CN116874607A - H9 subtype avian influenza recombinant chimeric vaccine and preparation method thereof - Google Patents
H9 subtype avian influenza recombinant chimeric vaccine and preparation method thereof Download PDFInfo
- Publication number
- CN116874607A CN116874607A CN202310682630.0A CN202310682630A CN116874607A CN 116874607 A CN116874607 A CN 116874607A CN 202310682630 A CN202310682630 A CN 202310682630A CN 116874607 A CN116874607 A CN 116874607A
- Authority
- CN
- China
- Prior art keywords
- protein
- vaccine
- influenza
- avian influenza
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/55—Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
- A61K2039/552—Veterinary vaccine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/70—Multivalent vaccine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16151—Methods of production or purification of viral material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/106—Plasmid DNA for vertebrates
- C12N2800/107—Plasmid DNA for vertebrates for mammalian
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Virology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Pulmonology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
技术领域Technical field
本发明属于免疫学领域,具体涉及一种H9亚型禽流感重组嵌合疫苗及其制备方法。The invention belongs to the field of immunology, and specifically relates to a recombinant chimeric vaccine for H9 subtype avian influenza and a preparation method thereof.
背景技术Background technique
H9N2亚型禽流感病毒(Avian influenza virus,AIV)按照致病性高低来分属于低致病性AIV,但因为其宿主范围广泛,传播速度快,流行时间长,极易与其他细菌或病毒协同感染家禽导致其生产性能降低,严重影响了禽类带来的经济价值。H9N2亚型禽流感病毒(AIV)在世界范围内广泛分布,一般分为北美谱系和欧亚谱系两大谱系。具体而言,欧亚谱系进一步繁衍成各种病毒簇,以BJ/94-like或Y280-like,G1-like、Y439-like、F/98-like等为代表。H9N2 subtype avian influenza virus (AIV) is classified as a low-pathogenic AIV according to its pathogenicity. However, because of its wide host range, fast transmission speed, and long epidemic time, it is easy to cooperate with other bacteria or viruses. Infected poultry leads to reduced production performance, seriously affecting the economic value of poultry. H9N2 subtype avian influenza virus (AIV) is widely distributed around the world and is generally divided into two lineages: North American lineage and Eurasian lineage. Specifically, the Eurasian lineage further multiplied into various virus clusters, represented by BJ/94-like or Y280-like, G1-like, Y439-like, F/98-like, etc.
在中国,主要在鹌鹑中传播的G1-like在南方地区具有地理优势,而在鸡群中流行的BJ/94-like和F/98-like分别在北部和东部地区占主导地位。近年来最新的流行病学研究也提示S基因型占比最高。与其他基因型相比,G57基因型(等同于S基因型)具有更强的传染性,自2010年以来在中国一直占主导地位,对家禽养殖造成严重损害。野禽中含有的AIV往往在跨物种传播时具有高致病性。研究发现我国新出现的并造成人类感染的H7N9、H10N8和H5N6亚型AIV的6个内部基因均来自H9N2亚型AIV,这也为HPAIV的爆发提供了有力的环境。因此,我们需要足够重视H9N2亚型AIV的流行潜力,研发有效的H9N2亚型AIV疫苗,有效防控该病毒的流行,为我们的公共卫生安全提供保障。In China, G1-like, which is mainly spread among quail, has a geographical advantage in the southern region, while BJ/94-like and F/98-like, which are prevalent in chicken flocks, are dominant in the northern and eastern regions respectively. The latest epidemiological studies in recent years also suggest that the S genotype accounts for the highest proportion. Compared with other genotypes, the G57 genotype (equivalent to the S genotype) is more contagious and has been dominant in China since 2010, causing serious damage to poultry farming. AIV contained in wild birds is often highly pathogenic when transmitted across species. Research has found that six internal genes of the H7N9, H10N8 and H5N6 subtypes of AIV that have emerged in my country and caused human infection are all derived from the H9N2 subtype of AIV, which also provides a powerful environment for the outbreak of HPAIV. Therefore, we need to pay enough attention to the epidemic potential of H9N2 subtype AIV, develop effective H9N2 subtype AIV vaccine, effectively prevent and control the epidemic of this virus, and provide guarantee for our public health security.
许多国家都对H9N2 AIV进行了监测,特别是在中国和其他亚洲国家。自2016年以后,我国多数研究团队在中国23个省、市、民族自治区的37个城市采样数万份,经二代测序(NGS)鉴定HxNy亚型的菌株,发现H9N2是优势亚型。血清学调查报告也显示H9N2病毒抗体在一般人群中的阳性率为1.3%~1.4%,在零售家禽工人中的阳性率超过15%,证实了人类感染H9N2病毒,发现活禽市场(LPM)是人感染禽流感病毒的重要暴露风险因素。H9N2 AIV is monitored in many countries, especially in China and other Asian countries. Since 2016, most research teams in my country have sampled tens of thousands of samples from 37 cities in 23 provinces, municipalities, and ethnic autonomous regions in China. They have identified strains of the HxNy subtype through next-generation sequencing (NGS) and found that H9N2 is the dominant subtype. Serological survey reports also show that the positive rate of H9N2 virus antibodies in the general population is 1.3% to 1.4%, and the positive rate among retail poultry workers exceeds 15%, confirming human infection with the H9N2 virus, and found that live poultry markets (LPM) are Important exposure risk factors for human infection with avian influenza viruses.
从2013年到2018年收集的最新样本,将H9N2分离株的系统发育和抗原分析相结合,发现最近的分离株主要聚集在subgroup II和subgroup III中,与疫苗株(主要位于subgroup I)相距甚远。分析不同抗原簇HA蛋白的同源性,以评估可能导致抗原漂移的氨基酸残基。发现在疫苗簇病毒中有11个氨基酸残基是保守的,但在subgroup II和subgroupIII谱系病毒中发生了突变;而在subgroup II和subgroup III之间的HA蛋白中有10个突变的氨基酸残基,这些突变的氨基酸可能潜在影响H9N2 AIV灭活疫苗的保护效力。The most recent samples collected from 2013 to 2018, combining phylogeny and antigenic analysis of H9N2 isolates, found that the most recent isolates clustered mainly in subgroup II and subgroup III, far away from the vaccine strains (mainly in subgroup I) Far. Analyze the homology of HA proteins from different antigenic clusters to evaluate amino acid residues that may contribute to antigenic drift. It was found that 11 amino acid residues are conserved among vaccine cluster viruses but mutated in subgroup II and subgroup III lineage viruses; and 10 mutated amino acid residues are found in the HA protein between subgroup II and subgroup III. , these mutated amino acids may potentially affect the protective efficacy of the H9N2 AIV inactivated vaccine.
目前禽流感全病毒灭活疫苗是世界上应用最为广泛的疫苗,接种疫苗也是预防禽流感的主要措施。邵华斌等(邵华斌,温国元,罗玲,等.表达H9亚型禽流感病毒截短HA蛋白的重组新城疫耐热疫苗株及制备方法,2016.)选取了HA蛋白中具有强免疫原性的HA1区域(1-1041nt),插入到新城疫病毒耐热载体中,可针对性地增强疫苗的免疫保护效果,并极大降低对冷链系统的依赖,可用于制备H9禽流感、新城疫二联耐热活疫苗,文中也测定了重组病毒的致病性,保持了亲本株的低毒特性,外源基因的插入并没有改变重组病毒的致病性。Krammer等(Krammer F,et al.Chimeric hemagglutinin influenza virus vaccineconstructs elicit broadly protective stalk-specific antibodies.JVirol.2013Jun;87(12):6542-50.;Krammer F,et al.H3stalk-based chimerichemagglutinin influenza virus constructs protect mice from H7N9 challenge.JVirol.2014Feb;88(4):2340-3.)用不同流行季甲型H1N1流感病毒的H1茎部进行嵌合,再分别用H5、H6及H9流感病毒头部与该嵌合茎部构建出cHAs疫苗。研究显示,连续接受该疫苗免疫的小鼠在H5N1、H6N1及H7N9等多种病毒攻击后存活率均为100%,显著高于其各对照组,且产生了高滴度的茎部反应性抗体;其团队先后用头部为H9、H5、H6的cHA对雪貂进行免疫,在接种头部为H5、H6的cHA后,雪貂体内对大流行的H1N1病毒的血清反应性分别较前1次提高4和8倍。At present, the whole-virus inactivated avian influenza vaccine is the most widely used vaccine in the world, and vaccination is also the main measure to prevent avian influenza. Shao Huabin et al. (Shao Huabin, Wen Guoyuan, Luo Ling, et al. Recombinant Newcastle disease heat-resistant vaccine strain expressing truncated HA protein of H9 subtype avian influenza virus and its preparation method, 2016.) selected HA1, which has strong immunogenicity among the HA proteins region (1-1041nt), inserted into the heat-resistant vector of Newcastle disease virus, which can enhance the immune protection effect of the vaccine in a targeted manner and greatly reduce the dependence on the cold chain system. It can be used to prepare H9 avian influenza and Newcastle disease double combinations. For the heat-resistant live vaccine, the pathogenicity of the recombinant virus was also measured in the article and it maintained the low-virulence characteristics of the parent strain. The insertion of foreign genes did not change the pathogenicity of the recombinant virus. Krammer F, et al. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. JVirol. 2013Jun; 87(12):6542-50.; Krammer F, et al. H3 stalk-based chimeric hemagglutinin influenza virus constructs protect mice from H7N9 challenge.JVirol.2014Feb; 88(4):2340-3.) The H1 stems of influenza A H1N1 viruses of different epidemic seasons were used for chimerization, and then the heads of H5, H6 and H9 influenza viruses were used to chimerize the Chimeric stems construct cHAs vaccines. Studies have shown that mice that were continuously immunized with the vaccine had a survival rate of 100% after being challenged by various viruses such as H5N1, H6N1 and H7N9, which was significantly higher than that of the control groups, and they produced high titers of stem-reactive antibodies. ; His team successively immunized ferrets with cHAs with H9, H5, and H6 heads. After inoculation with cHAs with H5 and H6 heads, the ferrets' serum reactivity to the pandemic H1N1 virus was higher than before. times increased by 4 and 8 times.
常见的禽流感疫苗有全病毒灭活疫苗、减毒活疫苗、基因工程亚单位疫苗、基因重组活载体疫苗、核酸疫苗、RNA复制子疫苗、通用流感疫苗、转基因植物疫苗等,但目前养殖场依然使用禽流感灭活疫苗来预防H9亚型禽流感病毒对家禽的感染,但由于其免疫压力造成的抗原漂移,H9亚型禽流感病毒还在不断的变异并流行。H9N2亚型禽流感病毒还活跃参与其他亚型流感病毒内基因重排,产生H5N2、H6N1、H7N7、H7N9、H10N8等新型流感病毒威胁着人类健康。2013年暴发的H7N9流感就是在鸡体内混合的结果,其外部基因来自于H7亚型流感病毒,而其内部基因则来自H9N2亚型的流感病毒。Common avian influenza vaccines include whole-virus inactivated vaccines, live attenuated vaccines, genetically engineered subunit vaccines, recombinant live vector vaccines, nucleic acid vaccines, RNA replicon vaccines, universal influenza vaccines, genetically modified plant vaccines, etc., but at present, breeding farms Inactivated avian influenza vaccines are still used to prevent infection of poultry by H9 subtype avian influenza viruses. However, due to antigenic drift caused by immune pressure, H9 subtype avian influenza viruses continue to mutate and become prevalent. The H9N2 subtype avian influenza virus also actively participates in gene rearrangements within other subtypes of influenza viruses, producing new influenza viruses such as H5N2, H6N1, H7N7, H7N9, and H10N8, which threaten human health. The H7N9 influenza that broke out in 2013 was the result of mixing in chickens. Its external genes came from the H7 subtype influenza virus, and its internal genes came from the H9N2 subtype influenza virus.
此外,灭活疫苗在生产过程中存在鸡胚量大、鸡胚早死率高、平均单胚收获量小、效价不稳定、成本很高等问题。灭活苗的应用无法区分自然感染鸡和疫苗接种鸡,从而干扰禽流感疫情监测和流行病学的调查;减毒活疫苗可能会与别的流感病毒进行基因重排得到毒力恢复的重配株病毒,还发现冷适应减毒活疫苗在免疫缺陷者中使用有致病风险;基因工程疫苗被发现抗体持续时间短、成本高等缺点;重组活载体疫苗对于已经免疫过的鸡群效力只能持续很短的时间,对于已接种过或感染过病毒载体的鸡群使用有一定限制;研究人员发现核酸疫苗的载体多带有抗生素基因可能会给细菌性疾病的预防和治疗带来困难,而且核酸疫苗的内表达效率不高。理想的禽流感病毒疫苗应当是对家禽具有高度的安全性、可以区分禽流感病毒自然感染禽和疫苗免疫禽、生产安全性好、持续时间长等特点,目前还没有任何一种疫苗同时具备以上特点。流感通用疫苗的设计理念是在禽流感大流行阶段或在病毒过渡变异阶段,对各种流感亚型病毒都有效果。In addition, the production process of inactivated vaccines has problems such as a large amount of chicken embryos, a high premature mortality rate of chicken embryos, a small average harvest of single embryos, unstable potency, and high cost. The application of inactivated vaccines cannot distinguish between naturally infected chickens and vaccinated chickens, thus interfering with avian influenza epidemic surveillance and epidemiological investigations; live attenuated vaccines may undergo genetic rearrangement with other influenza viruses to achieve reassortment that restores virulence. strain of the virus, it was also found that cold-adapted live attenuated vaccines have disease risks when used in immunodeficient people; genetically engineered vaccines were found to have shortcomings such as short antibody duration and high cost; recombinant live vector vaccines are only effective for immunized chickens It lasts for a short time, and there are certain restrictions on the use of chickens that have been vaccinated or infected with viral vectors; researchers have found that the vectors of nucleic acid vaccines often contain antibiotic genes, which may cause difficulties in the prevention and treatment of bacterial diseases, and The internal expression efficiency of nucleic acid vaccines is not high. An ideal avian influenza vaccine should be highly safe for poultry, be able to differentiate between naturally infected poultry and vaccine-immune poultry, have good production safety, and have a long duration. Currently, there is no vaccine that has the above characteristics at the same time. Features. The design concept of the universal influenza vaccine is to be effective against various influenza subtypes during the avian influenza pandemic stage or during the transitional mutation stage of the virus.
