[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110079749B - 一种铁基纳米晶-非晶软磁软磁合金及其制备方法与应用 - Google Patents

一种铁基纳米晶-非晶软磁软磁合金及其制备方法与应用 Download PDF

Info

Publication number
CN110079749B
CN110079749B CN201910456398.2A CN201910456398A CN110079749B CN 110079749 B CN110079749 B CN 110079749B CN 201910456398 A CN201910456398 A CN 201910456398A CN 110079749 B CN110079749 B CN 110079749B
Authority
CN
China
Prior art keywords
alloy
iron
soft magnetic
based nanocrystalline
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910456398.2A
Other languages
English (en)
Other versions
CN110079749A (zh
Inventor
丁松
王占勇
刘敏
王泽民
王斌君
周鼎
周冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI SIIC ZHENTAI CHEMICAL CO Ltd
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201910456398.2A priority Critical patent/CN110079749B/zh
Publication of CN110079749A publication Critical patent/CN110079749A/zh
Application granted granted Critical
Publication of CN110079749B publication Critical patent/CN110079749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

本发明公开了一种铁基纳米晶‑非晶软磁合金及其制备方法与应用。其制备方法包括:按照比例配置FeaBbSicCudNbePfCg合金,在真空感应炉或电弧炉中熔炼母合金,母合金铸锭在真空状态下通过电磁感应熔化喷射到旋转的铜辊上,快速凝固,得到铁基纳米晶‑非晶软磁合金。本发明相对于现有的合金体系,其省去了晶化退火工艺,且合金具有良好的力学性能和优异的软磁性能,其制备方法简单易行,适用于批量化生产。

