarithmic growth phase, the cells were harvested with trypsin and counted using an automatic cell counter IC1000 from Countstar Biotechnology Co., Ltd. The resulting cells were washed twice with ice-cold PBS (pH 7.4), detached by centrifugation at 1000 rpm for 5 min, and then suspended in 50 μl of cell lysate (containing 10 mM pH 8.0 Tris-HCl, 150 mmol/L NaCl, 1% NP-40, 0.25 mmol/L sodium deoxycholate, 1% glycerol and 0.1 mmol/L 4 -(2-aminoethyl)benzenesulfonyl fluoride hydrochloride), incubated on ice for 30 minutes and centrifuged at 12,000 rpm for 20 minutes at 4 degrees Celsius. Transfer the supernatant to a new pre-chilled EP tube and store in a -80 °C freezer until use. The total protein concentration in the extracts was determined using a NanoDrop 2000c spectrophotometer.
碱性磷酸酶活性检测:为了形成去磷酸化的检测探针,配制20微升的反应体系,其中含有 2微升不同浓度的碱性磷酸酶、0.15微升10微摩尔每升的检测探针和2微升10×的缓冲液(500毫摩尔每升的醋酸钾,200毫摩尔每升的三羟基氨甲烷-醋酸,100毫摩尔每升的醋酸镁, 1000微克每毫升的BSA,pH7.9),在37摄氏度下孵育30分钟,在65摄氏度下孵育5分钟以终止反应。此后,将去磷酸化反应产物与0.15微升5微摩尔每升的鉴别探针、0.15微升5微摩尔每升的DNA模板、1.2微升5微摩尔每升的生物素探针、1.2微升5微摩尔每升的Cy5探针、3微升10×的反应缓冲液(含200毫摩尔每升pH8.3的三羟基氨甲烷-盐酸、250毫摩尔每升氯化钾、100毫摩尔每升的氯化镁、5毫摩尔每升的NAD和0.1%的X-100)、10单位的DNA 连接酶混合并将反应体积调整为30微升,按照95摄氏度1分钟、58摄氏度2分钟的程序进行80 个热循环的连接反应。最后,在室温下将连接产物与8.3纳摩尔每升的605量子点在60微升缓冲液(含1.5毫摩尔每升的氯化镁、50毫摩尔每升的三羟基氨甲烷-盐酸、5毫摩尔每升的硫酸铵, pH8.0)中混合10分钟以形成605量子点/Cy5纳米组件。Alkaline phosphatase activity detection: In order to form a dephosphorylated detection probe, a 20-microliter reaction system was prepared, which contained 2 microliters of alkaline phosphatase at different concentrations, 0.15 microliters of 10 micromolar detection probes per liter and 2 µl of 10x Buffer (500 mmol/L potassium acetate, 200 mmol/L Tris-acetic acid, 100 mmol/L magnesium acetate, 1000 μg/mL BSA, pH 7.9) at 37°C Incubate for 30 min and stop the reaction by incubating at 65°C for 5 min. Thereafter, the dephosphorylation reaction product was mixed with 0.15 μl 5 μmol per liter identification probe, 0.15 μl 5 μmol per liter DNA template, 1.2 μl 5 μmol per liter biotin probe, 1.2 μl 5 μM Cy5 probe per liter, 3 μL 10× reaction buffer (containing 200 mM Tris-HCl, pH 8.3, 250 mM KCl, 100 mM pH 8.3) Magnesium chloride per liter, 5 mmol per liter NAD and 0.1% X-100), 10 units of The DNA ligase was mixed and the reaction volume was adjusted to 30 μl, and the ligation reaction was performed for 80 thermal cycles according to the program of 95 °C for 1 min and 58 °C for 2 min. Finally, the ligation product was mixed with 8.3 nmol/L of 605 QDs in 60 µL of buffer (containing 1.5 mM MgCl, 50 mM Tris-HCl, 5 mM) at room temperature ammonium sulfate per liter, pH 8.0) for 10 minutes to form 605 quantum dots/Cy5 nanoassemblies.
荧光测量:使用微量石英皿在日立F-7000荧光分光光度计上测量50微升反应产物。激发波长设置为488纳米,同时记录500-720纳米波长范围内的发射光谱,激发和发射的狭缝宽度均为 5纳米。Fluorescence measurement: Measure 50 microliters of reaction product on a Hitachi F-7000 spectrofluorometer using a microquartz dish. The excitation wavelength was set to 488 nm, and the emission spectra in the wavelength range of 500–720 nm were recorded simultaneously with a slit width of 5 nm for both excitation and emission.