此外,不断的进行疫苗免疫也会不同程度导致抗原变异发生免疫逃逸,在临床上也出现灭活疫苗毒株更替速度赶不上病毒抗原变异的步伐,导致了抗原逃逸株的持续流行与变异,这样禽流感病毒不仅没有得到有效的控制,还出现了病毒持续流行、传播范围扩大的趋势。In addition, continuous vaccine immunization will lead to immune escape due to antigenic variation to varying degrees. Clinically, it has also been found that the replacement rate of inactivated vaccine strains cannot keep up with the pace of viral antigenic variation, resulting in the continued prevalence and mutation of antigenic escape strains. In this way, poultry Not only has the influenza virus not been effectively controlled, there has also been a trend of the virus continuing to spread and its scope of transmission expanding.
因此对抗原变异毒株或不同亚型禽流感病毒有交叉免疫保护效果的疫苗研发和评价对H9亚型病毒的预防和控制非常必要。Therefore, the development and evaluation of vaccines with cross-immune protective effects against antigenic variant strains or different subtypes of avian influenza viruses are very necessary for the prevention and control of H9 subtype viruses.
发明内容Contents of the invention
本发明基于流感表面关键抗原HA的三聚体哺乳动物表达形式蛋白,构建了新型重组蛋白疫苗。即通过保留H9亚型禽流感主要保护性抗原HA骨架中的头部结构,同时将疫苗H9的颈部区替换为经过结构生物学设计改造后的具有广谱免疫保护的流感HA颈部区,从而构建成为重组嵌合HA(chimeric HA)。该重组嵌合HA与天然H9三聚体蛋白在结构、分子量上保持一致。本发明的嵌合苗打破头部结构的优势,增强针对保守茎部区域的免疫反应,将免疫应答集中至免疫亚优势的茎部区域,共同作用激发产生更多的保护性抗体。The present invention constructs a new recombinant protein vaccine based on the trimeric mammalian expression protein of the key influenza surface antigen HA. That is, by retaining the head structure in the HA skeleton of the main protective antigen of H9 subtype avian influenza, and at the same time replacing the neck area of vaccine H9 with the influenza HA neck area with broad-spectrum immune protection that has been designed and modified through structural biology, Thus, recombinant chimeric HA (chimeric HA) was constructed. The recombinant chimeric HA is consistent in structure and molecular weight with the natural H9 trimer protein. The chimeric vaccine of the present invention breaks the advantages of the head structure, enhances the immune response to the conserved stem region, concentrates the immune response to the immunologically sub-dominant stem region, and works together to stimulate the production of more protective antibodies.
因此本发明提供一种H9亚型禽流感重组嵌合疫苗,其包括H9亚型禽流感抗原HA骨架中的头部区域与具有广谱免疫保护的流感HA颈部区域。优选地,从ATG开始计算第1-921位为HA头部区;922-1548位为HA颈部区,其中922-957位为颈部区活性肽结构。Therefore, the present invention provides a H9 subtype avian influenza recombinant chimeric vaccine, which includes the head region in the H9 subtype avian influenza antigen HA skeleton and the influenza HA neck region with broad-spectrum immune protection. Preferably, positions 1-921 calculated from ATG are the HA head region; positions 922-1548 are the HA neck region, of which positions 922-957 are the active peptide structure of the neck region.
本发明首先提供一种H9亚型禽流感重组嵌合疫苗抗原蛋白,其在保留H9亚型禽流感抗原HA骨架中的头部结构区域的基础上,将其颈部区替换为具有广谱免疫保护的流感HA颈部区域而得到。The present invention first provides an H9 subtype avian influenza recombinant chimeric vaccine antigen protein, which retains the head structural region in the H9 subtype avian influenza antigen HA skeleton and replaces its neck region with a broad-spectrum immune Protection is obtained from the influenza HA neck area.
具体地,H9亚型禽流感抗原HA骨架中的头部结构区域具体是从蛋白氨基酸序列第1-307位;流感HA颈部区域具体从HA蛋白氨基酸序列的ATG开始的第308-516位。Specifically, the head structural region in the HA skeleton of the H9 subtype avian influenza antigen is specifically from positions 1 to 307 of the protein amino acid sequence; the influenza HA neck region is specifically from positions 308 to 516 starting from ATG of the HA protein amino acid sequence.
优选地,H9亚型禽流感抗原HA骨架中的头部结构区域氨基酸序列如SEQ ID NO:1所示。Preferably, the amino acid sequence of the head structure region in the HA skeleton of the H9 subtype avian influenza antigen is shown in SEQ ID NO: 1.
另外优选地,具有广谱免疫保护的流感HA颈部区域的氨基酸序列如SEQ ID NO:2所示。In addition, preferably, the amino acid sequence of the influenza HA neck region with broad-spectrum immune protection is shown in SEQ ID NO: 2.
本发明由此提供编码所述嵌合疫苗抗原蛋白的核酸。The invention thus provides nucleic acids encoding said chimeric vaccine antigen proteins.
优选地,H9亚型禽流感抗原HA骨架中的头部结构区域核苷酸序列为HA核苷酸序列的第1-921位;流感HA颈部区域从HA核苷酸序列的第922-1548位。Preferably, the nucleotide sequence of the head structure region in the HA skeleton of the H9 subtype avian influenza antigen is from 1 to 921 of the HA nucleotide sequence; the influenza HA neck region is from 922 to 1548 of the HA nucleotide sequence. Bit.
更优选地,H9亚型禽流感抗原HA骨架中的头部结构区域核苷酸序列如SEQ ID NO:3所示。More preferably, the nucleotide sequence of the head structure region in the H9 subtype avian influenza antigen HA skeleton is shown in SEQ ID NO: 3.
同时优选地,流感HA颈部区域的核苷酸序列如SEQ ID NO:4所示。At the same time, preferably, the nucleotide sequence of the influenza HA neck region is shown in SEQ ID NO: 4.
进一步优选地,H9嵌合H1蛋白的全长编码核苷酸序列如SEQ ID NO:5所示。Further preferably, the full-length coding nucleotide sequence of the H9 chimeric H1 protein is shown in SEQ ID NO: 5.
本发明由此还提供含有所述核酸的表达载体,优选地出发载体为PCAGGS载体。The present invention thus also provides an expression vector containing the nucleic acid. Preferably, the starting vector is a PCAGGS vector.
本发进一步提供一种H9亚型禽流感重组嵌合疫苗的制备方法,其包括如下步骤:The present invention further provides a method for preparing a recombinant chimeric vaccine for H9 subtype avian influenza, which includes the following steps:
第一步:将全序列合成的具有黏性末端(具体的,黏性末端为EcoRⅠ和XhoⅠ)的所述的核酸、NA基因核酸片段(优选地,两者融合不同的纯化标签肽)分别连接入经过双酶切(相应的EcoRⅠ和XhoⅠ)后的载体中(具体地,出发载体为PCAGGS载体),构建成重组表达载体。The first step: connect the nucleic acid and NA gene nucleic acid fragment (preferably, the two are fused with different purification tag peptides) with sticky ends (specifically, the sticky ends are EcoRⅠ and XhoⅠ) synthesized in the entire sequence. into the vector after double enzyme digestion (corresponding EcoRI and XhoI) (specifically, the starting vector is the PCAGGS vector) to construct a recombinant expression vector.
第二步:将质粒HA和NA按照1:1的比例共转染293T哺乳细胞,分泌性表达,收取上清液,根据纯化标签通过亲和层析的方法纯化得到目的HA蛋白。Step 2: Co-transfect plasmids HA and NA into 293T mammalian cells at a ratio of 1:1 for secretory expression, collect the supernatant, and purify the target HA protein through affinity chromatography according to the purification tag.
第三步:将HA蛋白与佐剂按照比例(优选为体积1:1)进行乳化制备成重组嵌合疫苗。Step 3: emulsify HA protein and adjuvant in proportion (preferably 1:1 in volume) to prepare a recombinant chimeric vaccine.
本发明最后尤其提供一种H9亚型禽流感重组嵌合疫苗,其包括所述嵌合疫苗抗原蛋白,任选地还包括药学可接受的助剂。Finally, the present invention particularly provides a recombinant chimeric vaccine for H9 subtype avian influenza, which includes the chimeric vaccine antigen protein and optionally pharmaceutically acceptable auxiliaries.
本发明设计了一套获得高纯度、高表达、有活性的H9嵌合H1蛋白的方法,成功实现了H9嵌合H1疫苗对禽流感病毒H9N2亚型毒株入侵的保护性。本发明H9嵌合H1蛋白具有表达产量高,成本简单,工艺安全,能有效应对禽流感H9N2亚型毒株的传播,为实现制备高效的通用型的禽流感亚单位疫苗提供支撑。The present invention designs a set of methods to obtain high-purity, high-expression, and active H9 chimeric H1 protein, and successfully realizes the protection of the H9 chimeric H1 vaccine against the invasion of the H9N2 subtype of avian influenza virus. The H9 chimeric H1 protein of the present invention has high expression yield, simple cost and safe process, can effectively respond to the spread of avian influenza H9N2 subtype strains, and provides support for the preparation of efficient universal avian influenza subunit vaccines.
附图说明Description of the drawings
图1典型的H9嵌合H1蛋白分子筛图谱和SDS-PAGE胶图,箭头所指为蛋白marker72KD。Figure 1 Typical molecular sieve pattern and SDS-PAGE gel pattern of H9 chimeric H1 protein. The arrow points to the protein marker72KD.
图2H1N1毒株(A)以及H3N2毒株(B)对不同组别的血凝抑制试验结果。Figure 2 Hemagglutination inhibition test results of H1N1 strain (A) and H3N2 strain (B) in different groups.
图3A和图3B为HI抗体检测结果。其中,图3A试验组别:1,未免疫组血清;2,阳性对照组(灭活的禽流感病毒H9亚型A/Chicken/Hebei/G/2012(H9N2株))血清;3,试验组H9嵌合H1 ISA 71疫苗组血清;4,单佐剂对照组血清。图3B试验组别设置:1,未免疫组血清;2,阳性对照组(商品化的普莱柯H9灭活苗032101001A)血清;3,试验组H9嵌合H1白油疫苗组血清;Figure 3A and Figure 3B show the HI antibody detection results. Among them, Figure 3A test groups: 1, serum from the unimmunized group; 2, serum from the positive control group (inactivated avian influenza virus H9 subtype A/Chicken/Hebei/G/2012 (H9N2 strain)); 3, test group H9 chimeric H1 ISA 71 vaccine group serum; 4, single adjuvant control group serum. Figure 3B Test group settings: 1. Serum from the unimmunized group; 2. Serum from the positive control group (commercial Pleco H9 inactivated vaccine 032101001A); 3. Serum from the test group H9 chimeric H1 white oil vaccine group;
图4A和图4B ELISA检测鸡血清中特异性的抗体。其中,图4A为C试验:阳性对照组(H9+新城疫二联苗)血清和试验组H9嵌合H1弗氏疫苗组血清对不同流感HA的免疫应答反应;包板蛋白为H1全长蛋白、H5ORI蛋白、H9ORI蛋白。图4B为D试验:单佐剂对照组血清(第1组)、阳性对照(H9+新城疫二联苗)组血清(第2组)、试验组H9嵌合H1弗氏疫苗组血清(第3组)对包板蛋白H9嵌合H1蛋白、H1 stem蛋白、H9ORI蛋白的免疫应答反应。Figure 4A and Figure 4B ELISA detects specific antibodies in chicken serum. Among them, Figure 4A shows the C test: the immune response of the serum of the positive control group (H9+ Newcastle disease two-combination vaccine) and the serum of the experimental group H9 chimeric H1 Freund's vaccine group to different influenza HAs; the packaging protein is H1 full-length protein, H5ORI protein, H9ORI protein. Figure 4B shows D test: serum from the single adjuvant control group (Group 1), serum from the positive control (H9+ Newcastle disease dual vaccine) group (Group 2), serum from the test group H9 chimeric H1 Freund's vaccine group (Group 3) Group) Immune response to package protein H9 chimeric H1 protein, H1 stem protein, and H9ORI protein.
图5血抑试验结果。Figure 5 Blood inhibition test results.
图6抗体效价统计结果。其中:1,单佐剂对照组血清;2,阳性对照(H9+新城疫二联苗)组血清;3,实验组H9嵌合H1弗氏疫苗组血清。Figure 6 Antibody titer statistical results. Among them: 1. Serum from the single adjuvant control group; 2. Serum from the positive control (H9+ Newcastle disease dual vaccine) group; 3. Serum from the experimental group H9 chimeric H1 Freund's vaccine group.
具体实施方式Detailed ways
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。The following examples further illustrate the content of the present invention, but should not be understood as limiting the present invention. Without departing from the spirit and essence of the present invention, any modifications or substitutions made to the method, steps or conditions of the present invention shall fall within the scope of the present invention.