Description

一种铁基纳米晶-非晶软磁软磁合金及其制备方法与应用
技术领域
本发明属于纳米晶-非晶软磁合金的新材料领域,具体涉及一种铁基纳米晶-非晶软磁合金及其制备方法与应用。
背景技术
Finemet合金是最典型的铁基纳米晶软磁合金,是以铁元素为主,加入少量的Nb、Cu、Si、B等元素所构成的合金,经快速凝固工艺形成一种非晶态材料,经热处理后获得直径为10-20nm的晶粒,弥散分布在非晶态的基体上。相对于硅钢、铁氧体和坡莫合金等软磁铁芯,铁基纳米晶合金铁芯具有高饱和磁感应强度、低矫顽力、低损耗(相当于硅钢片的1/3-1/5)、低激磁电流、良好的温度稳定性等优点,在电力电子领域具有显著的优势。以纳米晶合金为原料制成的变压器铁芯,其空载损耗与采用硅钢片的传统变压器相比下降75%,空载电流下降50%,负载损耗下降25%,被誉为21世纪新型绿色节能材料。国内10kV配电变压器年需量约5000万kVA,若全部采用非晶、纳米晶软磁合金变压器,一年可节电100亿kWh。随着能源日趋紧张以及全球环境恶化,节能减排成为全球最为关注的问题之一,在电力电子系统中,国家大力号召使用绿色节能环保材料,要求耗电量低,CO2排放量少,使用低损耗的软磁合金材料。
然而,由于软磁材料通常在晶态使用,而这些合金的晶态状态多数情况下比较脆,使用受到局限现有的非晶合金体系,都需要先进行快淬得到非晶材料,再进行晶化退火处理。
发明内容
本发明的目的在于提出制备一种铁基纳米晶-非晶软磁合金及其制备方法,相对于现有的合金体系,其省去了晶化退火工艺,且合金具有良好的力学性能和优异的软磁性能,其制备方法简单易行,适用于批量化生产。
为了达到上述目的,本发明提供了一种铁基纳米晶-非晶软磁合金的制备方法,其特征在于,包括以下步骤:
步骤1:按比例配置FeaBbSicCudNbePfCg合金,其中a为62~67;b为20~24;c为5~6;d为0.5~1;e为0.5~1.5;f为0~5;g为0~11,且a+b+c+d+e+f+g=100;
步骤2:将配好的的原料置于真空感应炉或电弧炉中熔炼母合金,得到母合金铸锭;
步骤3:将步骤2得到的母合金铸锭在真空状态下通过电磁感应熔化,并通过快淬法将熔化的金属喷射到旋转铜辊表面凝固,得到铁基纳米晶-非晶软磁合金。
优选地,所述步骤1中,所述的a为66.29;b为22.19;c为5.77;d为0.64;e为0.85;f为4.26;g为0;
或所述的a为65.77;b为22.03;c为5.72;d为0.63;e为0.85;f为3.24;g为1.76;
或所述的a为64.59;b为21.77;c为5.64;d为0.63;e为0.84;f为2.78;g为3.75;
或所述的a为63.79;b为21.55;c为5.60;d为0.62;e为0.83;f为2.06;g为5.55;
或所述的a为63.02;b为21.31;c为5.54;d为0.61;e为0.82;f为1.36;g为7.34;
或所述的a为61.45;b为20.92;c为5.44;d为0.60;e为0.81;f为0;g为10.78。
优选地,所述步骤1具体为:将质量分数不小于99.9%的Fe、Si、Cu、Nb和预合金Fe-B(Fe:B=80:20wt%)、Fe-P(Fe:P=82:18wt%)、Fe-C(Fe:C=95:5wt%)按照合金所需的比例进行配比。
优选地,所述步骤2具体为:将配好的的原料放入真空冷坩埚熔炼炉中,在真空度达到3×10-3Pa后充入氩气至-0.05MPa,充气完毕后,进行熔炼,反复熔炼3~4次,最后将熔液浇入锭模,得到母合金铸锭。
优选地,所述步骤3具体为:将步骤2得到的母合金铸锭装入设有喷嘴的高真空单辊快淬炉中,抽真空度达到3×10-3Pa后充入氩气至-0.05MPa,使用高频热感应加热的方式融化母合金,将熔融状态的母合金喷射到旋转的铜辊表面凝固,得到铁基纳米晶-非晶软磁合金。
更优选地,所述铜辊的辊面速度为30~40m/s,高真空单辊快淬炉的喷嘴到铜辊之间距离为0.5~1.2mm,喷嘴的喷注压强为0.03~0.05MPa。
本发明还提供了上述方法制备的铁基纳米晶-非晶软磁合金。
优选地,所述铁基纳米晶-非晶软磁合金为铁基纳米晶-非晶软磁合金带材,宽度为0.5~7mm,厚度为18~32μm。
优选地,所述铁基纳米晶-非晶软磁合金的饱和磁化强度为350~550emu/g。
本发明还提供了上述铁基纳米晶非晶合金在制备超微晶磁芯中的应用。
优选地,所述超微晶磁芯可作为断路器、变压器等电子、电路的软磁磁芯。
与现有技术相比,本发明的有益效果在于:
(1)本发明合金元素组成成分相对于现有的合金体系,其省去了晶化退火工艺,且合金具有优异的软磁性能。
(2)本发明合金元素组成成分中部分替代Nb的元素,进一步降低合金成本。
(3)本发明方法制备的铁基纳米晶非晶合金带材提高带材韧性和一致性,能充分发挥铁基纳米晶带材发挥其高饱和磁感应强度、低矫顽力、低损耗、低激磁电流、良好的温度稳定性等节能优势在非晶合金领域有良好的使用前景。
附图说明
图1是Fe64.59B21.77Si5.64Cu0.63Nb0.84P2.78C3.75合金带材的XRD图谱;
图2是Fe64.59B21.77Si5.64Cu0.63Nb0.84P2.78C3.75合金带材的磁滞回线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种铁基纳米晶非晶软磁合金带材Fe66.29B22.19Si5.77Cu0.64Nb0.85P4。26(at%),其制备方法具体如下:
步骤1:将质量分数不小于99.9%的Fe、Si、Cu、Nb和预合金Fe-B(Fe:B=80:20wt%下同)、Fe-P(Fe:P=82:18wt%)、Fe-C(Fe:C=95:5wt%)按照合金所需的比例进行配比;
步骤2:将配好的的原料放入真空冷坩埚熔炼炉中,在真空度达到3×10-3Pa后充入氩气至-0.05MPa,充气完毕后,进行熔炼,反复熔炼3~4次,使母合金熔炼均匀,最后将熔液浇入锭模,得到母合金铸锭;
