[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110161389A - A kind of Electric Power Equipment Insulation defect identification method and AEVB self-encoding encoder - Google Patents

A kind of Electric Power Equipment Insulation defect identification method and AEVB self-encoding encoder Download PDF

Info

Publication number
CN110161389A
CN110161389A CN201910506970.1A CN201910506970A CN110161389A CN 110161389 A CN110161389 A CN 110161389A CN 201910506970 A CN201910506970 A CN 201910506970A CN 110161389 A CN110161389 A CN 110161389A
Authority
CN
China
Prior art keywords
encoder
indicates
aevb
partial discharge
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910506970.1A
Other languages
Chinese (zh)
Inventor
高树国
顾朝敏
申金平
孟令明
岳国良
董驰
张树亮
周明
李天辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hebei Electric Power Co Ltd
State Grid Hebei Electric Power Co Ltd
Cangzhou Power Supply Co of State Grid Hebei Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hebei Electric Power Co Ltd
State Grid Hebei Electric Power Co Ltd
Cangzhou Power Supply Co of State Grid Hebei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Hebei Electric Power Co Ltd, State Grid Hebei Electric Power Co Ltd, Cangzhou Power Supply Co of State Grid Hebei Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201910506970.1A priority Critical patent/CN110161389A/en
Publication of CN110161389A publication Critical patent/CN110161389A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2132Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on discrimination criteria, e.g. discriminant analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2135Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/29Graphical models, e.g. Bayesian networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

The invention discloses a kind of Electric Power Equipment Insulation defect identification methods comprising step: (1) constructing AEVB self-encoding encoder, AEVB self-encoding encoder includes probability encoding device and probability decoder;(2) AEVB self-encoding encoder is trained using the history Partial Discharge Data of power equipment, so that: characteristic value of the history Partial Discharge Data of input in the output end output Partial Discharge Data of probability encoding device, the characteristic value input probability decoder of the Partial Discharge Data, to export corresponding insulation defect type in the output end of probability decoder;(3) by the local discharge signal input AEVB self-encoding encoder of power equipment to be identified, AEVB self-encoding encoder exports insulation defect type.In addition, the invention also discloses a kind of AEVB self-encoding encoder for Electric Power Equipment Insulation defect recognition, AEVB self-encoding encoder includes probability encoding device and probability decoder.

Description

一种电力设备绝缘缺陷识别方法及AEVB自编码器A Method for Identifying Insulation Defects of Power Equipment and AEVB Autoencoder

技术领域technical field

本发明涉及一种识别方法及其神经网络,尤其涉及一种电力设备绝缘缺陷的识别方法及其神经网络。The invention relates to an identification method and its neural network, in particular to an identification method and its neural network for electrical equipment insulation defects.

背景技术Background technique

目前常用的绝缘缺陷诊断方法是对局部放电信息构造成的局放图谱进行特征提取和模式识别。快速准确地对获得的局放图谱进行识别有助于绝缘缺陷诊断,进而掌握电力设备的绝缘状态。当有绝缘缺陷存在时可以第一时间进行维修。但目前的局放图谱识别技术依然存在准确率较低的问题,容易导致故障错判。At present, the commonly used methods for diagnosis of insulation defects are feature extraction and pattern recognition for partial discharge maps constructed from partial discharge information. Quickly and accurately identifying the obtained partial discharge spectrum is helpful for the diagnosis of insulation defects, and then grasps the insulation status of power equipment. When there is an insulation defect, it can be repaired at the first time. However, the current partial discharge spectrum identification technology still has the problem of low accuracy, which may easily lead to misjudgment of faults.

基于此,期望获得一种电力设备绝缘缺陷识别方法,其可以显著提高局放图谱的识别准确率,从而更好地对电力设备状态进行评估,以有利于掌握电力设备的绝缘状态。Based on this, it is expected to obtain a method for identifying insulation defects of power equipment, which can significantly improve the recognition accuracy of partial discharge maps, so as to better evaluate the status of power equipment, and help to grasp the insulation status of power equipment.

发明内容Contents of the invention

本发明的目的之一在于提供一种电力设备绝缘缺陷识别方法,该电力设备绝缘缺陷识别方法可以有效提高局放图谱的识别准确率,从而更好地对电力设备状态进行评估,以有利于掌握电力设备的绝缘状态。One of the objectives of the present invention is to provide a method for identifying insulation defects in electric equipment, which can effectively improve the recognition accuracy of partial discharge atlases, thereby better evaluating the state of electric equipment, so as to facilitate grasping Insulation state of electrical equipment.

基于上述目的,本发明提出了一种电力设备绝缘缺陷识别方法,其包括步骤:Based on the above purpose, the present invention proposes a method for identifying electrical equipment insulation defects, which includes the steps of:

(1)构建AEVB自编码器,AEVB自编码器包括概率编码器和概率解码器;(1) Build AEVB self-encoder, AEVB self-encoder includes probability encoder and probability decoder;

(2)采用电力设备的历史局部放电数据对AEVB自编码器进行训练,以使:输入的历史局部放电数据在概率编码器的输出端输出局部放电数据的特征值,该局部放电数据的特征值输入概率解码器,以在概率解码器的输出端输出相应的绝缘缺陷类型;(2) Use the historical partial discharge data of electric equipment to train the AEVB autoencoder, so that: the input historical partial discharge data outputs the eigenvalue of the partial discharge data at the output end of the probability encoder, and the eigenvalue of the partial discharge data input into a probabilistic decoder to output the corresponding insulation defect type at the output of the probabilistic decoder;

(3)将待识别的电力设备的局部放电信号输入AEVB自编码器中,AEVB自编码器输出绝缘缺陷类型。(3) Input the partial discharge signal of the power equipment to be identified into the AEVB self-encoder, and the AEVB self-encoder outputs the type of insulation defect.