单分子荧光测定和数据分析:将反应产物在成像缓冲液(含1毫克每毫升的葡萄糖氧化酶、 0.4%(质量体积比)的D-葡萄糖、0.04%毫克每毫升的过氧化氢酶、50微克每毫升的牛血清蛋白、67毫摩尔每升的甘氨酸-氢氧化钾、1毫克每毫升的水溶性维生素E、2.5毫克每毫升的氯化镁,pH9.4)中稀释100倍。使用移液枪吸取10微升上述样品直接滴到盖玻片上以用于TIRF成像,使用蓝宝石488纳米激光器(50毫瓦)激发605量子点,605量子点和Cy5的发光信号由100×的奥林巴斯物镜进行收集,并由安道尔IxonDU897EMCCD以500毫秒的曝光时间成像,利用 Image J软件选择900×900像素的图像区域对Cy5分子进行计数。Single-molecule fluorescence assay and data analysis: The reaction products were mixed in imaging buffer (containing 1 mg/mL glucose oxidase, 0.4% (mass volume ratio) D-glucose, 0.04% mg/mL catalase, 50 Micrograms per ml of bovine serum albumin, 67 mmol per liter of glycine-potassium hydroxide, 1 mg per ml of water-soluble vitamin E, 2.5 mg per ml of magnesium chloride, pH 9.4) diluted 100-fold. Use a pipette to pipette 10 μl of the above sample directly onto a coverslip for TIRF imaging, use a sapphire 488 nm laser (50 mW) to excite 605 quantum dots, and the luminescence signals of 605 quantum dots and Cy5 are determined by 100 × Å. The collection was performed with a Limbus objective and imaged by an Andor IxonDU897EMCCD with an exposure time of 500 ms, and Cy5 molecules were counted using Image J software to select an image area of 900 × 900 pixels.
凝胶电泳:在室温和120伏的恒定电压下用12%的变性聚丙烯酰胺凝胶电泳对连接酶扩增反应的产物进行分析,使用1×的TBE缓冲液(含9毫摩尔每升pH 7.9的三羟基氨甲烷-盐酸、9 毫摩尔每升的硼酸和0.2毫摩尔每升的EDTA),电泳时间为50分钟。此后,使用银染色试剂盒对该凝胶进行染色,并通过Bio-Rad ChemiDoc MP成像系统进行拍摄分析。Gel electrophoresis: The products of the ligase amplification reactions were analyzed by 12% denaturing polyacrylamide gel electrophoresis at room temperature and a constant voltage of 120 volts, using 1× TBE buffer (containing 9 mM pH per liter). 7.9 Tris-hydrochloric acid, 9 mmol/L boric acid and 0.2 mmol/L EDTA), electrophoresis time was 50 minutes. Thereafter, the gel was stained using a silver staining kit and photographed by the Bio-Rad ChemiDoc MP imaging system.
碱性磷酸酶活性抑制实验:为了评估碱性磷酸酶抑制剂的作用效果,将2微升不同浓度的钒酸钠与2微升1单位每毫升的碱性磷酸酶在37摄氏度下预混20分钟;此后,向混合物中加入2 微升10×的缓冲液和0.15微升10微摩尔每升的检测探针并用超纯水将反应体系调整为20微升。后续过程同碱性磷酸酶活性检测。Alkaline phosphatase activity inhibition assay: To assess the effect of alkaline phosphatase inhibitors, 2 microliters of sodium vanadate at various concentrations were premixed with 2 microliters of 1 unit per milliliter of alkaline phosphatase at 37 degrees Celsius for 20 min; after this, add 2 μl of 10× buffer and 0.15 microliters of 10 micromolar detection probe per liter and adjust the reaction volume to 20 microliters with ultrapure water. The subsequent process is the same as the detection of alkaline phosphatase activity.