若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。Unless otherwise specified, the technical means used in the examples are conventional means well known to those skilled in the art.
实施例一H9亚型的HA基因和辅助HA表达的NA基因质粒构建Example 1 Construction of H9 subtype HA gene and NA gene plasmid to assist HA expression
将设计好的HA或NA的核酸序列送去公司进行全序列合成带有黏性末端的DNA片段(黏性末端为EcoRⅠ和XhoⅠ的酶切位点)。载体选用带有氨苄抗性的PCAGGS载体,将载体进行双酶切,将全序列合成的DNA片段连接入载体,将全序列合成的具有黏性末端(具体的,黏性末端为EcoRⅠ和XhoⅠ)的下述HA基因、NA基因核酸片段(两者融合了不同的纯化标签肽)分别连接入经过双酶切(相应的EcoRⅠ和XhoⅠ)后的PCAGGS载体,构建成重组表达载体。Send the designed nucleic acid sequence of HA or NA to the company for complete sequence synthesis of DNA fragments with sticky ends (the sticky ends are the enzyme cleavage sites of EcoRI and XhoI). The vector is a PCAGGS vector with ampicillin resistance. The vector is double-digested, and the DNA fragment synthesized with the full sequence is ligated into the vector. The full sequence is synthesized with sticky ends (specifically, the sticky ends are EcoRⅠ and XhoⅠ) The following HA gene and NA gene nucleic acid fragments (the two are fused with different purification tag peptides) were respectively connected into the PCAGGS vector after double enzyme digestion (corresponding EcoRI and XhoI) to construct a recombinant expression vector.
HA基因序列结构为:EcoRI酶切位点+Kozak序列+信号肽序列+HA头部区序列+HA颈部区序列+凝血酶酶切位点序列+三聚体标签序列+组氨酸标签序列+XhoI酶切位点。The HA gene sequence structure is: EcoRI enzyme cleavage site + Kozak sequence + signal peptide sequence + HA head region sequence + HA neck region sequence + thrombin enzyme cleavage site sequence + trimer tag sequence + histidine tag sequence +XhoI restriction site.
EcoRI酶切位点:GAATTC;EcoRI restriction site: GAATTC;
Kozak序列:GCCACC;Kozak sequence: GCCACC;
信号肽氨基酸序列:METVSLITILLVVTVSNASignal peptide amino acid sequence: METVSLITILLVVTVSNA
信号肽核苷酸序列:ATGGAGACAGTATCACTAATAACTATACTACTAGTAGTAACAGTAAGCAATGCA;Signal peptide nucleotide sequence: ATGGAGACAGTATCACTAATAACTATACTACTAGTAGTAACAGTAAGCAATGCA;
凝血酶酶切位点氨基酸序列:LVPRGSThrombin cleavage site amino acid sequence: LVPRGS
凝血酶酶切位点核苷酸序列:CTGGTGCCAAGAGGCTCT;Nucleotide sequence of thrombin cleavage site: CTGGTGCCAAGAGGCTCT;
三聚体标签序列:CCTGGCAGCGGCTATATTCCTGAGGCTCCCAGAGATGGCCAGGCCTACGTTAGAAAGGATGGCGAGTGGGTGCTGCTGAGCACCTTTCTGGGA;Trimer tag sequence: CCTGGCAGCGGCTATATTCCTGAGGCTCCCAGAGATGGCCAGGCCTACGTTAGAAAGGATGGCGAGTGGGTGCTGCTGAGCACCTTTCTGGGA;
组氨酸标签氨基酸序列:HHHHHH;Histidine tag amino acid sequence: HHHHHH;
组氨酸标签核苷酸序列:CACCACCACCATCACCAC;Histidine tag nucleotide sequence: CACCACCACCATCACCAC;
XhoI酶切位点:CTCGAG。XhoI restriction site: CTCGAG.
HA头部区氨基酸序列(SEQ ID NO:1):METVSLITILLVVTVSNADKICIGYQSTNSTETVDTLTE NNVPVTHAKELLHTEHNGMLCATSLGHPLILDTCTIEGLIYGNPSCDLLLGGREWSYIVERPSAVNGLCYPGNVENLEELRSLFSSARSYQRIQIFPDTIWNVSYSGTSKACSDSFYRSMRWLTQKNNAYPIQDAQYTNNQEKNILFMWGINHPPTDTAQTNLYTRTDTTTSVATEEINRTFKPLIGPRPLVNGLQGRIDYYWSVLKPGQTLRIRSNGNLIAPWYGHILSGESHGRILKTDLKRGSCTVQCQTEKGGLNTTLPFQNVSHA head region amino acid sequence (SEQ ID NO: 1): METVSLITILLVVTVSNADKICIGYQSTNSTETVDTLTE NNVPVTHAKELLHTEHNGMLCATSLGHPLILDTCTIEGLIYGNPSCDLLLGGREWSYIVERPSAVNGLCYPGNVENLEELRSLFSSARSYQRIQIFPDTIWNVSYSGTSKACSDSFYRSMRWLTQKNNAYPIQDAQYTNNQEKNILFMWGI NHPPTDTAQTNLYTRTDTTTSVATEEINRTFKPLIGPRPLVNGLQGRIDYYWSVLKPGQTLRIRSNGNLIAPWYGHILSGESHGRILKTDLKRGSCTVQCQTEKGGLNTTLPFQNVS
HA头部区核苷酸序列(SEQ ID NO:3):ATGGAGACAGTATCACTAATAACTATACTACTAGTAGTAACAGTAAGCAATGCAGATAAAATCTGCATCGGCTATCAATCAACAAACTCCACAGAAACTGTAGACACACTAACAGAAAACAACGTCCCTGTGACACATGCCAAAGAATTGCTCCACACAGAGCATAATGGGATGCTGTGTGCAACAAGCTTGGGACACCCTCTTATTCTAGACACCTGTACCATTGAAGGACTAATCTATGGCAATCCTTCTTGTGATCTATTGTTGGGAGGAAGAGAATGGTCCTATATCGTCGAGAGACCATCAGCTGTTAACGGATTGTGTTATCCCGGGAATGTAGAAAATCTAGAAGAGCTAAGGTCACTTTTTAGTTCTGCTAGGTCTTATCAAAGGATCCAGATTTTCCCAGACACAATCTGGAATGTGTCTTACAGTGGGACAAGCAAAGCATGTTCAGATTCATTCTACAGAAGCATGAGATGGTTGACTCAAAAGAACAATGCTTACCCTATTCAAGACGCCCAATACACAAATAATCAAGAAAAGAACATTCTTTTCATGTGGGGCATAAATCACCCACCCACCGATACTGCGCAGACAAATCTGTACACAAGAACCGACACAACAACGAGTGTGGCAACAGAAGAAATAAATAGGACCTTCAAACCATTGATAGGACCAAGGCCTCTTGTCAACGGTTTGCAGGGAAGAATTGATTATTATTGGTCGGTATTGAAACCGGGTCAAACACTGCGAATAAGATCTAATGGGAATCTAATAGCTCCATGGTATGGACACATTCTTTCAGGAGAGAGCCACGGAAGAATCCTGAAGACTGATTTAAAAAGGGGTAGCTGCACAGTGCAATGTCAGACAGAAAAAGGTGGATTAAACACAACATTGCCATTCCAAAACGTAAGTHA head region nucleotide sequence (SEQ ID NO: 3): ATGGAGACAGTATCACTAATAACTATACTACTAGTAGTAACAGTAAGCAATGCAGATAAAATCTGCATCGGCTATCAATCAACAAACTCCACAGAAACTGTAGACACACTAACAGAAAACAACGTCCCTGTGACACATGCCAAAGAATTGTCCCACACAGAGCATAATGGGATGCTGTGTGCAACAAGCTTGGGACACCCTCTTATTCTAGACACCTGTACCATTGAAGGACTA ATCTATGGCAATCCTTCTTGTGATCTATTGTTGGGAGGAAGAGAATGGTCCTATATCGTCGAGAGACCATCAGCTGTTAACGGATTGTGTTATCCCGGGAATGTAGAAAATCTAGAAGAGCTAAGGTCACTTTTTAGTTCTGCTAGGTCTTATCAAAGGATCCAGATTTTCCCAGACACAATCTGGAATGTGTCTTACAGTGGGACAAGCAAAGCATGTTCAGATTCATTCTACAGAAGCATGAGATGGTTGACTCAAAA GAACAATGCTTACCCTATTCAAGACGCCCAATACACAAATAATCAAGAAAAGAACATTCTTTTCATGTGGGGCATAAATCACCCACCCACCGATACTGCGCAGACAAATCTGTACACAAGAACCGACACAACAACGAGTGTGGCAACAGAAGAAATAAATAGGACCTTCAAACCATTGATAGGACCAAGGCCTCTTGTCAACGGTTTGCAGGGAAGAATTGATTATTGGTCGGTATTGAAACCGGGTCAAACACTGCGAATAAGATCTAATGGGAA TCTAATAGCTCCATGGTATGGACACATTCTTTCAGGAGAGAGCCACGGAAGAATCCTGAAGACTGATTTAAAAAGGGGTAGCTGCACAGTGCAATGTCAGACAGAAAAAGGTGGATTAAACACAACATTGCCATTCCAAAACGTAAGT
HA颈部区氨基酸序列(SEQ ID NO:2):HA neck region amino acid sequence (SEQ ID NO: 2):
KYAIGDCPKYVKQNTLKLATGLRNIPSIQSRGLFGAIAGFTEGGWTGMVDGLYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQYTAVGKEFNKSERRMENLNKKVDDGKIDLWSYNAELLVALENQHTIDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGVKRKYAIGDCPKYVKQNTLKLATGLRNIPSIQSRGLFGAIAGFTEGGWTGMVDGLYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQYTAVGKEFNKSERRMENLNKKVDDGKIDLWSYNAELLVALENQHTIDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPKYSEESK LNREKIDGVKR
HA颈部区核苷酸序列(SEQ ID NO:4):HA neck region nucleotide sequence (SEQ ID NO: 4):
AAGTATGCCATCGGCGACTGCCCCAAATACGTGAAGCAGAATACCCTGAAGCTGGCCACCGGCCTGAGAAACATCCCCAGCATCCAGAGCAGAGGCCTGTTCGGAGCCATTGCCGGCTTTACTGAAGGCGGCTGGACAGGCATGGTGGATGGCCTGTATGGCTATCACCACCAGAATGAGCAAGGCAGCGGATACGCCGCTGACCAGAAGTCTACCCAGAACGCTATCAATGGCATCACCAACAAAGTGAACTCCGTGATCGAGAAGATGAACACCCAGTACACCGCCGTGGGCAAAGAGTTCAACAAGAGCGAGCGGCGGATGGAAAACCTGAACAAGAAGGTGGACGACGGCAAGATCGACCTGTGGTCCTACAATGCCGAACTGCTGGTGGCCCTGGAAAACCAGCACACCATCGACTTCCACGACAGCAACGTGAAGAACCTGTACGAGAAAGTGAAGTCCCAGCTGAAGAACAACGCCAAAGAGATCGGCAACGGCTGCTTCGAGTTCTACCACAAGTGCAACGACGAGTGCATGGAAAGCGTGAAGAATGGCACCTACGACTACCCCAAGTACAGCGAGGAATCCAAGCTGAACCGCGAGAAAATCGACGGCGTGAAGAGA。AAGTATGCCATCGGCGACTGCCCCAAATACGTGAAGCAGAATACCCTGAAGCTGGCCACCGGCCTGAGAAACATCCCCAGCATCCAGAGCAGAGGCCTGTTCGGAGCCATTGCCGGCTTTACTGAAGGCGGCTTTGGACAGGCATGGTGGATGGCCTGTATGGCTATCACCACCAGAATGAGCAAGGCAGCGGATACGCCGCTGACCAGAAGTCTACCCAGAACGCTATCAATGGCATCACCAACAAAGTGAACTCCGTGATC GAGAAGATGAACACCCAGTACACCGCCGTGGGCAAAGAGTTCAACAAGAGCGAGCGGCGGATGGAAAACCTGAACAAGAAGGTGGACGACGGCAAGATCGACCTGTGGTCCTACAATGCCGAACTGCTGGTGGCCCTGGAAAACCAGCACACCATCGACTTCCACGACAGCAACGTGAAGAACCTGTACGAGAAAGTGAAGTCCCAGCTGAAGAACAACGCCAAAGAGATCGGCAACGGCTGCTTCGAGTTCTACCACAAGTGCAA CGACGAGTGCATGGAAAGCGTGAAGAATGGCACCTACGACTACCCCAAGTACAGCGAGGAATCCAAGCTGAACCGCGAGAAAATCGACGGCGTGAAGAGA.