在本发明所述的电力设备绝缘缺陷识别方法中,为了提高对局放图谱的识别准确率,本案发明人根据深度自编码器匹配算法,提出了本案的电力设备绝缘缺陷识别方法,首先构建变分贝叶斯自编码器(以下简称为AEVB自编码器),该AEVB自编码器包括概率编码器和概率解码器,随后采用电力设备的历史局部放电数据对AEVB自编码器进行训练,以使:输入的历史局部放电数据在概率编码器的输出端输出局部放电数据的特征值,该局部放电数据的特征值输入概率解码器,以在概率解码器的输出端输出相应的绝缘缺陷类型,该历史局部放电数据可以从案例信息库中获取得到,最后,将待识别的电力设备的局部放电信号输入AEVB自编码器,通过AEVB自编码器输出绝缘缺陷类型。In the method for identifying insulation defects of power equipment described in the present invention, in order to improve the recognition accuracy of partial discharge maps, the inventors of this case proposed the method for identifying insulation defects of power equipment in this case based on the deep autoencoder matching algorithm. Decibelsian autoencoder (hereinafter referred to as AEVB autoencoder), the AEVB autoencoder includes a probabilistic encoder and a probabilistic decoder, and then uses the historical partial discharge data of power equipment to train the AEVB autoencoder, so that : The input historical partial discharge data outputs the characteristic value of the partial discharge data at the output terminal of the probability encoder, and the characteristic value of the partial discharge data is input into the probability decoder to output the corresponding insulation defect type at the output terminal of the probability decoder. The historical partial discharge data can be obtained from the case information database. Finally, the partial discharge signal of the power equipment to be identified is input into the AEVB self-encoder, and the insulation defect type is output through the AEVB self-encoder.

由此,使得通过本案的电力设备绝缘缺陷识别方法可以准确有效地对电力设备的运行情况进行评估了解,提高局放图谱的识别准确率,从而更好地对电力设备状态进行评估,以有利于掌握电力设备的绝缘状态。As a result, the method for identifying electrical equipment insulation defects in this case can accurately and effectively evaluate and understand the operation of electrical equipment, improve the recognition accuracy of partial discharge maps, and thus better evaluate the status of electrical equipment, in order to benefit Master the insulation status of electrical equipment.

进一步地,在本发明所述的电力设备绝缘缺陷识别方法中,AEVB自编码器具有一个输入层、一个输出层、一个隐变量层和四个中间层;其中一个输入层、两个中间层和一个隐变量层组成了所述概率编码器,隐变量层输出局部放电数据的特征值;两个中间层和一个输出层组成了所述概率解码器,所述输出层输出绝缘缺陷类型。Further, in the electrical equipment insulation defect identification method of the present invention, the AEVB self-encoder has an input layer, an output layer, a hidden variable layer and four intermediate layers; wherein one input layer, two intermediate layers and A hidden variable layer forms the probability encoder, and the hidden variable layer outputs the characteristic value of partial discharge data; two intermediate layers and an output layer form the probability decoder, and the output layer outputs the type of insulation defect.

进一步地,在本发明所述的电力设备绝缘缺陷识别方法中,采用随机梯度下降法优化概率编码器和概率解码器的参数。Furthermore, in the method for identifying insulation defects of electric equipment according to the present invention, the parameters of the probabilistic encoder and the probabilistic decoder are optimized by using the stochastic gradient descent method.

进一步地,在本发明所述的电力设备绝缘缺陷识别方法中,概率编码器采用下述公式表征:Further, in the method for identifying electrical equipment insulation defects according to the present invention, the probabilistic encoder is characterized by the following formula:

式中z表示隐变量层的输出,其为局部放电数据的特征值;σenc表示比例参数;ε表示满足N(0,1)分布的随机参数;N(0,I)为标准正态分布;f表示激活函数;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的hl的比例参数;表示要求解的hl的平移量;x为输入的局部放电数据。In the formula, z represents the output of the hidden variable layer, which is the eigenvalue of the partial discharge data; σ enc represents the proportional parameter; ε represents the random parameter satisfying the N(0,1) distribution; N(0,I) is the standard normal distribution ; f represents the activation function; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the scale parameter of h l to be solved; Indicates the translation amount of h l to be solved; x is the input partial discharge data.

进一步地,在本发明所述的电力设备绝缘缺陷识别方法中,概率解码器采用下述公式表征:Further, in the method for identifying electrical equipment insulation defects according to the present invention, the probabilistic decoder is characterized by the following formula:

式中,x表示输入的局部放电数据;z表示局部放电数据的特征值;p(x|z)表示条件概率分布函数;N表示正态分布函数;μdec表示概率似然参数,σdec表示比例参数;I表示偏移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的h2的比例参数;表示要求解的h2的平移量。In the formula, x represents the input partial discharge data; z represents the eigenvalue of the partial discharge data; p(x|z) represents the conditional probability distribution function; N represents the normal distribution function; μ dec represents the probability likelihood parameter, σ dec represents Scale parameter; I means offset; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the scale parameter of h2 to be solved ; Indicates the translation of h2 to be solved.

相应地,本发明的另一目的在于提供一种用于电力设备绝缘缺陷识别的AEVB自编码器,通过该AEVB自编码器可以有效提高局放图谱的识别准确率,从而更好地对电力设备状态进行评估,以有利于掌握电力设备的绝缘状态。Correspondingly, another object of the present invention is to provide an AEVB self-encoder for identifying insulation defects in electric equipment, through which the AEVB self-encoder can effectively improve the recognition accuracy of partial discharge patterns, thereby better identifying electric equipment The state is evaluated to help grasp the insulation state of the power equipment.

基于上述目的,本发明还提出了一种用于电力设备绝缘缺陷识别的AEV B自编码器,AEVB自编码器包括概率编码器和概率解码器;其中概率编码器被构造为:向其输入电力设备的局部放电信号,则其输出局部放电数据的特征值;所述概率解码器被构造为:其输入端输入概率编码器的输出,其输出绝缘缺陷类型。Based on the above-mentioned purpose, the present invention also proposes a kind of AEVB self-encoder for electric equipment insulation defect identification, AEVB self-encoder comprises probability encoder and probability decoder; Wherein the probability encoder is structured as: input electric power to it The partial discharge signal of the equipment, then it outputs the eigenvalue of the partial discharge data; the said probabilistic decoder is structured as: its input terminal inputs the output of the probability encoder, and its output is the type of insulation defect.