步骤3:将步骤2得到的母合金铸锭(4~5g)装入嘴部留有喷嘴的石英管中,抽真空度达到3×10-3Pa后充入氩气,使用高频热感应加热的方式融化母合金,将熔融状态的母合金喷射在30m/s转速的铜辊表面,且高真空单辊快淬炉的喷嘴到铜辊之间距离为1.0mm,喷嘴的喷注压强为0.05MPa,制成铁基纳米晶-非晶软磁合金带材。
实施例2
一种铁基纳米晶非晶软磁合金带材Fe65.77B22.03Si5.72Cu0.63Nb0.85P3。24C1.76(at%),其制备方法具体如下:
步骤1:将质量分数不小于99.9%的Fe、Si、Cu、Nb和预合金Fe-B(Fe:B=80:20wt%下同)、Fe-P(Fe:P=82:18wt%)、Fe-C(Fe:C=95:5wt%)按照合金所需的比例进行配比;
步骤2:将配好的的原料放入真空冷坩埚熔炼炉中,在真空度达到3×10-3Pa后充入氩气至-0.05MPa,充气完毕后,进行熔炼,反复熔炼3~4次,使母合金熔炼均匀,最后将熔液浇入锭模,得到母合金铸锭;
步骤3:将步骤2得到的母合金铸锭(4~5g)装入嘴部留有喷嘴的石英管中,抽真空度达到3×10-3Pa后充入氩气,使用高频热感应加热的方式融化母合金,将熔融状态的母合金喷射在30m/s转速的铜辊表面,且高真空单辊快淬炉的喷嘴到铜辊之间距离为1.0mm,喷嘴的喷注压强为0.05MPa,铁基纳米晶-非晶软磁合金带材。
实施例3
一种铁基纳米晶非晶软磁合金带材Fe64.59B21.77Si5.64Cu0.63Nb0.84P2.78C3.75(at%),其制备方法包括如下:
步骤1:将质量分数不小于99.9%的Fe、Si、Cu、Nb和预合金Fe-B(Fe:B=80:20wt%下同)、Fe-P(Fe:P=82:18wt%)、Fe-C(Fe:C=95:5wt%)按照合金所需的比例进行配比;
步骤2:将配好的的原料放入真空冷坩埚熔炼炉中,在真空度达到3×10-3Pa后充入氩气至-0.05MPa,充气完毕后,进行熔炼,反复熔炼3~4次,使母合金熔炼均匀,最后将熔液浇入锭模,得到母合金铸锭;
步骤3:将步骤2得到的母合金铸锭(4~5g)装入嘴部留有喷嘴的石英管中,抽真空度达到3×10-3Pa后充入氩气,使用高频热感应加热的方式融化母合金,将熔融状态的母合金喷射在30m/s转速的铜辊表面,且高真空单辊快淬炉的喷嘴到铜辊之间距离为1.0mm,喷嘴的喷注压强为0.05MPa,铁基纳米晶-非晶软磁合金带材;
步骤4:将制备好的铁基纳米晶非晶合金带材利用XRD等对样品进行微观测试;
步骤5:将制备好的铁基纳米晶非晶合金带材利用VSM等对样品进行性能测试;
如图1所示,该合金部分晶化得到纳米晶结构,而部分为非晶结构。
如图2所示,该合金具有较高的饱和磁感应强度和较小的矫顽力等优异的软磁性能。
实施例4
一种铁基纳米晶非晶软磁合金带材Fe63.79B21.55Si5.60Cu0.62Nb0.83P2.06C5.55(at%),其制备方法具体如下:
步骤1:将质量分数不小于99.9%的Fe、Si、Cu、Nb和预合金Fe-B(Fe:B=80:20wt%下同)、Fe-P(Fe:P=82:18wt%)、Fe-C(Fe:C=95:5wt%)按照合金所需的比例进行配比;
步骤2:将配好的的原料放入真空冷坩埚熔炼炉中,在真空度达到3×10-3Pa后充入氩气至-0.05MPa,充气完毕后,进行熔炼,反复熔炼3~4次,使母合金熔炼均匀,最后将熔液浇入锭模,得到母合金铸锭;
步骤3:将步骤2得到的母合金铸锭(4~5g)装入嘴部留有喷嘴的石英管中,抽真空度达到3×10-3Pa后充入氩气,使用高频热感应加热的方式融化母合金,将熔融状态的母合金喷射在30m/s转速的铜辊表面,且高真空单辊快淬炉的喷嘴到铜辊之间距离为1.0mm,喷嘴的喷注压强为0.05MPa,铁基纳米晶-非晶软磁合金带材。
实施例5
一种铁基纳米晶非晶软磁合金带材Fe63.02B21.31Si5.54Cu0.61Nb0.82P1.36C7.34(at%),其制备方法具体如下:
步骤1:将质量分数不小于99.9%的Fe、Si、Cu、Nb和预合金Fe-B(Fe:B=80:20wt%下同)、Fe-P(Fe:P=82:18wt%)、Fe-C(Fe:C=95:5wt%)按照合金所需的比例进行配比;
步骤2:将配好的的原料放入真空冷坩埚熔炼炉中,在真空度达到3×10-3Pa后充入氩气至-0.05MPa,充气完毕后,进行熔炼,反复熔炼3~4次,使母合金熔炼均匀,最后将熔液浇入锭模,得到母合金铸锭;
步骤3:将步骤2得到的母合金铸锭(4~5g)装入嘴部留有喷嘴的石英管中,抽真空度达到3×10-3Pa后充入氩气,使用高频热感应加热的方式融化母合金,将熔融状态的母合金喷射在30m/s转速的铜辊表面,且高真空单辊快淬炉的喷嘴到铜辊之间距离为1.0mm,喷嘴的喷注压强为0.05MPa,铁基纳米晶-非晶软磁合金带材。
实施例6
一种铁基纳米晶非晶软磁合金带材Fe61.45B20.92Si5.44Cu0.60Nb0.81C10.78(at%),其制备方法具体如下:
步骤1:将质量分数不小于99.9%的Fe、Si、Cu、Nb和预合金Fe-B(Fe:B=80:20wt%下同)、Fe-P(Fe:P=82:18wt%)、Fe-C(Fe:C=95:5wt%)按照合金所需的比例进行配比;
步骤2:将配好的的原料放入真空冷坩埚熔炼炉中,在真空度达到3×10-3Pa后充入氩气至-0.05MPa,充气完毕后,进行熔炼,反复熔炼3~4次,使母合金熔炼均匀,最后将熔液浇入锭模,得到母合金铸锭;
步骤3:将步骤2得到的母合金铸锭(4~5g)装入嘴部留有喷嘴的石英管中,抽真空度达到3×10-3Pa后充入氩气,使用高频热感应加热的方式融化母合金,将熔融状态的母合金喷射在30m/s转速的铜辊表面,且高真空单辊快淬炉的喷嘴到铜辊之间距离为1.0mm,喷嘴的喷注压强为0.05MPa,铁基纳米晶-非晶软磁合金带材。