实验原理(如图1):使用3’-末端磷酸化的单链DNA作为检测探针,识别碱性磷酸酶的活性信号并将其转化为DNA信号。在碱性磷酸酶存在时,能催化检测探针的3’-磷酸末端(3’-P) 去磷酸化生成3’-羟基末端(3’-OH)。该3’-羟基末端探针和5’-磷酸末端的辅助探针可与模板探针经退火形成检测探针/辅助探针/模板的夹心结构。加入热稳定的连接酶,检测探针和辅助探针连接成1条DNA链而形成二级模板。二级模板经变性后,再与5’-磷酸末端的生物素探针和3’- 羟基末端的Cy5探针进行退火,促其在连接酶的作用下连接形成生物素-Cy5双标记信号探针。此外,在热变性条件下,变性的二级模板可以进一步触发生物素探针和Cy5探针的循环连接,产生的大量Cy5-生物素双标记信号探针通过高效的链霉亲和素-生物素相互作用自组装于605量子点的表面。由此,形成605量子点/双标记信号探针/Cy5纳米组件,605量子点和Cy5的距离很近,因此可以发生从605量子点到Cy5的高效荧光共振能量转移。单分子荧光检测可以简单灵敏地检测到每个量子点纳米组件的荧光共振能量转移信号。相反,没有碱性磷酸酶存在时,检测探针的3’-磷酸末端被保留,不能与辅助探针连接形成二级模板,因此,无法产生Cy5-生物素双标记信号探针,605量子点上只组装有生物素探针,不能引起荧光共振能量转移现象。值得注意的是,在本发明中,高保真的热稳定连接酶可以催化碱性磷酸酶活性信号的有效扩增,这将大大提高分析的灵敏度,具有较高的易操作性和准确性。Experimental principle (as shown in Figure 1): Using 3'-terminal phosphorylated single-stranded DNA as a detection probe, the activity signal of alkaline phosphatase is recognized and converted into a DNA signal. In the presence of alkaline phosphatase, it catalyzes the dephosphorylation of the 3'-phosphate end (3'-P) of the detection probe to generate the 3'-hydroxyl end (3'-OH). The 3'-hydroxyl end probe and the 5'-phosphate end helper probe can be annealed with the template probe to form a detection probe/helper probe/template sandwich structure. A thermostable ligase is added, and the detection probe and the auxiliary probe are ligated into a DNA strand to form a secondary template. After the secondary template is denatured, it is annealed with the biotin probe at the 5'-phosphate end and the Cy5 probe at the 3'-hydroxyl end to promote its ligation under the action of ligase to form a biotin-Cy5 double-labeled signal probe. Needle. In addition, under thermal denaturation conditions, the denatured secondary template can further trigger the cyclic ligation of biotin probes and Cy5 probes, resulting in a large number of Cy5-biotin dual-labeled signal probes that pass through highly efficient streptavidin-biotin The prime interaction self-assembles on the surface of 605 quantum dots. Thus, 605 quantum dots/dual-labeled signal probe/Cy5 nano-assemblies are formed, and the distance between 605 quantum dots and Cy5 is very close, so efficient fluorescence resonance energy transfer from 605 quantum dots to Cy5 can occur. Single-molecule fluorescence detection can simply and sensitively detect the fluorescence resonance energy transfer signal of each quantum dot nanoassembly. On the contrary, in the absence of alkaline phosphatase, the 3'-phosphate end of the detection probe is retained and cannot be linked with the helper probe to form a secondary template. Therefore, the Cy5-biotin double-labeled signal probe cannot be generated, 605 quantum dots Only the biotin probe is assembled on it, which cannot cause the phenomenon of fluorescence resonance energy transfer. It is worth noting that in the present invention, the high-fidelity thermostable ligase can catalyze the efficient amplification of the alkaline phosphatase activity signal, which will greatly improve the sensitivity of the analysis, with high operability and accuracy.
2.原理的实验验证2. Experimental verification of the principle
本发明用12%的变性聚丙烯酰胺凝胶电泳银染分析了碱性磷酸酶诱导形成的连接产物。如图2A所示,在碱性磷酸酶存在的情况下,可触发检测探针与辅助探针的连接形成二次模板,也可触发Cy5探针与生物素探针的连接形成双标记信号探针,这反映在胶图上二次模板和信号探针相应的条带。相反,在没有碱性磷酸酶的对照组,二次模板和信号探针的条带消失,表明没有碱性磷酸酶存在时,连接酶催化的扩增反应无法发生。The present invention uses 12% denaturing polyacrylamide gel electrophoresis silver staining to analyze the connection product induced by alkaline phosphatase. As shown in Figure 2A, in the presence of alkaline phosphatase, the connection between the detection probe and the auxiliary probe can be triggered to form a secondary template, and the connection between the Cy5 probe and the biotin probe can also be triggered to form a dual-labeled signal probe. pin, which is reflected on the gel map by the corresponding bands of the secondary template and signal probes. In contrast, in the control group without alkaline phosphatase, the bands of the secondary template and the signal probe disappeared, indicating that the ligase-catalyzed amplification reaction could not take place in the absence of alkaline phosphatase.