进一步地,在本发明所述的AEVB自编码器中,AEVB自编码器具有一个输入层、一个输出层、一个隐变量层和四个中间层;其中一个输入层、两个中间层和一个隐变量层组成了所述概率编码器,所述隐变量层输出局部放电数据的特征值;两个中间层和一个输出层组成了所述概率解码器,所述输出层输出绝缘缺陷类型。Further, in the AEVB self-encoder of the present invention, the AEVB self-encoder has an input layer, an output layer, a hidden variable layer and four intermediate layers; wherein an input layer, two intermediate layers and a hidden variable layer The variable layer constitutes the probability encoder, and the hidden variable layer outputs the characteristic value of the partial discharge data; two intermediate layers and an output layer constitute the probability decoder, and the output layer outputs the type of insulation defect.

进一步地,在本发明所述的AEVB自编码器中,概率编码器和概率解码器的参数采用随机梯度下降法而进行优化。Furthermore, in the AEVB self-encoder described in the present invention, the parameters of the probabilistic encoder and the probabilistic decoder are optimized using the stochastic gradient descent method.

进一步地,在本发明所述的AEVB自编码器中,概率编码器采用下述公式表征:Further, in the AEVB self-encoder of the present invention, the probabilistic encoder is characterized by the following formula:

式中z表示隐变量层的输出,其为局部放电数据的特征值;σenc表示比例参数;ε表示满足N(0,1)分布的随机参数;N(0,I)为标准正态分布;f表示激活函数;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;x为输入的局部放电数据。In the formula, z represents the output of the hidden variable layer, which is the eigenvalue of the partial discharge data; σ enc represents the proportional parameter; ε represents the random parameter satisfying the N(0,1) distribution; N(0,I) is the standard normal distribution ; f represents the activation function; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; x is the input partial discharge data.

进一步地,在本发明所述的AEVB自编码器中,概率解码器采用下述公式表征:Further, in the AEVB self-encoder of the present invention, the probabilistic decoder is characterized by the following formula:

式中,x表示输入的局部放电数据;z表示局部放电数据的特征值;p(x|z)表示条件概率分布函数;N表示正态分布函数;μdec表示概率似然参数,σdec表示比例参数;I表示偏移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的h2的比例参数;表示要求解的h2的平移量。In the formula, x represents the input partial discharge data; z represents the eigenvalue of the partial discharge data; p(x|z) represents the conditional probability distribution function; N represents the normal distribution function; μ dec represents the probability likelihood parameter, σ dec represents Scale parameter; I means offset; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the scale parameter of h2 to be solved ; Indicates the translation of h2 to be solved.

本发明所述的电力设备绝缘缺陷识别方法及AEVB自编码器具有如下所述的优点以及有益效果:The electrical equipment insulation defect identification method and the AEVB self-encoder of the present invention have the following advantages and beneficial effects:

本发明所述的电力设备绝缘缺陷识别方法可以有效提高局放图谱的识别准确率,从而更好地对电力设备状态进行评估,以有利于掌握电力设备的绝缘状态。The method for identifying insulation defects of electric equipment according to the present invention can effectively improve the recognition accuracy of partial discharge atlas, thereby better evaluating the state of electric equipment, so as to facilitate grasping the insulation state of electric equipment.

此外,本发明所述的AEVB自编码器也同样具有上述的优点以及有益效果。In addition, the AEVB self-encoder of the present invention also has the above-mentioned advantages and beneficial effects.

附图说明Description of drawings

图1为本发明所述的电力设备绝缘缺陷识别方法在一种实施方式下的流程示意图。Fig. 1 is a schematic flow chart of an embodiment of the method for identifying insulation defects of electric equipment according to the present invention.

图2示意性地显示了本发明所述的AEVB自编码器在一种实施方式下的结构。Fig. 2 schematically shows the structure of the AEVB autoencoder in an embodiment of the present invention.

图3至图6分别示意了本发明所述的电力设备绝缘缺陷识别方法在不同的实施方式中所检测到的检测数据。FIG. 3 to FIG. 6 illustrate the detection data detected in different implementations of the method for identifying insulation defects of electrical equipment according to the present invention.

具体实施方式Detailed ways

下面将根据具体实施例及说明书附图对本发明所述的电力设备绝缘缺陷识别方法及AEVB自编码器作进一步说明,但是该说明并不构成对本发明技术方案的不当限定。The method for identifying electrical equipment insulation defects and the AEVB self-encoder according to the present invention will be further described below based on specific embodiments and the accompanying drawings, but this description does not constitute an improper limitation to the technical solution of the present invention.

图1为本发明所述的电力设备绝缘缺陷识别方法在一种实施方式下的流程示意图。Fig. 1 is a schematic flow chart of an embodiment of the method for identifying insulation defects of electric equipment according to the present invention.

如图1所示,在本实施方式中,电力设备绝缘缺陷识别方法包括步骤:As shown in FIG. 1, in this embodiment, the method for identifying insulation defects of electric equipment includes steps:

步骤100:构建AEVB自编码器,所述AEVB自编码器包括概率编码器和概率解码器;Step 100: construct AEVB self-encoder, described AEVB self-encoder comprises probabilistic encoder and probabilistic decoder;

步骤200:采用电力设备的历史局部放电数据对AEVB自编码器进行训练,以使:输入的历史局部放电数据在概率编码器的输出端输出局部放电数据的特征值,该局部放电数据的特征值输入概率解码器,以在概率解码器的输出端输出相应的绝缘缺陷类型;Step 200: Use the historical partial discharge data of the electric equipment to train the AEVB autoencoder, so that: the input historical partial discharge data outputs the eigenvalue of the partial discharge data at the output end of the probability encoder, and the eigenvalue of the partial discharge data input into a probabilistic decoder to output the corresponding insulation defect type at the output of the probabilistic decoder;

步骤300:将待识别的电力设备的局部放电信号输入AEVB自编码器中,AEVB自编码器输出绝缘缺陷类型。Step 300: Input the partial discharge signal of the power equipment to be identified into the AEVB self-encoder, and the AEVB self-encoder outputs the type of insulation defect.