H9嵌合H1蛋白的全长编码全长核苷酸序列(SEQ ID NO:5)为:The full-length encoding nucleotide sequence of the H9 chimeric H1 protein (SEQ ID NO: 5) is:
GAATTCGCCACCATGGAGACAGTATCACTAATAACTATACTACTAGTAGTAACAGTAAGCAATGCAGAATTCGCCACCATGGAGACAGTATCACTAATAACTATACTACTAGTAGTAACAGTAAGCAATGCA
GATAAAATCTGCATCGGCTATCAATCAACAAACTCCACAGAAACTGTAGACACACTAACAGAAAACGATAAAATCTGCATCGGCTATCAATCAACAAACTCCACAGAAACTGTAGACACACTAACAGAAAAC
AACGTCCCTGTGACACATGCCAAAGAATTGCTCCACACAGAGCATAATGGGATGCTGTGTGCAACAAAACGTCCCTGTGACACATGCCAAAGAATTGCTCCACACAGAGCATAATGGGATGCTGTGTGCAACAA
GCTTGGGACACCCTCTTATTCTAGACACCTGTACCATTGAAGGACTAATCTATGGCAATCCTTCTTGTGGCTTGGGACACCCTCTTATTCTAGACACCTGTACCATTGAAGGACTAATCTATGGCAATCCTTCTTGTG
ATCTATTGTTGGGAGGAAGAGAATGGTCCTATATCGTCGAGAGACCATCAGCTGTTAACGGATTGTGTTATCTATTGTTGGGAGGAAGAGAATGGTCCTATATCGTCGAGAGACCATCAGCTGTTAACGGATTGTGTT
ATCCCGGGAATGTAGAAAATCTAGAAGAGCTAAGGTCACTTTTTAGTTCTGCTAGGTCTTATCAAAGGATCCCGGGAATGTAGAAAATCTAGAAGAGCTAAGGTCACTTTTTAGTTCTGCTAGGTCTTATCAAAGG
ATCCAGATTTTCCCAGACACAATCTGGAATGTGTCTTACAGTGGGACAAGCAAAGCATGTTCAGATTCATCCAGATTTTCCCAGACACAATCTGGAATGTGTCTTACAGTGGGACAAGCAAAGCATGTTCAGATTC
ATTCTACAGAAGCATGAGATGGTTGACTCAAAAGAACAATGCTTACCCTATTCAAGACGCCCAATACAATTCTACAGAAGCATGAGATGGTTGACTCAAAAGAACAATGCTTACCCTATTCAAGACGCCCAATACA
CAAATAATCAAGAAAAGAACATTCTTTTCATGTGGGGCATAAATCACCCACCCACCGATACTGCGCAGCAAATAATCAAGAAAAGAACATTCTTTTCATGTGGGGCATAAATCACCCACCCACCGATACTGCGCAG
ACAAATCTGTACACAAGAACCGACACAACAACGAGTGTGGCAACAGAAGAAATAAATAGGACCTTCACAAATCTGTACACAAGAACCGACACAACAACGAGTGTGGCAACAGAAGAAATAAATAGGACCTTC
AAACCATTGATAGGACCAAGGCCTCTTGTCAACGGTTTGCAGGGAAGAATTGATTATTATTGGTCGGTAAACCATTGATAGGACCAAGGCCTCTTGTCAACGGTTTGCAGGGAAGAATTGATTATTATTGGTCGGT
ATTGAAACCGGGTCAAACACTGCGAATAAGATCTAATGGGAATCTAATAGCTCCATGGTATGGACACAATTGAAACCGGGTCAAACACTGCGAATAAGATCTAATGGGAATCTAATAGCTCCATGGTATGGACACA
TTCTTTCAGGAGAGAGCCACGGAAGAATCCTGAAGACTGATTTAAAAAGGGGTAGCTGCACAGTGCATTCTTTCAGGAGAGAGCCACGGAAGAATCCTGAAGACTGATTTAAAAAGGGGTAGCTGCACAGTGCA
ATGTCAGACAGAAAAAGGTGGATTAAACACAACATTGCCATTCCAAAACGTAAGTAAGTATGCCATCGATGTCAGACAGAAAAAGGTGGATTAAACACAACATTGCCATTCCAAAACGTAAGTAAGTATGCCATCG
GCGACTGCCCCAAATACGTGAAGCAGAATACCCTGAAGCTGGCCACCGGCCTGAGAAACATCCCCAGGCGACTGCCCCAAATACGTGAAGCAGAATACCCTGAAGCTGGCCACCGGCCTGAGAAACATCCCCAG
CATCCAGAGCAGAGGCCTGTTCGGAGCCATTGCCGGCTTTACTGAAGGCGGCTGGACAGGCATGGTGCATCCAGAGCAGAGGCCTGTTCGGAGCCATTGCCGGCTTTACTGAAGGCGGCTGGACAGGCATGGTG
GATGGCCTGTATGGCTATCACCACCAGAATGAGCAAGGCAGCGGATACGCCGCTGACCAGAAGTCTAGATGGCCTGTATGGCTATCACCACCAGAATGAGCAAGGCAGCGGATACGCCGCTGACCAGAAGTCTA
CCCAGAACGCTATCAATGGCATCACCAACAAAGTGAACTCCGTGATCGAGAAGATGAACACCCAGTACCCAGAACGCTATCAATGGCATCACCAACAAAGTGAACTCCGTGATCGAGAAGATGAACACCCAGTA
CACCGCCGTGGGCAAAGAGTTCAACAAGAGCGAGCGGCGGATGGAAAACCTGAACAAGAAGGTGGCACCGCCGTGGGCAAAGAGTTCAACAAGAGCGAGCGGCGGATGGAAAACCTGAACAAGAAGGTGG
ACGACGGCAAGATCGACCTGTGGTCCTACAATGCCGAACTGCTGGTGGCCCTGGAAAACCAGCACACACGACGGCAAGATCGACCTGTGGTCCTACAATGCCGAACTGCTGGTGGCCCTGGAAAACCAGCACAC
CATCGACTTCCACGACAGCAACGTGAAGAACCTGTACGAGAAAGTGAAGTCCCAGCTGAAGAACAACATCGACTTCCACGACAGCAACGTGAAGAACCTGTACGAGAAAGTGAAGTCCCAGCTGAAGAACAA
CGCCAAAGAGATCGGCAACGGCTGCTTCGAGTTCTACCACAAGTGCAACGACGAGTGCATGGAAAGCGCCAAAGAGATCGGCAACGGCTGCTTCGAGTTCTACCACAAGTGCAACGACGAGTGCATGGAAAG
CGTGAAGAATGGCACCTACGACTACCCCAAGTACAGCGAGGAATCCAAGCTGAACCGCGAGAAAATCCGTGAAGAATGGCACCTACGACTACCCCAAGTACAGCGAGGAATCCAAGCTGAACCGCGAGAAAATC
GACGGCGTGAAGAGACTGGTGCCCAGAGGCTCTCCTGGCAGCGGCTATATTCCTGAGGCTCCCAGAGGACGGCGTGAAGAGACTGGTGCCCAGAGGCTCTCCTGGCAGCGGCTATATTCCTGAGGCTCCCAGAG
ATGGCCAGGCCTACGTTAGAAAGGATGGCGAGTGGGTGCTGCTGAGCACCTTTCTGGGACACCACCACCATCACCACTGACTCGAG。ATGGCCAGCCTACGTTAGAAAGGATGGCGAGTGGGTGCTGCTGAGCACCTTTCTGGGACACCACCACCATCACCACTGACTCGAG.
NA基因序列结构为:EcoRI酶切位点+信号肽序列+Flag标签序列+四聚体标签序列+凝血酶酶切位点序列+09NA序列+XhoI酶切位点。The NA gene sequence structure is: EcoRI restriction site + signal peptide sequence + Flag tag sequence + tetramer tag sequence + thrombin restriction site sequence + 09NA sequence + XhoI restriction site.
EcoRI酶切位点:GAATTC;EcoRI restriction site: GAATTC;
信号肽氨基酸序列:MGAGATGRAMDGPRLLLLLLLGVSLGGA;Signal peptide amino acid sequence: MGAGATGRAMDGPRLLLLLLLGVSLGGA;
信号肽核苷酸序列:ATGGGGGCAGGTGCCACCGGCCGCGCCATGGACGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGTGTCCCTTGGAGGTGCC;Signal peptide nucleotide sequence: ATGGGGGCAGGTGCCACCGGCCGCGCCATGGACGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGTGTCCCTTGGAGGTGCC;
Flag标签氨基酸序列:DYKDDDDK;Flag tag amino acid sequence: DYKDDDDK;
Flag标签核苷酸序列:GATTATAAGGATGATGATGATAAG;Flag tag nucleotide sequence: GATTATAAGGATGATGATGATAAG;
四聚体标签氨基酸序列:SSSDYSDLQRVKQELLEEVKKELQKVKEEIIEAFVQELRKRGS;Tetramer tag amino acid sequence: SSSDYSDLQRVKQELLEEVKKELQKVKEEIIEAFVQELRKRGS;
四聚体标签核苷酸序列:AGCTCCAGTGATTACTCGGACCTACAGAGGGTGAAACAGGAGCTTCTGGAAGAGGTGAAGAAGGAATTGCAGAAAGTGAAAGAGGAAATCATTGAAGCCTTCGTCCAGGAGCTGAGGAAGCGGGGTTCT;Tetramer tag nucleotide sequence: AGCTCCAGTGATTACTCGGACCTACAGAGGGTGAAACAGGAGCTTCTGGAAGAGGTGAAGAAGGAATTGCAGAAAGTGAAAGAGGAAATCATTGAAGCCTTCGTCCAGGAGCTGAGGAAGCGGGGTTCT;
凝血酶酶切位点氨基酸序列:LVPRGS;Thrombin cleavage site amino acid sequence: LVPRGS;
凝血酶酶切位点核苷酸序列:CTGGTACCACGAGGTAGT;Nucleotide sequence of thrombin cleavage site: CTGGTACCACGAGGTAGT;
09NA氨基酸序列(SEQ ID NO:6):PSRSVKLAGNSSLCPVSGWAIYSKDNSVRIGSKGDVFVIREPFISCSPLECRTFFLTQGALLNDKHSNGTIKDRSPYRTLMSCPIGEVPSPYNSRFESVAWSASACHDGINWLTIGISGPDNGAVAVLKYNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSNGQASYKIFRIEKGKIVKSVEMNAPNYHYEECSCYPDSSEITCVCRDNWHGSNRPWVSFNQNLEYQIGYICSGIFGDNPRPNDKTGSCGPVSSNGANGVKGFSFKYGNGVWIGRTKSISSRNGFEMIWDPNGWTGTDNNFSIKQDIVGINEWSGYSGSFVQHPELTGLDCIRPCFWVELIRGRPKENTIWTSGSSISFCGVNSDTVGWSWPDGAELPFTIDK;09NA amino acid sequence (SEQ ID NO: 6): PSRSVKLAGNSSLCPVSGWAIYSKDNSVRIGSKGDVFVIREPFISCSPLECRTFFLTQGALLNDKHSNGTIKDRSPYRTLMSCPIGEVPSPYNSRFESVAWSASACHDGINWLTIGISGPDNGAVAVLKYNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSNGQASYKIFRIEKGKIVKSVEM NAPNYHYEECSCYPDSSEITCVCRDNWHGSNRPWVSFNQNLEYQIGYICSGIFGDNPRPNDKTGSCGPVSSNGVKGFSFKYGNGVWIGRTKSISSRNGFEMIWDPNGWTGTDNNFSIKQDIVGINEWSGYSGSFVQHPELTGLDCIRPCFWVELIRGRPKENTIWTSGSSISFCGVNSDTVGWSWPDGAELPFTIDK;
09NA核苷酸序列(SEQ ID NO:7):CCATCACGATCAGTGAAATTAGCGGGCAATTCCTCTCTCTGCCCTGTTAGTGGATGGGCTATATACAGTAAAGACAACAGTGTAAGAATCGGTTCCAAGGGGGATGTGTTTGTCATAAGGGAACCATTCATATCATGCTCCCCCTTGGAATGCAGAACCTTCTTCTTGACTCAAGGGGCCTTGCTAAATGACAAACATTCCAATGGAACCATTAAAGACAGGAGCCCATATCGAACCCTAATGAGCTGTCCTATTGGTGAAGTTCCCTCTCCATACAACTCAAGATTTGAGTCAGTCGCTTGGTCAGCAAGTGCTTGTCATGATGGCATCAATTGGCTAACAATTGGAATTTCTGGCCCAGACAATGGGGCAGTGGCTGTGTTAAAGTACAACGGCATAATAACAGACACTATCAAGAGTTGGAGAAACAATATATTGAGAACACAAGAGTCTGAATGTGCATGTGTAAATGGTTCTTGCTTTACTGTAATGACCGATGGACCAAGTAATGGACAGGCCTCATACAAGATCTTCAGAATAGAAAAGGGAAAGATAGTCAAATCAGTCGAAATGAATGCCCCTAATTATCACTATGAGGAATGCTCCTGTTATCCTGATTCTAGTGAAATCACATGTGTGTGCAGGGATAACTGGCATGGCTCGAATCGACCGTGGGTGTCTTTCAACCAGAATCTGGAATATCAGATAGGATACATATGCAGTGGGATTTTCGGAGACAATCCACGCCCTAATGATAAGACAGGCAGTTGTGGTCCAGTATCGTCTAATGGAGCAAATGGAGTAAAAGGGTTTTCATTCAAATACGGCAATGGTGTTTGGATAGGGAGAACTAAAAGCATTAGTTCAAGAAACGGTTTTGAGATGATTTGGGATCCGAACGGATGGACTGGGACAGACAATAACTTCTCAATAAAGCAAGATATCGTAGGAATAAATGAGTGGTCAGGATATAGCGGGAGTTTTGTTCAGCATCCAGAACTAACAGGGCTGGATTGTATAAGACCTTGCTTCTGGGTTGAACTAATCAGAGGGCGACCCAAAGAGAACACAATCTGGACTAGCGGGAGCAGCATATCCTTTTGTGGTGTAAACAGTGACACTGTGGGTTGGTCTTGGCCAGACGGTGCTGAGTTGCCATTTACCATTGACAAGTAA;09NA nucleotide sequence (SEQ ID NO: 7): CCATCACGATCAGTGAAATTAGCGGGCAATTCCTCTCTCTGCCCTGTTAGTGGATGGGCTATATACAGTAAAGACACAGTGTAAGAATCGGTTCCAAGGGGGATGTGTTTGTCATAAGGGAACCATTCATATGCTCCCCCTTGGAATGCAGAACCTTCTCTTGACTCAAGGGGCCTTGCTAAATGACAAACATTCCAATGGAACCATTAAAGACAGGAGCCCATATCGA ACCCTAATGAGCTGTCCTATTGGTGAAGTTCCCTCCATACAACTCAAGATTTGAGTCAGTCGCTTGGTCAGCAAGTGCTTGTCATGATGGCATCAATTGGCTAACAATTGGAATTTCTGGCCCAGACAATGGGGCAGTGGCTGTGTTAAAGTACAACGGCATAATAACAGACACTATCAAGAGTTGGAGAAACAATATATTGAGAACACAAGAGTCTGAATGTGCATGTGTAAATGGTTCTTGCTTTACTGTAAACTGACCGAT GGACCAAGTAATGGACAGGCCTCATACAAGATCTTCAGAATAGAAAAGGGAAAGATAGTCAAATCAGTCGAAATGAATGCCCCTAATTATCACTATGAGGAATGCTCCTGTTATCCTGATTCTAGTGAAATCACATGTGTGTGCAGGGATAACTGGCATGGCTCGAATCGACCGTGGGTGTCTTTCAACCAGAATCTGGAATATCAGATAGGATACATATGCAGTGGGATTTTCGGAGACAATCCACGCCCTAATGATAAGACAGGCA GTTGTGGTCCAGTATCGTCTAATGGAGCAAATGGAGTAAAAGGGTTTTCATTCAAATACGGCAATGGTGTTTGGATAGGGAGAACTAAAAGCATTAGTTCAAGAAACGGTTTTGAGATGATTTGGGATCCGAACGGATGGACTGGGACAGACAATAACTTCTCAATAAAGCAAGATATCGTAGGAATAAATGAGTGGTCAGGATATAGCGGGAGTTTTGTTCAGCATCCAGAACTAACAGGGCTGGATTGTATAAGACCTT GCTTCTGGGTTGAACTAATCAGAGGGCGACCCAAAGAGAACACAATCTGGACTAGCGGGAGCAGCATATCCTTTTGTGGTGTAAACAGTGACACTGTGGGTTGGTCTTGGCCAGACGGTGCTGAGTTGCCATTTACCATTGACAAGTAA;
XhoI酶切位点:CTCGAG。XhoI restriction site: CTCGAG.