本发明进一步利用荧光测定验证了605量子点/信号探针/Cy5纳米组件在碱性磷酸酶诱导下的组装。如图2B所示,在没有碱性磷酸酶的情况下,不能产生Cy5-生物素双标记信号探针,因此在605量子点的表面仅组装生物素探针,因此只观察到605量子点的荧光发射信号(图2B,蓝线)。相反,碱性磷酸酶可诱导发生生物素探针与Cy5探针之间的连接反应,形成完整的双标记信号探针并组装在605量子点的表面,产生有效的荧光共振能量转移,因此观察到605量子点荧光发射信号的降低和Cy5荧光发射信号的增加(图2B,红线)。根据方程式E(%)=1–FALP/F (FALP是碱性磷酸酶存在时605量子点的荧光强度,F是碱性磷酸酶不存在时605量子点的荧光强度)计算所得荧光共振能量转移的效率为51.06%。The present invention further verifies the assembly of the 605 quantum dot/signal probe/Cy5 nano-assembly under the induction of alkaline phosphatase by fluorescence assay. As shown in Figure 2B, in the absence of alkaline phosphatase, the Cy5-biotin double-labeled signal probe could not be generated, so only the biotin probe was assembled on the surface of 605 QDs, so only the 605 QDs were observed Fluorescence emission signal (Fig. 2B, blue line). On the contrary, alkaline phosphatase can induce the ligation reaction between the biotin probe and the Cy5 probe to form a complete dual-labeled signal probe and assemble on the surface of 605 quantum dots, resulting in efficient fluorescence resonance energy transfer. Therefore, it is observed that A decrease in the fluorescence emission signal of 605 quantum dots and an increase in the fluorescence emission signal of Cy5 (Fig. 2B, red line). The fluorescence resonance was calculated according to the equation E(%) = 1 - F ALP /F (F ALP is the fluorescence intensity of 605 QDs in the presence of alkaline phosphatase, F is the fluorescence intensity of 605 QDs in the absence of alkaline phosphatase) The efficiency of energy transfer is 51.06%.
与传统的荧光测定方法相比,单分子检测具有样品消耗量少、分析时间短、灵敏度高等显著优点。因此本发明进一步采用全内反射荧光成像技术测定了单个量子点的荧光信号。如图3 所示,在没有碱性磷酸酶的情况下,只观察到605量子点的荧光信号(图3A),而没有观察到 Cy5的荧光信号(图3B),表明当碱性磷酸酶不存在时,未形成605量子点/双标记信号探针/Cy5 纳米组件,因此没有发生荧光共振能量转移。相反,在添加碱性磷酸酶后,同时观察到605量子点(图3D)和Cy5(图3E)的荧光信号并可完美叠加(图3F),这表明由于605量子点/双标记信号探针/Cy5纳米组件的形成而产生了有效的荧光共振能量转移。这些结果清楚地表明,本发明所提出的基于单个量子点的纳米传感器可以用于碱性磷酸酶活性的定量检测。Compared with traditional fluorescence assay methods, single-molecule detection has the significant advantages of less sample consumption, shorter analysis time, and higher sensitivity. Therefore, the present invention further adopts the total internal reflection fluorescence imaging technology to measure the fluorescence signal of a single quantum dot. As shown in Figure 3, in the absence of alkaline phosphatase, only the fluorescence signal of 605 quantum dots was observed (Figure 3A), but no fluorescence signal of Cy5 (Figure 3B) was observed, indicating that when the alkaline phosphatase was not When present, the 605 quantum dot/dual-labeled signaling probe/Cy5 nanoassemblies are not formed, so no fluorescence resonance energy transfer occurs. In contrast, after the addition of alkaline phosphatase, the fluorescence signals of 605 QDs (Fig. 3D) and Cy5 (Fig. 3E) were simultaneously observed and superimposable (Fig. 3F), indicating that due to the 605 QDs/dual-labeled signal probe The formation of /Cy5 nanoassemblies resulted in efficient fluorescence resonance energy transfer. These results clearly demonstrate that the single quantum dot-based nanosensor proposed in the present invention can be used for quantitative detection of alkaline phosphatase activity.