需要说明的是,AEVB自编码器具有一个输入层、一个输出层、一个隐变量层和四个中间层;其中一个输入层、两个中间层和一个隐变量层组成了所述概率编码器,所述隐变量层输出局部放电数据的特征值;两个中间层和一个输出层组成了所述概率解码器,输出层输出绝缘缺陷类型。It should be noted that the AEVB autoencoder has an input layer, an output layer, a hidden variable layer and four intermediate layers; wherein an input layer, two intermediate layers and a hidden variable layer form the probability encoder, The hidden variable layer outputs the characteristic value of the partial discharge data; the probability decoder is composed of two intermediate layers and an output layer, and the output layer outputs the insulation defect type.

而图2示意性地显示了本发明所述的AEVB自编码器在一种实施方式下的结构。Fig. 2 schematically shows the structure of the AEVB autoencoder in an embodiment of the present invention.

如图2所示,采用随机梯度下降法优化概率编码器和概率解码器的参数。其中,概率编码器采用下述公式表征:As shown in Figure 2, the parameters of the probabilistic encoder and the probabilistic decoder are optimized by stochastic gradient descent. Among them, the probabilistic encoder is characterized by the following formula:

式中z表示隐变量层的输出,其为局部放电数据的特征值;σenc表示比例参数;ε表示满足N(0,1)分布的随机参数;N(0,I)为标准正态分布;f表示激活函数;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;x为输入的局部放电数据。In the formula, z represents the output of the hidden variable layer, which is the eigenvalue of the partial discharge data; σ enc represents the proportional parameter; ε represents the random parameter satisfying the N(0,1) distribution; N(0,I) is the standard normal distribution ; f represents the activation function; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; x is the input partial discharge data.

而概率解码器采用下述公式表征:The probabilistic decoder is characterized by the following formula:

式中,x表示输入的局部放电数据;z表示局部放电数据的特征值;p(x|z)表示条件概率分布函数;N表示正态分布函数;μdec表示概率似然参数,σdec表示比例参数;I表示偏移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的h2的比例参数;表示要求解的h2的平移量。In the formula, x represents the input partial discharge data; z represents the eigenvalue of the partial discharge data; p(x|z) represents the conditional probability distribution function; N represents the normal distribution function; μ dec represents the probability likelihood parameter, σ dec represents Scale parameter; I means offset; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the scale parameter of h2 to be solved ; Indicates the translation of h2 to be solved.

为了更好地说明本案的电力设备绝缘缺陷识别方法的识别效果,图3至图5分别示意了本发明所述的电力设备绝缘缺陷识别方法在不同的实施方式中所检测到的检测数据。In order to better illustrate the recognition effect of the method for identifying insulation defects of electric equipment in this case, Fig. 3 to Fig. 5 illustrate the detection data detected in different implementations of the method for identifying insulation defects of electric equipment according to the present invention.

表1列出了不同的局部放电信号检测到的放电类型与放电部位之间的关系说明。Table 1 lists the description of the relationship between the type of discharge detected by different partial discharge signals and the location of the discharge.

表1.Table 1.

案例编号case number 放电类型discharge type 放电部位discharge site 11 悬浮放电Levitation discharge 隔离刀闸绝缘拉杆与传动机构连接部位Isolate the connecting part of the insulating pull rod of the knife switch and the transmission mechanism 22 悬浮放电Levitation discharge 隔离刀闸绝缘拉杆与传动机构连接部位Isolate the connecting part of the insulating pull rod of the knife switch and the transmission mechanism 33 悬浮放电Levitation discharge 内置式传感器接头部位Built-in sensor connector 44 绝缘类放电Insulation type discharge GIS电缆终端仓电缆终端接头破损GIS cable terminal compartment The cable terminal connector is damaged

此外,需要说明的是,案例信息如表1所示。其中案例1与案例2为相同设备生产厂家,相同型号设备,相同位置上检测到的放电案例。案例3与案例1和案例2放电类型相同,但设备生产厂家和放电部位均不同,案例4为不同放电类型的对比案例。以上四个案例中检测到的局部放电数据如图3至图6所示。通过提取图3至图6所示的局部放电数据的多种特征值,结合余弦算法计算相互之间的匹配度,得到不同特征量匹配度结果如下表表2所示。In addition, it should be noted that the case information is shown in Table 1. Among them, Case 1 and Case 2 are the discharge cases detected by the same equipment manufacturer, the same type of equipment, and the same location. Case 3 has the same discharge type as Case 1 and Case 2, but the equipment manufacturers and discharge locations are different. Case 4 is a comparative case of different discharge types. The partial discharge data detected in the above four cases are shown in Fig. 3 to Fig. 6 . By extracting various eigenvalues of the partial discharge data shown in Figure 3 to Figure 6, and combining the cosine algorithm to calculate the matching degree between each other, the matching results of different eigenvalues are obtained as shown in Table 2 below.

表2.Table 2.