实施例二H9亚型HA蛋白的表达纯化Example 2 Expression and Purification of H9 Subtype HA Protein
将重组表达载体质粒转化Top10感受态细胞,吸取适量菌液用划线法涂在带有氨苄(氨苄母液浓度:100mg/ml)抗性的固体LB平板(LB平板配方:1%NaCl,1%色氨酸Tryptone,0.5%酵母抽提物,1.5%琼脂粉;氨苄使用为1:1000)上,37℃过夜培养。挑取单克隆,5ml小摇菌液(氨苄抗性),之后再300ml过夜中摇,用无内毒素质粒大提试剂盒(TIANGEN,DP117)获得流感病毒抗原质粒。Transform the recombinant expression vector plasmid into Top10 competent cells, draw an appropriate amount of bacterial liquid and apply it on a solid LB plate with resistance to ampicillin (ampicillin mother solution concentration: 100 mg/ml) by streaking method (LB plate formula: 1% NaCl, 1% Tryptone, 0.5% yeast extract, 1.5% agar powder; ampicillin (1:1000) was used and cultured at 37°C overnight. Single clones were picked, 5 ml of micro-shake culture (ampicillin-resistant) was shaken, and then 300 ml was shaken overnight, and the influenza virus antigen plasmid was obtained using the endotoxin-free plasmid maximal extraction kit (TIANGEN, DP117).
用含10%FBS的DMEM在37℃、5%CO2培养箱中培养293T细胞。当293T细胞汇合度达到约70%时,用PEI转染试剂将流感病毒抗原质粒(HA:NA=20ug:20ug/盘)转染至293T细胞中,当转染4-6小时后,用无血清的DMEM换液继续培养3天后收集细胞培养上清液,补加无血清的DMEM继续培养4天,收集细胞培养上清液。因HA在哺乳动物细胞中表达时,其上会粘附有唾液酸导致与受体没有结合能力,因此也进行了神经氨酸酶NA的表达。NA只是辅助HA蛋白的表达,选取了09NA的基因,并加上FLAG标签以便于检测。由于HA和NA的纯化标签不一样,我们选用带有His标签的亲和柱纯化HA蛋白,这样我们最后纯化得到的蛋白就只有HA蛋白,我们通过western blot来验证HA+NA共转染后比HA单转染得到的HA蛋白量更多,为了能纯化到大量的HA蛋白,之后设计的HA都采用和NA共转染方式来分泌性表达。Culture 293T cells with DMEM containing 10% FBS in a 37°C, 5% CO2 incubator. When the confluence of 293T cells reaches about 70%, use PEI transfection reagent to transfect the influenza virus antigen plasmid (HA:NA=20ug:20ug/plate) into 293T cells. After 4-6 hours of transfection, use The DMEM medium was replaced with serum and the culture was continued for 3 days before the cell culture supernatant was collected. Serum-free DMEM was added to continue culturing for 4 days and the cell culture supernatant was collected. When HA is expressed in mammalian cells, sialic acid will adhere to it, resulting in inability to bind to the receptor, so neuraminidase NA was also expressed. NA only assists the expression of HA protein. The 09NA gene was selected and FLAG tag was added for easy detection. Since the purification tags of HA and NA are different, we use an affinity column with a His tag to purify the HA protein, so that the final protein we purify is only the HA protein. We use western blot to verify the ratio of HA+NA co-transfection. The amount of HA protein obtained by single transfection of HA is larger. In order to purify a large amount of HA protein, the HA designed later is secreted by co-transfection with NA.
将收集的细胞培养上清液经0.22μm滤膜过滤后与HisTrapTMexcel(GE)于4℃过夜结合,准备蛋白洗脱缓冲液A液(20mM Tris,150mM NaCl,pH 8.0)和缓冲液B液(20mM Tris,150mM NaCl,pH 8.0,1M imidazole)。之后用缓冲液A液洗涤His柱,以去除非特异结合的蛋白,再用缓冲液2%的B液(20mM Tris,150mM NaCl,pH 8.0,20mM imidazole)除去杂蛋白,最后将目的蛋白用30%的B液(20mM Tris,150mM NaCl,pH 8.0,300mM imidazole)从His柱上洗脱下来,并以30KD截留(30KD cutoff)的蛋白浓缩管用缓冲液A液(20mM Tris,150mMNaCl,pH 8.0)进行换液,以去除蛋白溶液里的咪唑浓度,最后将蛋白溶液浓缩至0.5ml,加入凝血酶(1mg蛋白加5ul凝血酶)4℃酶切过夜。将酶切后的蛋白溶液用分子筛进一步纯化,使用AKTA-purifier(GE)和Column Hiload 16/60superdex 200PG分子筛(GE),分子筛用缓冲液A液(20mM Tris,150mM NaCl,pH 8.0)进行柱平衡,1ml loop环上样,同时监测280nm的紫外吸收值,收取目的蛋白,并通过SDS-PAGE鉴定蛋白纯度。典型的目的蛋白的分子筛图谱和SDS-PAGE分析如图1所示。Filter the collected cell culture supernatant through a 0.22 μm filter membrane and combine it with HisTrap TM excel (GE) overnight at 4°C to prepare protein elution buffer A (20mM Tris, 150mM NaCl, pH 8.0) and buffer B. solution (20mM Tris, 150mM NaCl, pH 8.0, 1M imidazole). Then wash the His column with buffer A to remove non-specifically bound proteins, and then use buffer 2% B (20mM Tris, 150mM NaCl, pH 8.0, 20mM imidazole) to remove impurity proteins. Finally, the target protein is washed with 30 % of solution B (20mM Tris, 150mM NaCl, pH 8.0, 300mM imidazole) was eluted from the His column, and the protein concentration tube with 30KD cutoff was filled with buffer A (20mM Tris, 150mM NaCl, pH 8.0). Change the liquid to remove the imidazole concentration in the protein solution. Finally, concentrate the protein solution to 0.5 ml, add thrombin (1 mg protein plus 5 ul thrombin) and digest overnight at 4°C. The digested protein solution was further purified with molecular sieves, using AKTA-purifier (GE) and Column Hiload 16/60superdex 200PG molecular sieves (GE). The molecular sieves were column equilibrated with buffer A (20mM Tris, 150mM NaCl, pH 8.0). , load the sample into a 1ml loop, monitor the UV absorption value at 280nm at the same time, collect the target protein, and identify the protein purity through SDS-PAGE. The typical molecular sieve pattern and SDS-PAGE analysis of the target protein are shown in Figure 1.
该蛋白在Column Hiload 16/60superdex 200PG分子筛出峰位置为62.5ml,由于构建中在凝血酶切位点(LVPR↓GS,箭头所指是能识别切割这个位点的氨基酸)后加入了三聚体标签,蛋白主峰三聚体形式,三聚体标签在凝血酶切后从HA脱落,单体大小约为70KD。SDS-PAGE胶图泳道分别对应分子筛图中H9嵌合H1蛋白的三聚体和单体。The peak position of this protein in Column Hiload 16/60superdex 200PG molecular sieve is 62.5ml, because a trimer is added after the thrombin cleavage site (LVPR↓GS, the arrow points to the amino acid that can recognize and cleave this site) during the construction. The label is in the form of a trimer of the main peak of the protein. The trimer label is shed from HA after thrombin digestion, and the monomer size is about 70KD. The lanes of the SDS-PAGE gel map respectively correspond to the trimers and monomers of the H9 chimeric H1 protein in the molecular sieve map.
实施例三、疫苗制备Example 3. Vaccine preparation
将纯化得到的H9嵌合H1蛋白与不同佐剂混合来制备疫苗,按照体积1:1比例进行乳化直至浴水不化状态用于动物免疫。H1 stem蛋白是流感H1亚型的颈部区蛋白,具有广谱免疫保护效果,在此基础上我们设计了H9嵌合H1蛋白,对不同的流感HA都有免疫应答效果,详见实施例六。具体的疫苗制备方法详见实施例三;具有广谱免疫保护的流感HA颈部区(H1stem)功能验证是通过免疫小鼠实验体现的,具体见实施例四所见;制备好的H9嵌合H1疫苗免疫SPF鸡试验详见实施例五;制备好的H9嵌合H1疫苗免疫海兰白蛋鸡试验详见实施例六。The purified H9 chimeric H1 protein is mixed with different adjuvants to prepare the vaccine, and the vaccine is emulsified according to a volume ratio of 1:1 until it is still in bath water for animal immunization. H1 stem protein is the neck region protein of influenza H1 subtype and has a broad-spectrum immune protective effect. On this basis, we designed an H9 chimeric H1 protein that has immune response effects on different influenza HAs. See Example 6 for details. . The specific vaccine preparation method is detailed in Example 3; the functional verification of the influenza HA neck region (H1stem) with broad-spectrum immune protection is demonstrated by immunizing mice, as shown in Example 4; the prepared H9 chimera For details on the test of immunizing SPF chickens with H1 vaccine, see Example 5; for the test of immunizing Hyline white laying hens with the prepared H9 chimeric H1 vaccine, please see Example 6 for details.
1、H1stem疫苗的制备1. Preparation of H1stem vaccine
H1 stem蛋白浓度为10mg/ml,PBS为稀释液,免疫佐剂为MF59。将试验组H1 stem蛋白与等体积的MF59佐剂进行混合,振荡至完全乳化至浴水不化开用于动物免疫。The H1 stem protein concentration is 10 mg/ml, PBS is the diluent, and the immune adjuvant is MF59. Mix the H1 stem protein of the test group with an equal volume of MF59 adjuvant, and shake until it is completely emulsified until the bath water does not melt, and then used for animal immunization.