3.灵敏度实验3. Sensitivity experiment
在优化的实验条件下,本发明测量了不同浓度碱性磷酸酶对应的Cy5单分子计数来评估本发明的分析灵敏度。如图4,随着碱性磷酸酶浓度从0增加到2单位每毫升,Cy5的单分子计数逐渐增加。同时,Cy5的单分子计数在1×10-6到0.1单位每毫升的浓度范围内与碱性磷酸酶浓度的对数呈现线性相关,线性相关系数(R2)为0.9987。线性回归方程为N=278.20+36.87log10C,其中N为Cy5的单分子计数,C为碱性磷酸酶的浓度(单位每毫升)。通过对照组的平均信号加上三倍标准偏差所确定的检测限为5.63×10-7单位每毫升。本发明所构建的纳米传感器的灵敏度相比无信号放大的碳量子点荧光方法(1.4×10-3单位每毫升)高2222倍,相比基于转录反应介导的双信号放大Taqman探针荧光方法(2×10-5单位每毫升)高35倍。本发明超高的灵敏度可归因于:( 1)碱性磷酸酶诱导发生的连接酶扩增反应所产生的有效信号放大;(2)通过将多个双标记信号探针组装到单个605量子点上所导致的高荧光共振能量转移效率;(3)单分子检测本身所固有的高灵敏度。Under the optimized experimental conditions, the present invention measures the Cy5 single molecule counts corresponding to different concentrations of alkaline phosphatase to evaluate the analytical sensitivity of the present invention. As shown in Figure 4, as the alkaline phosphatase concentration increased from 0 to 2 units per milliliter, the single molecule count of Cy5 increased gradually. Meanwhile, the single molecule counts of Cy5 were linearly correlated with the logarithm of the alkaline phosphatase concentration in the concentration range of 1×10 −6 to 0.1 units per milliliter, with a linear correlation coefficient (R 2 ) of 0.9987. The linear regression equation is N = 278.20 + 36.87 log 10 C, where N is the single molecule count of Cy5 and C is the concentration of alkaline phosphatase (units per milliliter). The limit of detection determined by the mean signal of the control group plus three times the standard deviation was 5.63 x 10-7 units per milliliter. The sensitivity of the nanosensor constructed in the present invention is 2222 times higher than that of the carbon quantum dots fluorescence method without signal amplification (1.4×10 -3 units per milliliter), and compared with the Taqman probe fluorescence method based on double signal amplification mediated by transcription reaction (2 x 10-5 units per milliliter) 35 times higher. The ultra-high sensitivity of the present invention can be attributed to: (1) efficient signal amplification by the alkaline phosphatase-induced ligase amplification reaction; (2) by assembling multiple dual-labeled signal probes into a single 605 quantum The high fluorescence resonance energy transfer efficiency caused by the spot; (3) the inherent high sensitivity of single molecule detection itself.