注:表2中统计特征值可以通过如下方式获得:统计特征值为由局部放电幅值与次数在整个工频周期和工频正负半周的偏斜度Sk、陡峭度Ku、不对称度Q和互相关系数Cc等16个特征参数组成;Note: The statistical eigenvalues in Table 2 can be obtained in the following ways: the statistical eigenvalues are determined by the partial discharge amplitude and frequency in the entire power frequency cycle and the skewness Sk, steepness Ku, and asymmetry Q of the positive and negative half cycles of the power frequency and the cross-correlation coefficient Cc and other 16 characteristic parameters;

DBN特征值通过如下方式获得:深度信念网络是由多层受限玻尔兹曼机叠加扩展而成的网络结构模型。本文中用于对比的DBN网络为6层,节点数为3600,1000,500,100,10,4。第5层的输出作为提取的特征值;The DBN eigenvalues are obtained in the following way: the deep belief network is a network structure model formed by superposition and expansion of multi-layer restricted Boltzmann machines. The DBN network used for comparison in this paper is 6 layers, and the number of nodes is 3600, 1000, 500, 100, 10, 4. The output of the fifth layer is used as the extracted feature value;

CNN特征值通过如下方式获得:深度卷积网络是利用多层的卷积、池化操作来获取数据深层特征的网络结构模型,可以实现对数据的平移、缩放、扭曲不变性。本文应用的CNN网络输入层为50×72,两个卷积层分别为6个3×3的卷积核和36个3×3的卷积核,相应的池化层为1×2,1×11。两个全连接层为500,10,输出层为4。第2个全连接层的输出作为提取的特征值;CNN eigenvalues are obtained through the following methods: deep convolutional network is a network structure model that uses multi-layer convolution and pooling operations to obtain deep features of data, and can achieve translation, scaling, and distortion invariance to data. The CNN network input layer used in this paper is 50×72, and the two convolutional layers are 6 3×3 convolution kernels and 36 3×3 convolution kernels, and the corresponding pooling layer is 1×2, 1 ×11. The two fully connected layers are 500, 10, and the output layer is 4. The output of the second fully connected layer is used as the extracted feature value;

主成分分析(principal component analysis,简称PCA)+线性判别分析(lineardiscriminant analysis,简称LDA)特征值通过如下方式获得:首先利用PCA对样本进行降维,消除样本的冗余度,从而保证是离散度矩阵的非奇异性。再利用LDA求解最优变换特征信息。Principal component analysis (PCA for short) + linear discriminant analysis (LDA for short) eigenvalues are obtained by the following method: firstly, PCA is used to reduce the dimension of the sample, and the redundancy of the sample is eliminated, so as to ensure the dispersion Non-singularity of matrices. Then use LDA to solve the optimal transformation feature information.

需要说明的是,表2中的编号是指将表1中的两个案例编号进行特征值提取,并结合余弦算法计算二者的匹配度,进一步来说案例1-2是指利用提取案例1和案例2的多种特征值,结合余弦算法计算二者的匹配度,同样地,案例2-3是指利用提取案例2和案例3的多种特征值,结合余弦算法计算二者的匹配度。It should be noted that the numbers in Table 2 refer to extracting the feature values of the two case numbers in Table 1, and combining the cosine algorithm to calculate the matching degree between the two. Further, Case 1-2 refers to the use of extraction case 1 and various eigenvalues of Case 2, combined with the cosine algorithm to calculate the matching degree of the two. Similarly, Case 2-3 refers to the use of various eigenvalues of Case 2 and Case 3, combined with the cosine algorithm to calculate the matching degree of the two .

从表2中可以看出,AEVB自编码器所得到的匹配结果中,案例1-2具有较其他案例组合更高的匹配度,与案例1-3相比,匹配度高23.09%。与案例1-4相比,匹配度高89.94%。作为对比的统计特征值计算得的匹配度则较难得出明显规律,相同放电类型的数据之间匹配度较为接近,不同放电类型的数据之间的匹配度略低,但较AEVB自编码器得到的结果效果较差。DBN模型、CNN模型和PCA+LDA模型所得的结果可以看出,案例1-4、案例2-4之间的匹配度较低,因此其对不同放电类型的数据可以取得较好的识别效果,但对于案例1-2,案例1-3,案例2-3,所得到的匹配度相差不大,不能区分相似案例,因此作为匹配应用效果较差。It can be seen from Table 2 that among the matching results obtained by the AEVB autoencoder, Case 1-2 has a higher matching degree than other case combinations, and the matching degree is 23.09% higher than Case 1-3. Compared with Cases 1-4, the matching degree is 89.94% higher. As a comparison, the matching degree calculated by the statistical eigenvalues is difficult to draw obvious rules. The matching degree between the data of the same discharge type is relatively close, and the matching degree between data of different discharge types is slightly lower, but it is better than that obtained by the AEVB autoencoder. The results are less effective. It can be seen from the results of DBN model, CNN model and PCA+LDA model that the matching degree between Case 1-4 and Case 2-4 is low, so it can achieve better recognition effect on data of different discharge types. However, for Case 1-2, Case 1-3, and Case 2-3, the obtained matching degrees are not much different, and similar cases cannot be distinguished, so the matching application effect is poor.

为了验证本案的AEVB自编码器的识别效果,基于AEVB自编码器进行特征值提取,随后分别利用余弦算法,欧式距离和最佳熵计算案例数据间的匹配度,结果如表3所示。In order to verify the recognition effect of the AEVB autoencoder in this case, the feature value is extracted based on the AEVB autoencoder, and then the matching degree between the case data is calculated by using the cosine algorithm, the Euclidean distance and the best entropy. The results are shown in Table 3.

表3.table 3.

案例编号case number 余弦算法cosine algorithm 欧式距离Euclidean distance 最佳熵optimal entropy 案例1-2Case 1-2 96.87%96.87% 93.03%93.03% 98.62%98.62% 案例1-3Case 1-3 73.78%73.78% 75.23%75.23% 74.44%74.44% 案例1-4Case 1-4 6.93%6.93% 8.31%8.31% 5.00%5.00% 案例2-3Case 2-3 61.75%61.75% 60.84%60.84% 77.43%77.43% 案例2-4Case 2-4 1.92%1.92% 6.80%6.80% 3.34%3.34% 案例3-4Case 3-4 9.51%9.51% 7.18%7.18% 7.15%7.15%

注:表3中余弦算法可以通过如下所述方式获得:下式的余弦算法计算局部放电数据之间的距离,即可获得局部放电数据的匹配度MR。Note: The cosine algorithm in Table 3 can be obtained as follows: the cosine algorithm of the following formula calculates the distance between the partial discharge data, and then the matching degree MR of the partial discharge data can be obtained.