H1stem疫苗的氨基酸序列(SEQ ID NO:8),其中第194位-262位为保守肽段:MYRMQLLSCIALSLALVTNSTYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLENGGGGKYVCSAKLRMVTGLRNKPSKQSQGLFGAIAGFTEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQYTAIGCEYNKSERCMKQIEDKIEEIESKIWCYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGVKLESMGVYQIEGRHHHHHHHAmino acid sequence of H1stem vaccine (SEQ ID NO:8), of which positions 194-262 are conserved peptides: MYRMQLLSCIALSLALVTNSTYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLENGGGGKYVCSAKLRMVTGLRNKPSKQSQGLFGAIAGFTEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMNTQYTAI GCEYNKSERCMKQIEDKIEEIESKIWCYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEFYHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGVKLESMGVYQIEEGRHHHHHHH
H1stem疫苗的核苷酸序列(SEQ ID NO:9),其中第580位-786位为保守肽段:The nucleotide sequence of H1stem vaccine (SEQ ID NO:9), of which positions 580-786 are conserved peptides:
ATGTACAGGATGCAACTCCTGTCTTGCATTGCACTAAGTCTTGCACTTGTCACGAATTCAACCTACGCCGACACCATTTGCATCGGCTACCACGCCAACAACAGCACCGACACCGTGGACACCGTGCTGGAGAAGAACGTGACCGTGACCCACAGCGTGAATCTGCTGGAGAACGGAGGAGGCGGCAAATACGTCTGCAGCGCCAAACTGAGGATGGTGACCGGACTGAGGAACAAGCCCAGCAAGCAGAGCCAGGGACTGTTCGGAGCCATTGCCGGATTCACCGAGGGAGGTTGGACAGGAATGGTGGACGGTTGGTACGGCTACCACCACCAGAACGAGCAGGGAAGCGGATACGCCGCCGATCAGAAAAGCACCCAGAACGCCATCAACGGCATCACCAACAAGGTCAACAGCGTGATCGAGAAGATGAACACCCAGTACACCGCCATCGGTTGCGAGTACAACAAGAGCGAGCGCTGCATGAAGCAGATCGAGGACAAGATCGAGGAGATCGAGAGCAAGATCTGGTGCTACAACGCCGAACTGCTGGTGCTGCTGGAGAACGAGAGGACCCTGGACTTCCACGACAGCAACGTGAAGAACCTGTACGAGAAGGTCAAGAGCCAGCTGAAGAACAACGCCAAGGAGATCGGCAACGGCTGCTTCGAGTTCTACCACAAGTGCAACGACGAGTGCATGGAGAGCGTGAAGAACGGCACCTACGACTACCCCAAGTACAGCGAGGAGAGCAAGCTGAACCGGGAGAAGATCGACGGCGTGAAGCTGGAGAGCATGGGCGTGTACCAGATCGAGGGCAGACATCACCACCACCACCATCATTAG。ATGTACAGGATGCAACTCCTGTCTTGCATTGCACTAAGTCTTGCACTTGTCACGAATTCAACCTACGCCGACACCATTTGCATCGGCTACCACGCCAACAACAGCACCGACACCGTGGACACCGTGCTGGAAGAACGTGACCGTGACCCACAGCGTGAATCTGCTGGAGAACGGAGGAGGCGGCAAATACGTCTGCAGCGCCAAACTGAGGATGGTGACCGGACTGAGGAACAAGCCCAGCAAGCAGAGCCAGGGACTGTTCG GAGCCATTGCCGGATTCACCGAGGGAGGTTGGACAGGAATGGTGGACGGTTGGTACGGCTACCACCACCACCAGAACGAGCAGGGAAGCGGATACGCCGCCGATCAGAAAAGCACCCAGAACGCCATCAACGGCATCACCAACAAGGTCAACAGCGTGATCGAGAAGATGAACACCCAGTACACCGCCATCGGTTGCGAGTACAACAAGAGCGAGCGCTGCATGAAGCAGATCGAGGACAAGATCGAGGAGATCGAGAGCAAGATC TGGTGCTACAACGCCGAACTGCTGGTGCTGCTGGAGAACGAGGACCCTGGACTTCCACGACAGCAACGTGAAGAACCTGTACGAGAAGGTCAAGAGCCAGCTGAAGAACAACGCCAAGGAGATCGGCAACGGCTGCTTCGAGTTCTACCACAAGTGCAACGACGAGTGCATGGAGAGCGTGAAGAACGGCACCTACGACTACCCCAAGTACAGCGAGGAGAGCAAGCTGAACCGGGAGAAGATCGACGGCGTGAAG CTGGAGAGCATGGGCGTGTACCAGATCGAGGGCAGACATCACCACCACCACCATCATTAG.
2、H9嵌合H1ISA71疫苗的制备(佐剂为MontanideTM ISA 71VG)2. Preparation of H9 chimeric H1 ISA71 vaccine (adjuvant is Montanide TM ISA 71VG)
H9嵌合H1蛋白浓度为10mg/ml,PBS为稀释液,免疫佐剂为MontanideTM ISA 71VG。The concentration of H9 chimeric H1 protein is 10 mg/ml, PBS is the diluent, and the immune adjuvant is Montanide TM ISA 71VG.
佐剂与水相抗原介质按照质量7:3的比例来制备疫苗,在室温或低于室温下,将水相抗原介质加入MontanideTM ISA 71VG中,在强烈搅拌下进行混合,以获得稳定制剂进行动物接种,贴标签,置2~8℃保存。The vaccine is prepared using a mass ratio of 7:3 between the adjuvant and the aqueous antigen medium. Add the aqueous antigen medium to Montanide TM ISA 71VG at room temperature or below room temperature, and mix under vigorous stirring to obtain a stable preparation. Animals are inoculated, labeled, and stored at 2 to 8°C.
3、H9嵌合H1白油疫苗的制备(佐剂为矿物白油)3. Preparation of H9 chimeric H1 white oil vaccine (the adjuvant is mineral white oil)
H9嵌合H1蛋白浓度为10mg/ml,PBS为稀释液,免疫佐剂为矿物白油。油相制备:取注射用白油94份,硬脂酸铝2份,加热至80℃,再加入司本-80 6份,至温度达到116℃时维持30min,冷却后备用。水相制备:取吐温-80 4份,灭菌,冷却,加入到灭活后96份抗原液中,边加边搅拌,直至吐温-80完全溶解。乳化:取油相2份,开动电机慢速搅拌,然后徐徐加入1份水相,加完后再以2800~3200r/min乳化30min。定量分装,加盖密封,贴标签,置2~8℃保存。The concentration of H9 chimeric H1 protein is 10 mg/ml, PBS is the diluent, and the immune adjuvant is mineral white oil. Oil phase preparation: Take 94 parts of white oil for injection and 2 parts of aluminum stearate, heat to 80°C, then add 6 parts of Siben-80, maintain for 30 minutes when the temperature reaches 116°C, cool and set aside. Aqueous phase preparation: Take 4 parts of Tween-80, sterilize, cool, add to 96 parts of the inactivated antigen solution, stir while adding, until Tween-80 is completely dissolved. Emulsification: Take 2 parts of the oil phase, start the motor to stir slowly, then slowly add 1 part of the water phase, and after adding, emulsify at 2800~3200r/min for 30 minutes. Quantitatively pack, seal, label, and store at 2 to 8°C.
4、H9嵌合H1弗氏疫苗的制备(佐剂为弗氏佐剂)4. Preparation of H9 chimeric H1 Freund's vaccine (the adjuvant is Freund's adjuvant)
H9嵌合H1蛋白浓度为10mg/ml,PBS为稀释液,免疫佐剂为弗氏佐剂。将H9嵌合H1蛋白与等体积的弗氏完全佐剂进行完全乳化至浴水不化开用于动物接种,第一次免疫选用弗氏完全佐剂,第二次免疫选用弗氏不完全佐剂。The concentration of H9 chimeric H1 protein was 10 mg/ml, PBS was the diluent, and the immune adjuvant was Freund's adjuvant. Completely emulsify the H9 chimeric H1 protein with an equal volume of Freund's complete adjuvant until the bath water does not melt and then use it for animal vaccination. Freund's complete adjuvant is used for the first immunization, and Freund's incomplete adjuvant is used for the second immunization. agent.
实施例四动物试验1:具有广谱免疫保护的流感HA颈部区(H1 stem)功能验证Example 4 Animal Test 1: Functional verification of influenza HA neck region (H1 stem) with broad-spectrum immune protection
1.试验动物:4-6周龄BALB/c雌鼠,每组6只,免疫方式为肌肉注射。1. Experimental animals: 4-6 weeks old BALB/c female mice, 6 in each group. The immunization method is intramuscular injection.
2.组别设置:①阴性对照(佐剂MF59);②阳性对照(流感病毒裂解疫苗TIV);③试验组H1stem疫苗。2. Group settings: ① negative control (adjuvant MF59); ② positive control (split influenza virus vaccine TIV); ③ test group H1stem vaccine.
3.试验步骤:3. Test steps:
3.1动物免疫:3.1 Animal immunity:
制备疫苗过程参考实施例三的1.H1 stem疫苗的制备。阳性组免疫剂量为每只100μL;试验组每只动物免疫剂量为20μg/100μL/只,用PBS稀释蛋白,每组6只,免疫3次,免疫间隔为14天。The vaccine preparation process refers to 1. Preparation of H1 stem vaccine in Example 3. The immunization dose of the positive group was 100 μL per animal; the immunization dose of each animal in the test group was 20 μg/100 μL/animal, and the protein was diluted with PBS. There were 6 animals in each group, immunized 3 times, and the immunization interval was 14 days.
3.2血清分离:3.2 Serum separation:
将以上免疫组别的小鼠进行眼球取血,制备血清,小鼠血清利用RED进行处理,按照1体积的血清,加入4体积的RDE,37℃水浴18h,56℃灭活30min,用于后续实验。Blood was collected from the eyeballs of the mice in the above immune groups to prepare serum. The mouse serum was treated with RED. According to 1 volume of serum, 4 volumes of RDE were added, and the water was bathed at 37°C for 18 hours and inactivated at 56°C for 30 minutes for subsequent use. experiment.
3.3H1N1毒株及H3N2毒株进行TCID50测定3.3 TCID 50 determination of H1N1 strains and H3N2 strains
a,采用10倍连续稀释的方式稀释病毒原液。a, Use 10-fold serial dilution to dilute the virus stock solution.
b,提前18-24h铺好96孔板,每孔加入100μL(2×105个/ml)MDCK细胞。37℃,5%的CO2培养箱内进行培养。b. Lay out the 96-well plate 18-24 hours in advance, and add 100 μL (2×10 5 cells/ml) MDCK cells to each well. Cultivate in a 37°C, 5% CO2 incubator.
c,病毒接种,用PBS洗涤细胞1次,每孔150μL,之后按照第一步稀释好的病毒液加入96孔板中,每一稀释度接种一纵排,每孔100μL,在11列和12列设定稀释液对照,37℃培养箱培养。c, virus inoculation, wash the cells once with PBS, 150 μL per well, then add the diluted virus solution according to the first step into the 96-well plate, inoculate one vertical row for each dilution, 100 μL per well, in columns 11 and 12 Column set dilution control and culture in 37°C incubator.
d,逐日观察并记录结果,72h后结果计算按照Reed-Muench法。d. Observe and record the results daily. The results after 72 hours are calculated according to the Reed-Muench method.
3.4中和实验:3.4 Neutralization experiment:
a,病毒稀释:利用病毒培养液稀释到200TCID50/50μL。a. Virus dilution: Use virus culture medium to dilute to 200TCID 50 /50μL.
b,血清阴性对照(只添加细胞维持液)b, Serum negative control (only add cell maintenance solution)
血清稀释:小鼠血清起始稀释倍数为1:40,按照2倍比稀释进行中和试验。Serum dilution: The initial dilution factor of mouse serum is 1:40, and the neutralization test is performed at a 2-fold dilution ratio.
c,病毒孵育:将稀释好的病毒(200TCID50)50μl加入到50μl的血清中,混合均匀,放置37℃,孵育1h。c. Virus incubation: Add 50 μl of diluted virus (200TCID 50 ) to 50 μl of serum, mix evenly, place at 37°C, and incubate for 1 hour.
d,MDCK细胞吸附:MDCK细胞,利用PBS洗涤150μL洗涤一次,之后弃净,每孔添加100μL的病毒-血清混合液,平行三孔,放入细胞培养箱中培养72h。d. MDCK cell adsorption: MDCK cells were washed once with 150 μL of PBS, and then discarded. Add 100 μL of virus-serum mixture to each well, make three parallel wells, and culture in a cell culture incubator for 72 hours.
e,利用血抑实验进行结果观察计算,结果如下图2所示。e. Use the blood inhibition experiment to observe and calculate the results. The results are shown in Figure 2 below.
结果显示:阳性疫苗TIV在1:40倍稀释下对流感病毒H1N1有完全中和作用,在1:160倍稀释下对流感病毒H3N2有完全中和作用,而对照组MF59组血清均不能阻止流感病毒H1N1、H3N2对红细胞的破坏,H1stem组血清在1:40倍稀释下对H1N1、H3N2有完全中和效果,在血清稀释倍数为1:1280时,部分血细胞依然保持完整,表明血清高倍稀释下的抗体依然能够防止流感毒株H1N1、H3N2对红细胞膜的破坏,说明H1stem能产生针对流感病毒H1N1和H3N2的特异性抗体,为研究通用型疫苗的研发提供参考数据。实施例五动物试验2:H9嵌合H1疫苗对SPF鸡的免疫保护试验The results showed that the positive vaccine TIV had a complete neutralizing effect on influenza virus H1N1 at a dilution of 1:40, and it had a complete neutralizing effect on influenza virus H3N2 at a dilution of 1:160. However, the serum of the control group MF59 could not prevent influenza. Viruses H1N1 and H3N2 damage red blood cells. The H1stem group serum has a complete neutralizing effect on H1N1 and H3N2 at a 1:40-fold dilution. When the serum dilution is 1:1280, some blood cells still remain intact, indicating that the serum is highly diluted. The antibodies can still prevent the destruction of red blood cell membranes by influenza strains H1N1 and H3N2, indicating that H1stem can produce specific antibodies against influenza viruses H1N1 and H3N2, providing reference data for the research and development of universal vaccines. Example 5 Animal Test 2: Immune Protection Test of H9 Chimeric H1 Vaccine on SPF Chickens
1.试验动物:3周龄SPF鸡,免疫方式为颈部皮下注射。1. Experimental animals: 3-week-old SPF chickens, immunized by subcutaneous injection in the neck.
2.A试验组别设置:1,未免疫组;2,阳性对照组(灭活的禽流感病毒H9亚型A/Chicken/Hebei/G/2012(H9N2株));3,试验组H9嵌合H1ISA71疫苗组;4,单佐剂对照组;以上每组10只;B试验组别设置:1,未免疫组;2,阳性对照组(商品化的普莱柯H9灭活苗032101001A);3,试验组H9嵌合H1白油疫苗组。2.A test group settings: 1. Unimmunized group; 2. Positive control group (inactivated avian influenza virus H9 subtype A/Chicken/Hebei/G/2012 (H9N2 strain)); 3. Test group H9 embedded H1ISA71 vaccine group; 4, single adjuvant control group; 10 animals in each group; B test group settings: 1, non-immunized group; 2, positive control group (commercial Pleco H9 inactivated vaccine 032101001A); 3. Experimental group H9 chimeric H1 white oil vaccine group.