4.特异性实验4. Specificity Experiments
此前报道的碱性磷酸酶活性分析方法由于易受无关生物分子的干扰,或因非特异性消化和非特异性DNA扩增而产生假阳性结果,因此其特异性往往比较受限。为了检验本发明的特异性分析效果,本发明测量了Cy5单分子计数信号对胸腺嘧啶DNA糖基化酶(TDG)、HhaI限制性核酸酶(HhaI)、葡萄糖氧化酶(GOX)和牛血清白蛋白(BSA)等不同生物干扰物的响应。TDG可以从G/T错配中去除胸腺嘧啶的部分,HhaI可以识别并切割5’-GCGC-3’双链DNA, GOX可以催化葡萄糖氧化为过氧化氢和D-葡萄糖酸-δ-内酯,BSA是一种常见的不相关蛋白。理论上,这些酶和蛋白均不能诱导检测探针的去磷酸化,因此检测不到Cy5的荧光信号。如图 5所示,在碱性磷酸酶存在时检测到高的Cy5信号,而在TDG、HhaI、GOX和BSA存在的情况下观察到极低的Cy5信号。碱性磷酸酶的响应信号分别是TDG、HhaI、GOX和BSA响应信号的 13.22倍、12.13倍、14.41倍和13.16倍。因此本发明具有高度的特异性,这可以归因于高保真热稳定连接酶的使用对碱性磷酸酶活性信号的特异性识别和转换。Previously reported assays for alkaline phosphatase activity are often limited in specificity due to their susceptibility to interference from unrelated biomolecules, or to false-positive results due to nonspecific digestion and nonspecific DNA amplification. In order to test the specific analysis effect of the present invention, the present invention measured Cy5 single-molecule count signal on thymidine DNA glycosylase (TDG), HhaI restriction nuclease (HhaI), glucose oxidase (GOX) and bovine serum albumin (BSA) and other biological interferences. TDG can remove the thymine moiety from G/T mismatch, HhaI can recognize and cleave 5'-GCGC-3' double-stranded DNA, GOX can catalyze the oxidation of glucose to hydrogen peroxide and D-glucono-δ-lactone , BSA is a common unrelated protein. Theoretically, neither of these enzymes nor proteins can induce the dephosphorylation of the detection probe, so the fluorescent signal of Cy5 cannot be detected. As shown in Figure 5, a high Cy5 signal was detected in the presence of alkaline phosphatase, while a very low Cy5 signal was observed in the presence of TDG, Hhal, GOX, and BSA. The response signals of alkaline phosphatase were 13.22-fold, 12.13-fold, 14.41-fold and 13.16-fold higher than those of TDG, HhaI, GOX and BSA, respectively. The present invention is thus highly specific, which can be attributed to the specific recognition and conversion of alkaline phosphatase activity signals using a high-fidelity thermostable ligase.
5.抑制剂实验5. Inhibitor Experiment
碱性磷酸酶的抑制剂是一种潜在的疾病治疗药物,可以抑制血管平滑肌细胞钙化,用于治疗心血管疾病。本发明使用一种著名的碱性磷酸酶抑制剂钒酸钠(Na3VO4)来测试本发明用于碱性磷酸酶活性抑制分析的能力。如图6所示,随着钒酸钠浓度的增加,碱性磷酸酶的相对活性呈现剂量依赖性下降。经计算,半抑制浓度IC50为87.69微摩尔每升,与使用基于近红外荧光探针的方法(141.9微摩尔每升)结果相似,这表明本发明可用于碱性磷酸酶抑制剂的筛选,且具有较高的选择性。在药物开发和疾病治疗方面表现出巨大的潜力。Inhibitors of alkaline phosphatase are a potential disease treatment drug that can inhibit vascular smooth muscle cell calcification for the treatment of cardiovascular disease. The present invention uses a well-known alkaline phosphatase inhibitor, sodium vanadate (Na 3 VO 4 ), to test the ability of the present invention for alkaline phosphatase activity inhibition assays. As shown in Figure 6, the relative activity of alkaline phosphatase decreased in a dose-dependent manner with the increase of sodium vanadate concentration. After calculation, the IC50 of the half inhibitory concentration is 87.69 micromoles per liter, which is similar to the result using the method based on the near-infrared fluorescent probe (141.9 micromoles per liter), which indicates that the present invention can be used for the screening of alkaline phosphatase inhibitors, and high selectivity. It shows great potential in drug development and disease treatment.