Claims (3)

1.一种铁基纳米晶-非晶软磁合金的制备方法,其特征在于,包括以下步骤:
步骤1:按比例配置FeaBbSicCudNbePfCg合金,所述按比例配置FeaBbSicCudNbePfCg合金包括:将质量分数不小于99.9%的Fe、Si、Cu、Nb和预合金Fe-B、Fe-P、Fe-C按照合金所需的比例进行配比;Fe-B中Fe与B的质量比为80:20,Fe-P中Fe与P的质量比为82:18,Fe-C中Fe与C的质量比为95:5;
其中,所述的a为66.29;b为22.19;c为5.77;d为0.64;e为0.85;f为4.26;g为0;
或所述的a为65.77;b为22.03;c为5.72;d为0.63;e为0.85;f为3.24;g为1.76;
或所述的a为64.59;b为21.77;c为5.64;d为0.63;e为0.84;f为2.78;g为3.75;
或所述的a为63.79;b为21.55;c为5.60;d为0.62;e为0.83;f为2.06;g为5.55;
或所述的a为63.02;b为21.31;c为5.54;d为0.61;e为0.82;f为1.36;g为7.34;
或所述的a为61.45;b为20.92;c为5.44;d为0.60;e为0.81;f为0;g为10.78;
步骤2:将配好的的原料放入真空冷坩埚熔炼炉中,在真空度达到3×10-3Pa后充入氩气至-0.05MPa,充气完毕后,进行熔炼,反复熔炼3~4次,最后将熔液浇入锭模,得到母合金铸锭;
步骤3:将步骤2得到的母合金铸锭装入设有喷嘴的高真空单辊快淬炉中,抽真空度达到3×10-3Pa后充入氩气至-0.05MPa,使用高频热感应加热的方式融化母合金,将熔融状态的母合金喷射到旋转的铜辊表面凝固,得到铁基纳米晶-非晶软磁合金;其中,铜辊的辊面速度为30~40m/s,高真空单辊快淬炉的喷嘴到铜辊之间距离为0.5~1.2mm,喷嘴的喷注压强为0.03~0.05MPa。
2.权利要求1所述方法制备的铁基纳米晶-非晶软磁合金。
3.权利要求2所述的铁基纳米晶-非晶软磁合金在制备超微晶磁芯中的应用。
CN201910456398.2A 2019-05-29 2019-05-29 一种铁基纳米晶-非晶软磁软磁合金及其制备方法与应用 Active CN110079749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910456398.2A CN110079749B (zh) 2019-05-29 2019-05-29 一种铁基纳米晶-非晶软磁软磁合金及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910456398.2A CN110079749B (zh) 2019-05-29 2019-05-29 一种铁基纳米晶-非晶软磁软磁合金及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110079749A CN110079749A (zh) 2019-08-02
CN110079749B true CN110079749B (zh) 2021-01-22