3.试验步骤:3. Test steps:
3.1动物免疫:3.1 Animal immunity:
A试验:制备疫苗过程详见实施例三的2.H9嵌合H1ISA71疫苗的制备(佐剂为MontanideTM ISA 71VG)。对照组免疫剂量按照规格使用;试验组每只动物注射剂量为20ug/羽,免疫数量每组10羽份,免疫2次,每次免疫间隔为14天,第2次免疫3周后心脏采血,分离血清,用于后续实验。Test A: For details on the vaccine preparation process, see 2. Preparation of H9 chimeric H1 ISA71 vaccine in Example 3 (the adjuvant is Montanide TM ISA 71VG). The vaccination dose in the control group was used according to the specifications; the injection dose for each animal in the test group was 20ug/feather, and the number of immunizations was 10 pigeons per group. The immunization was 2 times, with an interval of 14 days between each immunization. Blood was collected from the heart 3 weeks after the second immunization. The serum was isolated and used for subsequent experiments.
B试验:制备疫苗过程详见实施例三的3.H9嵌合H1白油疫苗的制备(佐剂为矿物白油)。对照组免疫剂量按照规格使用;试验组每只动物注射剂量为30ug/羽,免疫数量每组10羽份,免疫方式为颈部皮下注射,免疫2次,每次免疫间隔为3周,第2次免疫3周后心脏采血,分离血清,用于后续实验。Test B: For details on the vaccine preparation process, see 3. Preparation of H9 chimeric H1 white oil vaccine in Example 3 (the adjuvant is mineral white oil). The vaccination dose in the control group was used according to the specifications; the injection dose of each animal in the test group was 30ug/feather, and the number of immunizations was 10 pigeons per group. The immunization method was subcutaneous injection in the neck, and the immunization was 2 times, with an interval of 3 weeks between each time. Three weeks after the first immunization, blood was collected from the heart, and serum was separated for subsequent experiments.
3.2血清分离:3.2 Serum separation:
二免3周后心脏采血,低温下离心,收集血清,分装冻存-80℃。Collect blood from the heart 3 weeks after the second vaccination, centrifuge at low temperature, collect serum, aliquot and freeze at -80°C.
3.3HI抗体效价检测:3.3HI antibody titer detection:
按照国家标准GB/T18936-2020规定的标准操作进行,向96孔微量血凝板上1-12孔加入25μL的PBS,再向第1孔内加入25μL免疫3周后的血清,用25μL移液器进行倍比稀释至第10孔,然后加入25μL的4HAU(四单位病毒液),并设PBS和血凝素对照;于37℃作用10min,每空加入25μL 1%SPF鸡红细胞,混匀后室温作用30min,然后计算免疫组和未免疫组SPF鸡HI抗体效价。Follow the standard operations specified in the national standard GB/T18936-2020. Add 25 μL of PBS to wells 1-12 of the 96-well microhemagglutination plate, then add 25 μL of serum after 3 weeks of immunity to the first well, and pipette with 25 μL. Doubling dilution to the 10th well, then add 25 μL of 4HAU (four units of virus solution), and set up PBS and hemagglutinin controls; incubate at 37°C for 10 min, add 25 μL of 1% SPF chicken red blood cells to each hole, and mix Incubate at room temperature for 30 minutes, and then calculate the HI antibody titers of SPF chickens in the immunized group and the unimmunized group.
结果如图3A所示A试验结果:未免疫组(第1组)和单佐剂对照组(第4组)的HI抗体检测效价为0,阳性疫苗组(第2组)的HI抗体效价约为11log2,试验组H9嵌合H1 ISA 71疫苗组(第3组)的HI抗体效价也约为11log2,与阳性疫苗组(第2组)相比本发明的嵌合苗的抗体效价均值可能略高,表明本发明设计的嵌合苗也同商品化的疫苗一样能有效诱导更多的抗体来中和H9N2毒株。图3B为B试验结果:第二次免疫后的HI抗体效价高于第一次免疫,商品化H9疫苗(第2组)两次免疫的效价均很高,H9嵌合H1白油疫苗(第3组)在第二次免疫后HI抗体效价显著升高,而且与商品化H9疫苗比较无显著差异,均能很好的中和H9N2亚型禽流感病毒的感染。The results are shown in Figure 3A. A test results: the HI antibody detection titer of the unimmunized group (Group 1) and the single adjuvant control group (Group 4) was 0, and the HI antibody titer of the positive vaccine group (Group 2) The HI antibody titer of the test group H9 chimeric H1 ISA 71 vaccine group (Group 3) is also about 11log2. Compared with the positive vaccine group (Group 2), the antibody efficacy of the chimeric vaccine of the present invention is The average value may be slightly higher, indicating that the chimeric vaccine designed in the present invention can effectively induce more antibodies to neutralize the H9N2 strain just like the commercial vaccine. Figure 3B shows the results of test B: the HI antibody titer after the second immunization was higher than the first immunization. The commercial H9 vaccine (Group 2) had high titers in both immunizations. The H9 chimeric H1 white oil vaccine (Group 3) The HI antibody titer increased significantly after the second immunization, and there was no significant difference compared with the commercial H9 vaccine. Both of them can well neutralize the infection of H9N2 subtype avian influenza virus.
3.4试验动物免疫后攻毒3.4 Challenge the experimental animals after immunization
毒株为:H9亚型WD毒株。SPF鸡一免后攻毒,商品化H9疫苗对照组、未免疫组和试验组(H9嵌合H1白油疫苗)各5只,每只SPF鸡翅静脉注射1:10稀释的禽流感H9亚型毒株(0.5ml/只),攻毒后的第5天采集每只鸡的泄殖腔及咽喉拭子,进行病毒分离,比较免疫组和未免疫组鸡病毒分离阳性数。The strain is: H9 subtype WD strain. SPF chickens were challenged with the virus after primary immunization. There were 5 commercial H9 vaccine control groups, 5 unimmunized groups, and 5 experimental groups (H9 chimeric H1 white oil vaccine). Each SPF chicken wing was intravenously injected with avian influenza H9 subtype diluted 1:10. strain (0.5ml/bird), collect the cloaca and throat swabs of each chicken on the 5th day after the virus challenge, conduct virus isolation, and compare the number of positive virus isolations in the immune group and the unimmunized chicken group.
将同一只鸡的泄殖腔及气管拭子混合后作为1个样品,每个样品经尿囊腔接种9~11日龄SPF鸡胚5枚,每胚0.2ml,孵育观察5日,逐胚测定鸡胚液的HA效价。每个样品接种的5枚鸡胚中只要有1枚鸡胚胚液的HA效价≥1∶16(微量法),即可判为病毒分离阳性。对病毒分离阴性的样品,应盲传1次后再进行判定。免疫组应至少有4只鸡病毒分离阴性,对照组应至少有4只鸡病毒分离阳性。The cloacal and tracheal swabs of the same chicken were mixed and used as one sample. Each sample was inoculated through the allantoic cavity with 5 9- to 11-day-old SPF chicken embryos, 0.2 ml per embryo. Incubate and observe for 5 days, and determine the chicken embryo by embryo. HA titer of embryonic fluid. As long as one of the five chicken embryos inoculated in each sample has an HA titer of embryonic fluid ≥1:16 (micromethod), it can be judged as positive for virus isolation. Samples with negative virus isolation should be blindly passed once before being judged. There should be at least 4 chickens in the immune group with negative virus isolation, and at least 4 chickens in the control group with positive virus isolation.
结果显示:按规程攻毒H9亚型WD毒株后普莱柯疫苗、H9嵌合H1白油疫苗组均可100%对免疫鸡形成保护,攻毒未免疫组符合要求。The results showed that after being challenged with the H9 subtype WD strain according to the protocol, both the Pleco vaccine and the H9 chimeric H1 white oil vaccine group could protect 100% of the immune chickens, and the unimmunized group met the requirements.
表1:免疫组和未免疫组攻毒后结果Table 1: Result after challenge in immune group and non-immune group
实施例六动物试验3:H9嵌合H1疫苗对海兰白蛋鸡的免疫保护试验Example 6 Animal Test 3: Immune Protection Test of H9 Chimeric H1 Vaccine on Hy-line White Laying Chickens
1.试验动物:7日龄海兰白蛋鸡,免疫方式为颈部皮下注射。1. Experimental animals: 7-day-old Hyline white laying hens, immunized by subcutaneous injection in the neck.
2.组别设置:1,单佐剂对照组;2,阳性对照(H9+新城疫二联苗)组;3,试验组H9嵌合H1弗氏疫苗组;以上每组7只。2. Group settings: 1. Single adjuvant control group; 2. Positive control (H9 + Newcastle disease dual vaccine) group; 3. Experimental group H9 chimeric H1 Freund's vaccine group; 7 animals in each of the above groups.
3.实验步骤:3. Experimental steps:
3.1动物免疫:3.1 Animal immunity:
制备疫苗的过程详见实施例三的4.H9嵌合H1弗氏疫苗的制备(佐剂为弗氏佐剂)。单佐剂对照组免疫剂量每只200ul;试验组每只动物免疫剂量为60ug/200ul/羽,用PBS稀释蛋白,每组7羽份,免疫方式为颈部皮下注射,免疫2次,每次免疫间隔2周,第二次免疫3周后心脏采血,分离血清,用于后续实验。For details on the process of preparing the vaccine, see 4. Preparation of H9 chimeric H1 Freund's vaccine in Example 3 (the adjuvant is Freund's adjuvant). The immune dose of the single adjuvant control group was 200ul per animal; the immune dose of each animal in the test group was 60ug/200ul/feather, and the protein was diluted with PBS, with 7 pigeons in each group. The immunization method was subcutaneous injection in the neck, 2 times each time The immunization interval was 2 weeks, and blood was collected from the heart 3 weeks after the second immunization, and the serum was separated for subsequent experiments.
3.2血清分离:3.2 Serum separation:
二免3周后心脏采血,低温下离心,收集血清,分装冻存-80℃。Collect blood from the heart 3 weeks after the second vaccination, centrifuge at low temperature, collect serum, aliquot and freeze at -80°C.
3.3ELISA检测蛋鸡血清中特异性的抗体:3.3 ELISA detects specific antibodies in laying hen serum:
a,按照每孔蛋白量200ng包板4℃过夜,包板蛋白为H1全长蛋白、H1 stem蛋白、H5ORI蛋白、H9ORI蛋白、H9嵌合H1蛋白;a, Pack the plate with 200ng of protein per well overnight at 4°C. The coating proteins are H1 full-length protein, H1 stem protein, H5ORI protein, H9ORI protein, and H9 chimeric H1 protein;
b,洗涤:次日用含0.05%Tween-20的PBST洗涤包被板,洗4次,每次5min;b. Washing: Wash the coated plate with PBST containing 0.05% Tween-20 the next day, wash 4 times, 5 minutes each time;
c,封闭:加封闭液(5%脱脂奶粉,用PBST配置)200ul,室温封闭3h;c. Blocking: Add 200ul of blocking solution (5% skimmed milk powder, prepared with PBST), and block at room temperature for 3 hours;
d,洗涤:用PBST洗涤待检测板子,洗4次,每次5min;d. Washing: Wash the plate to be tested with PBST, 4 times, 5 minutes each time;
e,一抗孵育:用PBST稀释待检测血清(1:50和1:100),每孔加100ul待检测血清稀释液,37℃孵育1h;PBST做阴性对照;e, primary antibody incubation: dilute the serum to be tested with PBST (1:50 and 1:100), add 100ul of the serum dilution to be tested to each well, and incubate at 37°C for 1 hour; PBST is used as a negative control;
f,洗涤:PBST冲洗包被板,洗涤5次,每次5min;f. Washing: Rinse the coated plate with PBST, wash 5 times, 5 minutes each time;
g,二抗孵育:以PBST(1:30000稀释)稀释HRP标记的羊抗鸡二抗,每孔加100ul,37℃孵育1h;g, Secondary antibody incubation: dilute HRP-labeled goat anti-chicken secondary antibody with PBST (1:30000 dilution), add 100ul to each well, and incubate at 37°C for 1 hour;
h,洗涤:PBST冲洗包被板,洗涤5次,每次5min;h, washing: rinse the coated plate with PBST, wash 5 times, 5 minutes each time;
i,显色:加入TMB底物缓冲液显色,50ul/孔,37℃避光显色3min后加ELISA终止液终止反应,50ul/孔,在OD450nm下读数。i. Color development: Add TMB substrate buffer for color development, 50ul/well, develop color for 3 minutes at 37°C in the dark, then add ELISA stop solution to terminate the reaction, 50ul/well, and read at OD 450nm .