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。上述虽然对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Finally, it should be noted that the above are only preferred embodiments of the present invention and are not intended to limit the present invention. Although the present invention has been described in detail with reference to the foregoing embodiments, those skilled in the art will still Modifications may be made to the technical solutions described in the foregoing embodiments, or equivalent replacements may be made to some of them. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention. Although the specific embodiments of the present invention are described above, they do not limit the protection scope of the present invention. Those skilled in the art should understand that on the basis of the technical solutions of the present invention, those skilled in the art can make Various modifications or deformations made are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910576733.2A CN110408680A (en) | 2019-06-28 | 2019-06-28 | Single quantum dot nanosensors based on ligase amplification reaction catalytic assembly for detection of alkaline phosphatase and its applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910576733.2A CN110408680A (en) | 2019-06-28 | 2019-06-28 | Single quantum dot nanosensors based on ligase amplification reaction catalytic assembly for detection of alkaline phosphatase and its applications |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110408680A true CN110408680A (en) | 2019-11-05 |
Family
ID=68358711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910576733.2A Pending CN110408680A (en) | 2019-06-28 | 2019-06-28 | Single quantum dot nanosensors based on ligase amplification reaction catalytic assembly for detection of alkaline phosphatase and its applications |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110408680A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112048544A (en) * | 2020-09-04 | 2020-12-08 | 重庆工商大学 | Detection method based on target protease autocatalytic property |
CN114250271A (en) * | 2021-11-29 | 2022-03-29 | 山东师范大学 | Non-amplification single quantum dot biosensor for detecting TET2 at single molecule level and detection method and application thereof |
CN114457159A (en) * | 2022-02-24 | 2022-05-10 | 珠海圣美生物诊断技术有限公司 | Method for detecting tumor cells or tumor cell fragments |
CN114517225A (en) * | 2021-12-08 | 2022-05-20 | 山东师范大学 | Single-molecule fluorescent biosensor for detecting alkaline phosphatase and method thereof |
CN114720444A (en) * | 2022-04-02 | 2022-07-08 | 东南大学 | Preparation method and application of dual-color fluorescence colocalization system for detecting silver ions |
CN116926160A (en) * | 2023-09-15 | 2023-10-24 | 江苏康为世纪生物科技股份有限公司 | Enzyme activity detection kit for T4 DNA ligase and enzyme activity determination method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070269825A1 (en) * | 2006-03-08 | 2007-11-22 | Atila Biosystems, Inc. | Method and kit for nucleic acid sequence detection |
WO2011090445A1 (en) * | 2010-01-22 | 2011-07-28 | Huseyin Avni Oktem | Method for detection of non-labeled pcr products on sandwich hybridization based array platforms |
CN106990084A (en) * | 2017-05-27 | 2017-07-28 | 山东师范大学 | A kind of being used for based on single quantum dot detects the nano-sensor of dnmt rna |
CN107604042A (en) * | 2017-09-22 | 2018-01-19 | 山东师范大学 | The method of detection terminal deoxynucleotidyl transferase activity based on single quantum dot |
CN108018336A (en) * | 2018-01-05 | 2018-05-11 | 山东师范大学 | A kind of DNA methylation detection kit and its application method |
CN109161583A (en) * | 2018-09-06 | 2019-01-08 | 山东师范大学 | The method for the cycle index augmentation detection alkaline phosphatase that primer dephosphorylation causes |
-
2019
- 2019-06-28 CN CN201910576733.2A patent/CN110408680A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070269825A1 (en) * | 2006-03-08 | 2007-11-22 | Atila Biosystems, Inc. | Method and kit for nucleic acid sequence detection |
WO2011090445A1 (en) * | 2010-01-22 | 2011-07-28 | Huseyin Avni Oktem | Method for detection of non-labeled pcr products on sandwich hybridization based array platforms |
CN106990084A (en) * | 2017-05-27 | 2017-07-28 | 山东师范大学 | A kind of being used for based on single quantum dot detects the nano-sensor of dnmt rna |
CN107604042A (en) * | 2017-09-22 | 2018-01-19 | 山东师范大学 | The method of detection terminal deoxynucleotidyl transferase activity based on single quantum dot |
CN108018336A (en) * | 2018-01-05 | 2018-05-11 | 山东师范大学 | A kind of DNA methylation detection kit and its application method |
CN109161583A (en) * | 2018-09-06 | 2019-01-08 | 山东师范大学 | The method for the cycle index augmentation detection alkaline phosphatase that primer dephosphorylation causes |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112048544A (en) * | 2020-09-04 | 2020-12-08 | 重庆工商大学 | Detection method based on target protease autocatalytic property |
CN114250271A (en) * | 2021-11-29 | 2022-03-29 | 山东师范大学 | Non-amplification single quantum dot biosensor for detecting TET2 at single molecule level and detection method and application thereof |
CN114250271B (en) * | 2021-11-29 | 2024-03-08 | 山东师范大学 | Amplification-free single quantum dot biosensor for detecting TET2 at single molecule level and detection method and application thereof |
CN114517225A (en) * | 2021-12-08 | 2022-05-20 | 山东师范大学 | Single-molecule fluorescent biosensor for detecting alkaline phosphatase and method thereof |
CN114517225B (en) * | 2021-12-08 | 2024-04-05 | 山东师范大学 | Single molecule fluorescent biosensor and method for detecting alkaline phosphatase |
CN114457159A (en) * | 2022-02-24 | 2022-05-10 | 珠海圣美生物诊断技术有限公司 | Method for detecting tumor cells or tumor cell fragments |
CN114457159B (en) * | 2022-02-24 | 2023-09-19 | 珠海圣美生物诊断技术有限公司 | Method for detecting tumor cells or tumor cell fragments |
CN114720444A (en) * | 2022-04-02 | 2022-07-08 | 东南大学 | Preparation method and application of dual-color fluorescence colocalization system for detecting silver ions |
CN114720444B (en) * | 2022-04-02 | 2025-04-29 | 东南大学 | Preparation method and application of dual-color fluorescence co-localization system for detecting silver ions |
CN116926160A (en) * | 2023-09-15 | 2023-10-24 | 江苏康为世纪生物科技股份有限公司 | Enzyme activity detection kit for T4 DNA ligase and enzyme activity determination method |
CN116926160B (en) * | 2023-09-15 | 2023-12-19 | 江苏康为世纪生物科技股份有限公司 | Enzyme activity detection kit for T4DNA ligase and enzyme activity determination method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qin et al. | Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics | |
CN110408680A (en) | Single quantum dot nanosensors based on ligase amplification reaction catalytic assembly for detection of alkaline phosphatase and its applications | |
CN107723338B (en) | Fluorescent chemical sensor for simultaneously detecting multiple DNA glycosylases at single-molecule level and detection method and application thereof | |
CN105755101B (en) | One kind detecting the active method of DNA glycosylases based on single quantum dot level | |
CN110398481B (en) | A single quantum dot fluorescent nanosensor based on enzyme-free catalytic self-assembly and its preparation method and application | |
Dong et al. | A signal-flexible gene diagnostic strategy coupling loop-mediated isothermal amplification with hybridization chain reaction | |
Ma et al. | Ligase amplification reaction-catalyzed assembly of a single quantum dot-based nanosensor for sensitive detection of alkaline phosphatase | |
CN106990084A (en) | A kind of being used for based on single quantum dot detects the nano-sensor of dnmt rna | |
CN112852922B (en) | Fluorescent biosensor for detecting DNA methylation, detection method and application | |
CN112098380B (en) | A biological analysis method based on the selective recognition reaction of quantum dots and its application | |
CN114250272B (en) | Fluorescent biosensor based on CRISPR and application of fluorescent biosensor in DNA glycosylase detection | |
Wei et al. | Duplex-specific nuclease signal amplification-based fluorescent lateral flow assay for the point-of-care detection of microRNAs | |
Wang et al. | Target-fueled catalytic hairpin assembly for sensitive and multiplex microRNA detection | |
CN111172235B (en) | Biosensor for detecting cathepsin B and detection method and application thereof | |
Li et al. | Integration of single-molecule detection with magnetic separation for multiplexed detection of DNA glycosylases | |
CN112725416A (en) | Fluorescence sensor for simultaneously detecting hOGG1 and hAAG, and detection method and application thereof | |
Wang et al. | Primer dephosphorylation-initiated circular exponential amplification for ultrasensitive detection of alkaline phosphatase | |
CN112485236B (en) | A homogeneous visualization and dual fluorescence signal analysis method and application based on multiple selective recognition reactions | |
CN114540503A (en) | Tumor suppressor Let-7a detection kit based on strand displacement and enzyme-assisted circulation signal amplification and use method thereof | |
CN113969308A (en) | Nucleic acid detection method based on gene editing and flow analysis technology | |
CN107083437B (en) | A method for the ultrasensitive simultaneous detection of multiple DNA glycosylases using inherently fluorescent nucleotides | |
CN116497090A (en) | Nucleic acid detection kit and application thereof | |
Li et al. | Ultrasensitive detection of microRNAs based on click chemistry-terminal deoxynucleotidyl transferase combined with CRISPR/Cas12a | |
CN114410793B (en) | Method for detecting FEN1 activity by label-free fluorescence | |
CN112903641A (en) | Biosensor for detecting histone modification enzyme and detection method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191105 |
|
RJ01 | Rejection of invention patent application after publication |