Family

ID=67422467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910456398.2A Active CN110079749B (zh) 2019-05-29 2019-05-29 一种铁基纳米晶-非晶软磁软磁合金及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110079749B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110918911B (zh) * 2019-11-19 2022-04-22 华南理工大学 一种铁基系列非晶合金带材及其制备方法与在降解偶氮染料废水中的应用
CN112853234B (zh) * 2020-12-31 2022-03-08 中国科学院宁波材料技术与工程研究所 一种梯度结构非晶纳米晶软磁合金及其制备方法
CN113025906A (zh) * 2021-03-05 2021-06-25 江西大有科技有限公司 铁基纳米晶合金材料及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650999A (zh) * 2009-08-13 2010-02-17 太原科技大学 一种铁基非晶或纳米晶软磁合金及其制备方法
CN104073749B (zh) * 2014-06-18 2017-03-15 安泰科技股份有限公司 一种元素分布均匀的铁基非晶软磁合金及其制备方法
CN105624588B (zh) * 2015-12-30 2017-12-12 安泰科技股份有限公司 一种电磁屏蔽用软磁合金及其制备方法

Also Published As

Publication number Publication date
CN110079749A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
Takenaka et al. Industrialization of nanocrystalline Fe–Si–B–P–Cu alloys for high magnetic flux density cores
CN105047348B (zh) 一种非晶纳米晶软磁合金的电流互感器铁芯及其制备方法
CN106319398B (zh) 一种稀土掺杂的铁基非晶厚带及其制备方法
CN104934179A (zh) 强非晶形成能力的铁基纳米晶软磁合金及其制备方法
CN110079749B (zh) 一种铁基纳米晶-非晶软磁软磁合金及其制备方法与应用
CN109234628B (zh) 一种低损耗纳米晶软磁合金的制备方法
CN102808140A (zh) 高饱和磁感应强度铁基纳米晶软磁合金材料及其制备方法
CN105861959B (zh) 智能电表用低角差纳米晶软磁合金磁芯及其制备方法
CN102412045B (zh) 铁基纳米晶软磁合金
CN103489555A (zh) 一种铁基纳米晶软磁合金及制备方法
CN106373690A (zh) 一种具有良好工艺性能、高饱和磁感应强度的纳米晶软磁合金及其制备方法
CN103714928B (zh) 一种铈铁基快淬永磁粉及其制备方法
CN102049515B (zh) 铁硅铝软磁粉末的制造方法
Wang et al. Soft magnetic properties regulation of FeSiBC amorphous powders/CIP magnetic powder core with single and double-layer core–shell structure
CN101792890B (zh) 一种超高饱和磁感应强度铁基纳米晶薄带
CN103290342A (zh) Fe基非晶合金及其制备方法
CN102304680A (zh) 一种低成本且具有优异软磁性能的铁基非晶/纳米晶薄带及其制备方法
CN115732160A (zh) 一种全金属铁基纳米晶软磁合金及其制备方法和磁芯
CN114694908A (zh) 一种耐低温纳米晶软磁合金铁芯、制造方法及应用
CN116344142B (zh) 一种铁基纳米晶软磁合金及其制备方法和应用
CN104439234B (zh) 一种稀土元素掺杂的镍硅铝软磁材料的制备方法
CN108950434B (zh) 一种激磁功率小的铁基非晶带材及其制备方法
CN110938785B (zh) 一种具有软磁性能的Co基块体非晶合金
CN100372033C (zh) 漏电保护器用抗直流偏磁互感器磁芯及其制造方法
HUI et al. Development of Fe-based amorphous and nanocrystalline alloys with high saturation flux density

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240904

Address after: 200000, No. 30 Shungong Road, Fengxian District, Shanghai

Patentee after: SHANGHAI SIIC ZHENTAI CHEMICAL CO.,LTD.

Country or region after: China

Address before: 200235 No. 120, Xuhui District, Shanghai, Caobao Road

Patentee before: SHANGHAI INSTITUTE OF TECHNOLOGY

Country or region before: China