式中Va、Vb分别为两条局部放电数据所提取的特征向量,||·||表示向量的模;In the formula, V a and V b are the feature vectors extracted from two partial discharge data respectively, and ||·|| represents the modulus of the vector;

欧氏距离的匹配度如下所述获得:基于两组向量的欧氏距离获得其匹配度。基于欧氏距离的匹配度存在问题是难以确定合适的衡量标准,因此难以归一化。本文选取所有样本数据中的最大距离作为标准,按照以下公式计算其匹配度:The matching degree of the Euclidean distance is obtained as follows: The matching degree thereof is obtained based on the Euclidean distance of two sets of vectors. The problem with matching based on Euclidean distance is that it is difficult to determine a suitable measure and thus difficult to normalize. In this paper, the maximum distance among all sample data is selected as the standard, and the matching degree is calculated according to the following formula:

基于最佳熵的匹配度如下所述获得:主要计算信号的熵值,提出计算参数少,能在一定程度上减少因时间不同步造成的误差。The matching degree based on the best entropy is obtained as follows: the entropy value of the signal is mainly calculated, and the calculation parameters are few, which can reduce the error caused by time asynchrony to a certain extent.

由表3可以看出,针对上述案例分别利用欧氏距离和最佳熵计算匹配度与余弦算法的区别不大。It can be seen from Table 3 that there is little difference between using the Euclidean distance and the best entropy to calculate the matching degree and the cosine algorithm for the above cases.

进一步地对20000万条案例中的数据进行匹配度计算,利用AEVB自编码器提取特征值,分别利用余弦算法、欧氏距离和最佳熵计算两两之间的匹配度。以相似类型案例下匹配度高于80%,不相似案例下匹配度低于20%作为匹配正确,计算匹配正确率得到如表4的统计信息。Further calculate the matching degree of data in 200 million cases, use AEVB autoencoder to extract eigenvalues, and use cosine algorithm, Euclidean distance and optimal entropy to calculate the matching degree between pairs. The matching degree is higher than 80% in similar cases and lower than 20% in dissimilar cases as correct matching, and the statistical information shown in Table 4 is obtained by calculating the matching correct rate.

表4.Table 4.

放电类型discharge type 悬浮放电Levitation discharge 绝缘放电insulation discharge 余弦算法cosine algorithm 82.6%82.6% 85.7%85.7% 欧氏距离Euclidean distance 63.6%63.6% 75.3%75.3% 最佳熵optimal entropy 47.5%47.5% 72.4%72.4%

从表4中可以看出,对于大量的案例,基于欧氏距离和最佳熵的匹配度正确率低于余弦算法,由于欧氏距离的匹配度计算中,所有样本均和固定的最大距离对比,因此容易出现奇异值,造成整体效果较差,基于最佳熵的匹配度计算具有较快的计算速度,但由于最佳熵和样本的分散程度相关,对于度量复杂数据来源下的局部放电数据相似性效果欠佳。It can be seen from Table 4 that for a large number of cases, the matching accuracy rate based on Euclidean distance and optimal entropy is lower than that of the cosine algorithm, because in the matching degree calculation of Euclidean distance, all samples are compared with the fixed maximum distance , so it is prone to singular values, resulting in poor overall effect. The calculation of matching degree based on the best entropy has a faster calculation speed, but because the best entropy is related to the degree of dispersion of the sample, it is difficult to measure partial discharge data under complex data sources. Similarity works poorly.

综上所述可以看出,本发明所述的电力设备绝缘缺陷识别方法可以有效提高局放图谱的识别准确率,从而更好地对电力设备状态进行评估,以有利于掌握电力设备的绝缘状态。In summary, it can be seen that the method for identifying insulation defects of electrical equipment according to the present invention can effectively improve the identification accuracy of partial discharge atlases, thereby better evaluating the status of electrical equipment, so as to help grasp the insulation status of electrical equipment .

此外,本发明所述的AEVB自编码器也同样具有上述的优点以及有益效果。In addition, the AEVB self-encoder of the present invention also has the above-mentioned advantages and beneficial effects.

需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。It should be noted that the prior art part in the scope of protection of the present invention is not limited to the embodiments given in the application documents, and all prior art that does not contradict the solution of the present invention, including but not limited to the prior art Patent documents, prior publications, prior public use, etc., can all be included in the scope of protection of the present invention.

另外,还需要说明的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案所记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。In addition, it should be noted that the combination of the technical features in this case is not limited to the combination described in the claims of this case or the combination described in the specific examples, all the technical features recorded in this case can be used in any way Free combination or combination, unless contradictory to each other.

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.

Claims (10)

1.一种电力设备绝缘缺陷识别方法,其特征在于,包括步骤:1. A method for identifying electrical equipment insulation defects, characterized in that it comprises the steps of: (1)构建AEVB自编码器,所述AEVB自编码器包括概率编码器和概率解码器;(1) build AEVB self-encoder, described AEVB self-encoder comprises probability encoder and probability decoder; (2)采用电力设备的历史局部放电数据对AEVB自编码器进行训练,以使:输入的历史局部放电数据在概率编码器的输出端输出局部放电数据的特征值,该局部放电数据的特征值输入概率解码器,以在概率解码器的输出端输出相应的绝缘缺陷类型;(2) Use the historical partial discharge data of electric equipment to train the AEVB autoencoder, so that: the input historical partial discharge data outputs the eigenvalue of the partial discharge data at the output end of the probability encoder, and the eigenvalue of the partial discharge data input into a probabilistic decoder to output the corresponding insulation defect type at the output of the probabilistic decoder; (3)将待识别的电力设备的局部放电信号输入AEVB自编码器中,所述AEVB自编码器输出绝缘缺陷类型。(3) Input the partial discharge signal of the power equipment to be identified into the AEVB self-encoder, and the AEVB self-encoder outputs the type of insulation defect. 2.如权利要求1所述的电力设备绝缘缺陷识别方法,其特征在于,所述AEVB自编码器具有一个输入层、一个输出层、一个隐变量层和四个中间层;其中一个输入层、两个中间层和一个隐变量层组成了所述概率编码器,所述隐变量层输出局部放电数据的特征值;两个中间层和一个输出层组成了所述概率解码器,所述输出层输出绝缘缺陷类型。2. the electrical equipment insulation defect identification method as claimed in claim 1, is characterized in that, described AEVB self-encoder has an input layer, an output layer, a latent variable layer and four intermediate layers; Wherein an input layer, Two intermediate layers and a hidden variable layer form the probability encoder, and the hidden variable layer outputs the eigenvalues of the partial discharge data; two intermediate layers and an output layer form the probability decoder, and the output layer Outputs the type of insulation defect. 3.如权利要求1所述的电力设备绝缘缺陷识别方法,其特征在于,采用随机梯度下降法优化概率编码器和概率解码器的参数。3. The method for identifying insulation defects in power equipment according to claim 1, wherein the parameters of the probabilistic encoder and the probabilistic decoder are optimized using a stochastic gradient descent method. 4.如权利要求1所述的电力设备绝缘缺陷识别方法,其特征在于,所述概率编码器采用下述公式表征:4. The electrical equipment insulation defect identification method as claimed in claim 1, wherein the probability encoder is characterized by the following formula: 式中z表示隐变量层的输出,其为局部放电数据的特征值;σenc表示比例参数;ε表示满足N(0,1)分布的随机参数;N(0,I)为标准正态分布;f表示激活函数;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;x为输入的局部放电数据。In the formula, z represents the output of the hidden variable layer, which is the eigenvalue of the partial discharge data; σ enc represents the proportional parameter; ε represents the random parameter satisfying the N(0,1) distribution; N(0,I) is the standard normal distribution ; f represents the activation function; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; x is the input partial discharge data. 5.如权利要求4所述的电力设备绝缘缺陷识别方法,其特征在于,所述概率解码器采用下述公式表征:5. The electrical equipment insulation defect identification method as claimed in claim 4, wherein the probabilistic decoder is characterized by the following formula: 式中,x表示输入的局部放电数据;z表示局部放电数据的特征值;p(x|z)表示条件概率分布函数;N表示正态分布函数;μdec表示概率似然参数,σdec表示比例参数;I表示偏移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的h2的比例参数;表示要求解的h2的平移量。In the formula, x represents the input partial discharge data; z represents the eigenvalue of the partial discharge data; p(x|z) represents the conditional probability distribution function; N represents the normal distribution function; μ dec represents the probability likelihood parameter, σ dec represents Scale parameter; I means offset; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the scale parameter of h2 to be solved ; Indicates the translation of h2 to be solved. 6.一种用于电力设备绝缘缺陷识别的AEVB自编码器,其特征在于,所述AEVB自编码器包括概率编码器和概率解码器;其中概率编码器被构造为:向其输入电力设备的局部放电信号,则其输出局部放电数据的特征值;所述概率解码器被构造为:其输入端输入概率编码器的输出,其输出绝缘缺陷类型。6. An AEVB self-encoder for identification of electrical equipment insulation defects, characterized in that, the AEVB self-encoder comprises a probability encoder and a probability decoder; wherein the probability encoder is structured to: input the Partial discharge signal, then it outputs the eigenvalue of partial discharge data; the probabilistic decoder is constructed as follows: its input terminal inputs the output of the probability encoder, and its output is the type of insulation defect. 7.如权利要求6所述的AEVB自编码器,其特征在于,所述AEVB自编码器具有一个输入层、一个输出层、一个隐变量层和四个中间层;其中一个输入层、两个中间层和一个隐变量层组成了所述概率编码器,所述隐变量层输出局部放电数据的特征值;两个中间层和一个输出层组成了所述概率解码器,所述输出层输出绝缘缺陷类型。7. AEVB self-encoder as claimed in claim 6, is characterized in that, described AEVB self-encoder has an input layer, an output layer, a latent variable layer and four intermediate layers; Wherein one input layer, two The middle layer and a hidden variable layer form the probability encoder, and the hidden variable layer outputs the characteristic value of the partial discharge data; two middle layers and an output layer form the probability decoder, and the output layer outputs the isolated defect type. 8.如权利要求6所述的AEVB自编码器,其特征在于,所述概率编码器和概率解码器的参数采用随机梯度下降法而进行优化。8. AEVB self-encoder as claimed in claim 6, is characterized in that, the parameter of described probability coder and probability decoder adopts stochastic gradient descent method to optimize. 9.如权利要求6所述的AEVB自编码器,其特征在于,所述概率编码器采用下述公式表征:9. AEVB self-encoder as claimed in claim 6, is characterized in that, described probabilistic encoder adopts following formula to represent: 式中z表示隐变量层的输出,其为局部放电数据的特征值;σenc表示比例参数;ε表示满足N(0,1)分布的随机参数;N(0,I)为标准正态分布;f表示激活函数;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;x为输入的局部放电数据。In the formula, z represents the output of the hidden variable layer, which is the eigenvalue of the partial discharge data; σ enc represents the proportional parameter; ε represents the random parameter satisfying the N(0,1) distribution; N(0,I) is the standard normal distribution ; f represents the activation function; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; x is the input partial discharge data. 10.如权利要求9所述的AEVB自编码器,其特征在于,所述概率解码器采用下述公式表征:10. AEVB self-encoder as claimed in claim 9, is characterized in that, described probability decoder adopts following formula to represent: 式中,x表示输入的局部放电数据;z表示局部放电数据的特征值;p(x|z)表示条件概率分布函数;N表示正态分布函数;μdec表示概率似然参数,σdec表示比例参数;I表示偏移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的比例参数;表示要求解的平移量;表示要求解的h2的比例参数;表示要求解的h2的平移量。In the formula, x represents the input partial discharge data; z represents the eigenvalue of the partial discharge data; p(x|z) represents the conditional probability distribution function; N represents the normal distribution function; μ dec represents the probability likelihood parameter, σ dec represents Scale parameter; I means offset; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the proportional parameter to be solved; Indicates the translation amount to be solved; Indicates the scale parameter of h2 to be solved ; Indicates the translation of h2 to be solved.
CN201910506970.1A 2019-06-12 2019-06-12 A kind of Electric Power Equipment Insulation defect identification method and AEVB self-encoding encoder Pending CN110161389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910506970.1A CN110161389A (en) 2019-06-12 2019-06-12 A kind of Electric Power Equipment Insulation defect identification method and AEVB self-encoding encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910506970.1A CN110161389A (en) 2019-06-12 2019-06-12 A kind of Electric Power Equipment Insulation defect identification method and AEVB self-encoding encoder

Publications (1)

Publication Number Publication Date
CN110161389A true CN110161389A (en) 2019-08-23

Family

ID=67628377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910506970.1A Pending CN110161389A (en) 2019-06-12 2019-06-12 A kind of Electric Power Equipment Insulation defect identification method and AEVB self-encoding encoder

Country Status (1)

Country Link
CN (1) CN110161389A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111275109A (en) * 2020-01-20 2020-06-12 国网山东省电力公司枣庄供电公司 Power equipment state data characteristic optimization method and system based on self-encoder
CN113506247A (en) * 2021-06-16 2021-10-15 国网湖北省电力有限公司孝感供电公司 Transmission line inspection defect detection method based on variational Bayesian inference

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108573225A (en) * 2018-03-30 2018-09-25 国网天津市电力公司电力科学研究院 A partial discharge signal pattern recognition method and system
CN109102012A (en) * 2018-07-30 2018-12-28 上海交通大学 A kind of defect identification method and system of local discharge signal
CN109188211A (en) * 2018-07-30 2019-01-11 上海交通大学 A kind of high voltage equipment insulation method for diagnosing faults and system
CN109856517A (en) * 2019-03-29 2019-06-07 国家电网有限公司 A kind of method of discrimination of extra-high voltage equipment Partial Discharge Detection data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108573225A (en) * 2018-03-30 2018-09-25 国网天津市电力公司电力科学研究院 A partial discharge signal pattern recognition method and system
CN109102012A (en) * 2018-07-30 2018-12-28 上海交通大学 A kind of defect identification method and system of local discharge signal
CN109188211A (en) * 2018-07-30 2019-01-11 上海交通大学 A kind of high voltage equipment insulation method for diagnosing faults and system
CN109856517A (en) * 2019-03-29 2019-06-07 国家电网有限公司 A kind of method of discrimination of extra-high voltage equipment Partial Discharge Detection data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋辉等: "基于变分贝叶斯自编码器的局部放电数据匹配方法", 《中国电机工程学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111275109A (en) * 2020-01-20 2020-06-12 国网山东省电力公司枣庄供电公司 Power equipment state data characteristic optimization method and system based on self-encoder
CN113506247A (en) * 2021-06-16 2021-10-15 国网湖北省电力有限公司孝感供电公司 Transmission line inspection defect detection method based on variational Bayesian inference

Similar Documents

Publication Publication Date Title
CN110059601B (en) An Intelligent Fault Diagnosis Method Based on Multi-feature Extraction and Fusion
CN110059357B (en) A method and system for fault classification detection of intelligent electric energy meter based on auto-encoding network
CN105738109B (en) Bearing fault classification diagnosis method based on rarefaction representation and integrated study
CN108021947B (en) A kind of layering extreme learning machine target identification method of view-based access control model
CN106124212B (en) Fault Diagnosis of Roller Bearings based on sparse coding device and support vector machines
CN107272644B (en) DBN Network Fault Diagnosis Method for Submersible Reciprocating Pumping Unit
CN107368809A (en) A kind of bearing fault sorting technique based on rarefaction representation and dictionary learning
CN103941131B (en) Based on the unbalanced SVM transformer faults detection method of reduced set yojan
CN106803101B (en) Odometer Fault Diagnosis Method Based on Hidden Markov Model
CN108334936A (en) Failure prediction method based on migration convolutional neural networks
CN109993105A (en) An Improved Adaptive Sparse Sampling Fault Classification Method
CN105891707A (en) Opening-closing fault diagnosis method for air circuit breaker based on vibration signals
Guo et al. Dynamic time warping using graph similarity guided symplectic geometry mode decomposition to detect bearing faults
CN109030790A (en) A kind of method for diagnosing fault of power transformer and device
CN110161389A (en) A kind of Electric Power Equipment Insulation defect identification method and AEVB self-encoding encoder
CN105973593A (en) Rolling bearing health evaluation method based on local characteristic scale decomposition-approximate entropy and manifold distance
CN106053988A (en) Inverter fault diagnosis system and method based on intelligent analysis
CN105137354B (en) One kind is based on neutral net electrical fault detection method
CN101303729A (en) A New Fingerprint Singularity Detection Method
CN117437933A (en) Feature cluster combination generation type learning-based unsupervised detection method for fault of voiceprint signal of transformer
CN116597231A (en) A Hyperspectral Anomaly Detection Method Based on Siamese Graph Attention Encoding
Wang et al. An enhancement deep feature extraction method for bearing fault diagnosis based on kernel function and autoencoder
CN114997225A (en) Asymmetric stacking sparse self-coding fault diagnosis method considering data characteristics
CN103728135A (en) Bearing fault feature extraction and diagnosis method of non-negative matrix factorization
CN109782158B (en) An Analog Circuit Diagnosis Method Based on Multilevel Classification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190823