结果如图4A和图4B所示:H9嵌合H1蛋白与H9ORI蛋白的区别是头部区相同,颈部区不同;H1stem是流感H1亚型的颈部区蛋白,其保守序列与H9嵌合H1蛋白颈部区相同。图4A为C试验结果,显示与对照组相比,H9嵌合H1弗氏疫苗组血清对流感H1、H5、H9亚型产生免疫反应,说明H9嵌合H1弗氏疫苗免疫后激发机体产生的血清中有针对性不同流感HA的抗体,为实现通用流感疫苗设计提供理论支撑。图4B为D试验结果,显示当包板蛋白为H1stem时,H9嵌合H1弗氏疫苗组血清(第3组)比阳性对照组血清(H9+新城疫二联苗)(第2组)能激发出更多的颈部区抗体,打破了头部区结合抗体的一惯优势;H9嵌合H1弗氏疫苗组血清(第3组)对包板蛋白H9嵌合H1蛋白、H1stem蛋白的比较发现H9嵌合H1弗氏疫苗组血清(第3组)能激发出较多的头部区和颈部区抗体提高机体免疫力。The results are shown in Figure 4A and Figure 4B: The difference between the H9 chimeric H1 protein and the H9ORI protein is that the head region is the same but the neck region is different; H1stem is the neck region protein of the influenza H1 subtype, and its conserved sequence is the same as that of the H9 chimeric protein. The neck region of the H1 protein is the same. Figure 4A shows the results of test C, showing that compared with the control group, the serum of the H9 chimeric H1 Freund's vaccine group produced immune responses to influenza H1, H5, and H9 subtypes, indicating that the H9 chimeric H1 Freund's vaccine stimulated the body to produce There are antibodies targeting different influenza HAs in the serum, providing theoretical support for the design of universal influenza vaccines. Figure 4B shows the results of D test, showing that when the packaging protein is H1stem, the serum of the H9 chimeric H1 Freund's vaccine group (Group 3) can stimulate more stimulation than the serum of the positive control group (H9+ Newcastle disease dual vaccine) (Group 2) More neck region antibodies were produced, breaking the usual advantage of binding antibodies in the head region; Comparative findings of the H9 chimeric H1 Freund's vaccine group serum (Group 3) on the package plate protein H9 chimeric H1 protein and H1stem protein The H9 chimeric H1 Freund's vaccine group serum (Group 3) can stimulate more antibodies in the head and neck areas to improve the body's immunity.
3.4血凝试验3.4 Hemagglutination test
a,在血凝板中每孔加入25ul PBS。第一孔加入灭活H9N2亚型禽流感病毒25ul,依次作2倍系列稀释,同时设立阴性对照孔。a. Add 25ul PBS to each well of the hemagglutination plate. Add 25ul of inactivated H9N2 subtype avian influenza virus to the first well, perform 2-fold serial dilutions, and set up negative control wells at the same time.
b,每孔加入25ul 1%鸡红细胞悬浮液,水平振荡器上振荡1~2min混匀,37℃静置30min后判定结果。结果:以100%凝集(++++)的病毒最大稀释度为该病毒血凝价,即为一个凝集单位,H9N2亚型禽流感病毒血凝效价为1:27。b. Add 25ul of 1% chicken red blood cell suspension to each well, mix on a horizontal oscillator for 1 to 2 minutes, and let stand at 37°C for 30 minutes before judging the result. Results: The maximum dilution of the virus with 100% agglutination (++++) is the hemagglutination titer of the virus, which is one agglutination unit. The hemagglutination titer of the H9N2 subtype avian influenza virus is 1:2 7 .
3.5血凝抑制试验3.5 Hemagglutination inhibition test
根据3.4中结果制备四单位病毒液;Prepare four units of virus liquid based on the results in 3.4;
a,在血凝板中每孔加入25ul PBS,第一孔加入25ul待检血清(原血清),依次作2倍梯度稀释,同时设立阴性对照孔(PBS);a. Add 25ul of PBS to each well of the hemagglutination plate, add 25ul of the serum to be tested (original serum) to the first well, and perform 2-fold gradient dilution in sequence, and set up a negative control well (PBS) at the same time;
b,除阴性对照孔之外,每孔加入25ul四单位病毒液:置水平振荡器上振荡12min后,37℃静置15min;b. Except for the negative control well, add 25ul of four units of virus solution to each well: place it on a horizontal oscillator for 12 minutes, then let it stand at 37°C for 15 minutes;
c,每孔加入25ul 1%鸡红细胞悬浮液,水平振荡器上振荡1~2min混匀,37℃静置30min后判定结果。c. Add 25ul of 1% chicken red blood cell suspension to each well, mix on a horizontal oscillator for 1 to 2 minutes, and let stand at 37°C for 30 minutes before determining the result.
结果图5所示:H9嵌合H1弗氏疫苗(第3组)免疫后血抑效价约5log2,与单佐剂对照组(第1组)相比能激发更多的抗体来中和H9N2亚型禽流感病毒,且与商品化H9+新城疫二联苗(第2组)相比无显著差异性,为实现新型重组蛋白疫苗的研发提供理论支撑。The results are shown in Figure 5: the H9 chimeric H1 Freund's vaccine (Group 3) has a blood suppression titer of about 5log2 after immunization, and can stimulate more antibodies to neutralize H9N2 compared with the single adjuvant control group (Group 1). Subtype avian influenza virus, and there is no significant difference compared with the commercial H9+ Newcastle disease two-combination vaccine (Group 2), which provides theoretical support for the development of new recombinant protein vaccines.
3.5试验动物免疫后攻毒3.5 Challenge the test animals after immunization
二免3周后,滴鼻攻毒A/chicken/Shanxi/1.23TGRL003-O/2019H9N2,每只蛋鸡攻毒剂量300ul(4HAU)。用棉签对每只小鸡的口和肛进行攻毒后第7天采样,保存在1ml病毒保存液中,振荡后接种10日龄SPF鸡胚,72h后收集尿囊液检测鸡胚排毒情况。Three weeks after the second vaccination, challenge A/chicken/Shanxi/1.23TGRL003-O/2019H9N2 intranasally, with a challenge dose of 300ul (4HAU) per laying hen. Use cotton swabs to sample the mouth and anus of each chick on the 7th day after the virus challenge, and store them in 1 ml of virus preservation solution. After shaking, inoculate 10-day-old SPF chicken embryos, and collect allantoic fluid 72 hours later to detect the detoxification of the chicken embryos.
将攻毒后第7天采集的咽肛拭子进行病毒分离。每组选6只蛋鸡样本分离好的病毒液接种10日龄SPF鸡胚,每只再设3个重复组,孵育观察72h,收集尿囊液进行HA测定,无论死胚、活胚均应测定鸡胚尿囊液血凝价,比较免疫组和对照组鸡病毒分离阳性数。每个样品接种的3枚鸡胚中只要有1枚鸡胚胚液的HA效价≥1∶16(微量法),即可判为病毒分离阳性。对病毒分离阴性的样品,应盲传1次后再进行判定。结果如表2所示。Viruses were isolated from pharyngeal and anal swabs collected on the 7th day after virus challenge. In each group, 6 laying hens were selected to inoculate the separated virus liquid from 10-day-old SPF chicken embryos, and 3 replicate groups were set up for each. They were incubated and observed for 72 hours, and the allantoic fluid was collected for HA measurement. Both dead and live embryos should be The hemagglutination value of chicken embryo allantoic fluid was measured, and the positive number of virus isolation in chickens in the immune group and the control group was compared. As long as one of the three chicken embryos inoculated in each sample has an HA titer of embryonic fluid ≥1:16 (micromethod), it can be judged as positive for virus isolation. Samples with negative virus isolation should be blindly passed once before being judged. The results are shown in Table 2.
表2:不同组别攻毒后结果Table 2: Results after virus challenge in different groups
结果显示:单佐剂对照组显示样本均能检测到H9N2病毒,而试验疫苗组比起对照组均能抑制H9N2病毒在蛋鸡样本体内的繁殖,与阳性疫苗组效果一致,本发明设计的疫苗能够很好的抵御H9N2病毒入侵。The results showed that the single adjuvant control group showed that the H9N2 virus could be detected in all samples, while the test vaccine group could inhibit the reproduction of H9N2 virus in laying hen samples compared with the control group, which was consistent with the effect of the positive vaccine group. The vaccine designed by the present invention It can well resist H9N2 virus invasion.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310682630.0A CN116874607B (en) | 2023-06-09 | 2023-06-09 | A recombinant chimeric vaccine of H9 subtype avian influenza and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310682630.0A CN116874607B (en) | 2023-06-09 | 2023-06-09 | A recombinant chimeric vaccine of H9 subtype avian influenza and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116874607A true CN116874607A (en) | 2023-10-13 |
CN116874607B CN116874607B (en) | 2024-12-10 |
Family
ID=88253835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310682630.0A Active CN116874607B (en) | 2023-06-09 | 2023-06-09 | A recombinant chimeric vaccine of H9 subtype avian influenza and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116874607B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140357845A1 (en) * | 2011-11-28 | 2014-12-04 | Crucell Holland B.V. | Influenza virus vaccines and uses thereof |
CN106715474A (en) * | 2014-05-27 | 2017-05-24 | 美利坚合众国,由健康及人类服务部部长代表 | Stabilized influenza hemagglutinin stem region trimers and uses thereof |
CN109073639A (en) * | 2016-02-03 | 2018-12-21 | Cg探索股份有限公司 | The composition of the influenza hemagglutinin of mature cleavage site with heterologous epitope and/or change |
CN113150083A (en) * | 2021-04-29 | 2021-07-23 | 山西高等创新研究院 | Recombinant avian influenza subunit vaccine and preparation method thereof |
US20210260179A1 (en) * | 2018-06-21 | 2021-08-26 | Icahn School Of Medicine At Mount Sinai | Mosaic influenza virus hemagglutinin polypeptides and uses thereof |
-
2023
- 2023-06-09 CN CN202310682630.0A patent/CN116874607B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140357845A1 (en) * | 2011-11-28 | 2014-12-04 | Crucell Holland B.V. | Influenza virus vaccines and uses thereof |
CN106715474A (en) * | 2014-05-27 | 2017-05-24 | 美利坚合众国,由健康及人类服务部部长代表 | Stabilized influenza hemagglutinin stem region trimers and uses thereof |
CN109073639A (en) * | 2016-02-03 | 2018-12-21 | Cg探索股份有限公司 | The composition of the influenza hemagglutinin of mature cleavage site with heterologous epitope and/or change |
US20210260179A1 (en) * | 2018-06-21 | 2021-08-26 | Icahn School Of Medicine At Mount Sinai | Mosaic influenza virus hemagglutinin polypeptides and uses thereof |
CN113150083A (en) * | 2021-04-29 | 2021-07-23 | 山西高等创新研究院 | Recombinant avian influenza subunit vaccine and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
ALI H. ELLEBEDY等: "Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans", PNAS, vol. 111, no. 36, 9 September 2014 (2014-09-09), pages 13133 - 13138 * |
GENBANK: "hemagglutinin, partial [Influenza A virus (A/Guangdong/197/2009(H1N1))]", GENBANK, 25 July 2016 (2016-07-25), pages 96436 * |
王东红等: "嵌合流感病毒血凝素抗原(cH7/3)在昆虫杆状病毒系统中的表达及生物活性鉴定", 病毒学报, vol. 31, no. 5, 30 September 2015 (2015-09-30), pages 524 - 529 * |
Also Published As
Publication number | Publication date |
---|---|
CN116874607B (en) | 2024-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8288090B2 (en) | Influenza vaccines | |
US10793834B2 (en) | Live-attenuated virus and methods of production and use | |
JP7655849B2 (en) | Vectors for eliciting immune responses against non-dominant epitopes within the hemagglutinin (HA) protein | |
CN115998856A (en) | Novel influenza virus immunogenic composition and preparation method and application thereof | |
CN113150083B (en) | Recombinant avian influenza subunit vaccine and preparation method thereof | |
CN110124025B (en) | Avian influenza and avian adenovirus type 4 bigeminal genetic engineering subunit vaccine and preparation method thereof | |
US9504741B2 (en) | Immune methods against influenza viruses and combinatorial vaccines thereof | |
US10369211B2 (en) | Influenza H5 vaccines | |
KR102027758B1 (en) | Attenuated swine influenza vaccines and methods of making and use thereof | |
CN103421843B (en) | The gene of coding H5N1 subtype avian influenza synonym hemagglutinin (HA) albumen and synonym neuraminidase (NA) albumen and application thereof | |
CN111825768A (en) | Based on self-assembled ferritin nanoantigen particles and influenza vaccine and preparation method | |
KR20200085135A (en) | H5N8 strain Recombinant Influenza A virus and Vaccine Composition for H5 Serotype Influenza A virus belonging to clade 2.3.4.4A comprising the same | |
CN112111503B (en) | Adenovirus vector bivalent vaccine for simultaneously preventing H5 and H9 subtypes of avian influenza and preparation method thereof | |
CN110128545B (en) | Fusion gene, recombinant expression vector, antigen, preparation method and application thereof | |
CN109266623B (en) | A vaccine strain rSHA-△200 and its construction method and application | |
CN104073470A (en) | Spinner-flask culture method for H9N2 subtype of avian influenza virus | |
US11547754B2 (en) | H5 avian influenza vaccine strain which differentiates infected from vaccinated animals, preparation method therefor, and application | |
EP3715459B1 (en) | H9 avian influenza vaccine strain which differentiates infected from vaccinated animals, and preparation method therefor | |
KR20140010582A (en) | Recombinant expression vector for preparing highly productive and avirulent influenza virus, and use thereof | |
CN116874607A (en) | H9 subtype avian influenza recombinant chimeric vaccine and preparation method thereof | |
Peng et al. | Protective efficacy of an inactivated chimeric H7/H5 avian influenza vaccine against highly pathogenic avian influenza H7N9 and clade 2.3. 4.4 H5 viruses | |
CN108640981A (en) | H7N9 subtype influenza virus recombinant protein and viral vaccine | |
CN111647610B (en) | H9N2 subtype avian influenza virus with exchanged HA and NS1 deletion gene packaging signals and construction method and application thereof | |
KR102098585B1 (en) | H2 subtype influenza virus having cross immunogenicity and vaccine comprising the same | |
CN100410378C (en) | Gene encoding avian influenza hemagglutinin and its plant expression vector and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |