CN116390054A - V2V multicast communication minimum-maximum decoding error rate resource allocation method - Google Patents
V2V multicast communication minimum-maximum decoding error rate resource allocation method Download PDFInfo
- Publication number
- CN116390054A CN116390054A CN202310273069.0A CN202310273069A CN116390054A CN 116390054 A CN116390054 A CN 116390054A CN 202310273069 A CN202310273069 A CN 202310273069A CN 116390054 A CN116390054 A CN 116390054A
- Authority
- CN
- China
- Prior art keywords
- parameter
- transmission
- decoding error
- error rate
- channel environment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000004891 communication Methods 0.000 title claims abstract description 34
- 238000013468 resource allocation Methods 0.000 title claims abstract description 20
- 230000005540 biological transmission Effects 0.000 claims abstract description 248
- 238000005457 optimization Methods 0.000 claims abstract description 72
- 238000011480 coordinate descent method Methods 0.000 claims description 8
- 238000005265 energy consumption Methods 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 3
- 230000006855 networking Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 55
- 238000010586 diagram Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
- H04W4/46—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/535—Allocation or scheduling criteria for wireless resources based on resource usage policies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种V2V多播通信最小‑最大译码错误率资源分配方法,包括:分别获取车联网系统的系统参数、车联网系统中目标V2V多播组中各个端前的第一信道环境参数、以及车联网系统中和目标V2V多播组使用相同通信资源的V2I用户端当前的第二信道环境参数与第一发射参数;目标V2V多播组包括发射端和多个接收端;根据第一信道环境参数、第二信道环境参数、第一发射参数、系统参数、预设发射参数和预设收敛阈值,通过优化方法得到多组传输参数;每组传输参数包括一个传输码长和一个第二发射参数;从多组传输参数中选出一组传输参数,作为发射端与多个接收端当前通信时发射端的最优传输参数;在最优传输参数下各接收端的译码错误率中的最大译码错误率最小。
The invention discloses a method for resource allocation of minimum-maximum decoding error rate in V2V multicast communication, which includes: respectively acquiring system parameters of the Internet of Vehicles system and the first channel environment in front of each terminal in the target V2V multicast group in the Internet of Vehicles system parameter, and the current second channel environment parameter and the first transmission parameter of the V2I user end using the same communication resources as the target V2V multicast group in the vehicle networking system; the target V2V multicast group includes a transmitting end and multiple receiving ends; according to the first A channel environment parameter, a second channel environment parameter, a first transmission parameter, a system parameter, a preset transmission parameter and a preset convergence threshold, and multiple sets of transmission parameters are obtained through an optimization method; each set of transmission parameters includes a transmission code length and a first Two transmission parameters; select a set of transmission parameters from multiple sets of transmission parameters, as the optimal transmission parameters of the transmitting end when the transmitting end communicates with multiple receiving ends; in the decoding error rate of each receiving end under the optimal transmission parameters The maximum decoding error rate is the smallest.
Description
技术领域technical field
本发明属于无线通信技术领域,具体涉及一种V2V多播通信最小-最大译码错误率资源分配方法。The invention belongs to the technical field of wireless communication, and in particular relates to a minimum-maximum decoding error rate resource allocation method for V2V multicast communication.
背景技术Background technique
NR-V2X支持车辆与周边事物无线通信,实现智能信息交换和共享,并具有协同自动驾驶、复杂环境感知、智能交通控制等先进应用功能,其中常见的车辆通信连接形式包含车辆到车辆(Vehicle to Vehicle,V2V),车辆到基础设施(Vehicle to Infrastructure,V2I)等:V2V用于支持车辆关键信息的即时交互,如协作感知消息、分散环境通知信息等,这些信息需要周期性地在关联车辆间交互,对时延与可靠性有严格要求;V2I通过高容量通信链路支持频繁访问网络和服务器,一般用于内容分享、媒体流传输等长包数据任务。NR-V2X supports wireless communication between vehicles and surrounding things, realizes intelligent information exchange and sharing, and has advanced application functions such as collaborative automatic driving, complex environment perception, and intelligent traffic control. The common forms of vehicle communication connections include vehicle to vehicle (Vehicle to Vehicle) Vehicle, V2V), Vehicle to Infrastructure (V2I) Interaction has strict requirements on latency and reliability; V2I supports frequent access to networks and servers through high-capacity communication links, and is generally used for long-packet data tasks such as content sharing and media streaming.
车联网V2V多播技术作为Rel-16特别增强技术、智慧交通系统的关键推动技术,能进一步加强交通安全性、改善车辆协同质量,推动了多项交通功能发展。V2V通信通常应用于URLLC场景下时延敏感性安全关键信息传输业务,周期性向周围车辆用户发送安全服务通知信息(如定位、速度、加速度等车辆行驶信息、碰撞警告信息等)。这可以为驾驶员提供足够反应时间,针对路况及时做出决策,特别是在校车和救护车等公共安全服务中,V2V多播通信是必需的功能。As a special enhancement technology of Rel-16 and a key driving technology of intelligent transportation system, the V2V multicast technology of Internet of Vehicles can further enhance traffic safety, improve the quality of vehicle coordination, and promote the development of multiple transportation functions. V2V communication is usually applied to delay-sensitive safety-critical information transmission business in URLLC scenarios, and periodically sends safety service notification information (such as vehicle driving information such as positioning, speed, acceleration, collision warning information, etc.) to surrounding vehicle users. This can provide enough reaction time for drivers to make timely decisions on road conditions, especially in public safety services such as school buses and ambulances, where V2V multicast communication is a required function.
NR-V2X中支持更为灵活的传输模式,除了单播和广播,还包括多播模式。在安全或控制类场景下,相比于广播,多播减少冗余更加有效、可靠;相比于单播,多播节省能量、提高频谱利用率。但与此同时,关于NR-V2X多播的研究远远少于单播,NR-V2X场景下的多播传输方法仍存在许多挑战。在安全驾驶类场景,3GPP规划32字节码长的传输,至少满足99.9%的可靠性。为满足严格的QoS需求,必须利用短包数据通信理论对V2V多播组进行资源分配,这使得资源分配问题高度非凸且在计算上具有挑战性。NR-V2X supports more flexible transmission modes, including multicast mode in addition to unicast and broadcast. In security or control scenarios, compared with broadcasting, multicasting is more effective and reliable in reducing redundancy; compared with unicasting, multicasting saves energy and improves spectrum utilization. But at the same time, research on NR-V2X multicast is far less than unicast, and there are still many challenges in multicast transmission methods in NR-V2X scenarios. In safe driving scenarios, 3GPP plans to transmit a 32-byte code length, which meets at least 99.9% reliability. To meet stringent QoS requirements, resource allocation to V2V multicast groups must be done using short-packet data communication theory, which makes the resource allocation problem highly non-convex and computationally challenging.
现有的车联网低时延高可靠场景大部分工作都是基于V2V单播需求进行资源分配,如此使得组播的有效性与可靠性均较低。Most of the existing low-latency and high-reliability scenarios of the Internet of Vehicles are based on V2V unicast requirements for resource allocation, which makes the effectiveness and reliability of multicast low.
发明内容Contents of the invention
为了解决相关技术中存在的上述问题,本发明提供了一种V2V多播通信最小-最大译码错误率资源分配方法。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above-mentioned problems in the related art, the present invention provides a method for resource allocation of minimum-maximum decoding error rate in V2V multicast communication. The technical problem to be solved in the present invention is realized through the following technical solutions:
本发明提供一种V2V多播通信最小-最大译码错误率资源分配方法,包括:The present invention provides a minimum-maximum decoding error rate resource allocation method for V2V multicast communication, including:
分别获取车联网系统的系统参数、所述车联网系统中目标V2V多播组中各个端前对应的第一信道环境参数、以及所述车联网系统中和所述目标V2V多播组使用相同通信资源的V2I用户端当前对应的第二信道环境参数与第一发射参数;所述目标V2V多播组包括一个发射端和多个接收端;Respectively acquire the system parameters of the Internet of Vehicles system, the first channel environment parameters corresponding to each terminal in the target V2V multicast group in the Internet of Vehicles system, and the same communication used by the Internet of Vehicles system and the target V2V multicast group The second channel environment parameter and the first transmission parameter currently corresponding to the V2I user terminal of the resource; the target V2V multicast group includes one transmitting terminal and multiple receiving terminals;
根据所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数、所述系统参数、预设发射参数和预设收敛阈值,通过优化方法得到多组传输参数;每组传输参数包括一个候选传输码长和一个候选第二发射参数;According to the first channel environment parameter, the second channel environment parameter, the first transmission parameter, the system parameter, the preset transmission parameter and the preset convergence threshold, multiple sets of transmission parameters are obtained through an optimization method; each set The transmission parameters include a candidate transmission code length and a candidate second transmission parameter;
从所述多组传输参数中选出一组传输参数,作为所述发射端与所述多个接收端当前通信时所述发射端的最优传输参数;其中,在所述最优传输参数下,各个接收端的译码错误率中的最大译码错误率最小。Selecting a set of transmission parameters from the multiple sets of transmission parameters as the optimal transmission parameters of the transmitting end when the transmitting end communicates with the plurality of receiving ends; wherein, under the optimal transmission parameters, Among the decoding error rates of the respective receivers, the maximum decoding error rate is the smallest.
在一些实施例中,所述从所述多组传输参数中选出一组传输参数,作为所述发射端与所述多个接收端当前通信时所述发射端的最优传输参数,包括:In some embodiments, the selecting a set of transmission parameters from the multiple sets of transmission parameters as the optimal transmission parameters of the transmitting end when the transmitting end communicates with the plurality of receiving ends currently includes:
确定每组传输参数下各个接收端的译码错误率中的最大译码错误率,得到与所述多组传输参数一一对应的多个最大译码错误率;Determining the maximum decoding error rate among the decoding error rates of each receiving end under each set of transmission parameters, and obtaining a plurality of maximum decoding error rates corresponding to the multiple sets of transmission parameters one-to-one;
将所述多个最大译码错误率中的最小值对应的一组传输参数,作为所述最优传输参数。A set of transmission parameters corresponding to a minimum value among the plurality of maximum decoding error rates is used as the optimal transmission parameter.
在一些实施例中,所述系统参数包括第一参数和第二参数;所述优化方法包括坐标下降法;所述根据所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数、所述系统参数、预设发射参数和预设收敛阈值,通过优化方法得到多组传输参数,包括:In some embodiments, the system parameters include a first parameter and a second parameter; the optimization method includes a coordinate descent method; A transmission parameter, the system parameter, a preset transmission parameter and a preset convergence threshold, and multiple sets of transmission parameters are obtained through an optimization method, including:
根据所述第一参数,确定第一预设优化函数的第一约束条件和第二预设优化函数的第二约束条件;预设优化函数用于表示译码错误率、信噪比、传输码长和第二发射参数之间的关系;According to the first parameter, determine the first constraint condition of the first preset optimization function and the second constraint condition of the second preset optimization function; the preset optimization function is used to represent the decoding error rate, signal-to-noise ratio, transmission code the relationship between the length and the second emission parameter;
将所述预设发射参数作为初始第二发射参数,根据所述初始第二发射参数、所述第二参数、所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数、所述预设收敛阈值、所述第一预设优化函数、所述第一约束条件、所述第二预设优化函数和所述第二约束条件,通过所述坐标下降法进行传输码长和第二发射参数的多次迭代,得到中间传输码长;Using the preset transmission parameter as an initial second transmission parameter, according to the initial second transmission parameter, the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission Parameters, the preset convergence threshold, the first preset optimization function, the first constraint condition, the second preset optimization function and the second constraint condition, the transmission code is performed by the coordinate descent method Long and multiple iterations of the second transmission parameter to obtain the intermediate transmission code length;
根据所述中间传输码长、所述第二参数、所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数、所述第二预设优化函数和所述第二约束条件,得到所述多组传输参数。According to the intermediate transmission code length, the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, the second preset optimization function and the second constraints to obtain the multiple sets of transmission parameters.
在一些实施例中,所述根据所述初始第二发射参数、所述第二参数、所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数、所述预设收敛阈值、所述第一预设优化函数、所述第一约束条件、所述第二预设优化函数和所述第二约束条件,通过所述坐标下降法进行传输码长和第二发射参数的多次迭代,得到中间传输码长,包括:In some embodiments, according to the initial second transmission parameter, the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, the preset The convergence threshold, the first preset optimization function, the first constraint condition, the second preset optimization function and the second constraint condition, the transmission code length and the second transmission parameter by the coordinate descent method Multiple iterations of to get the intermediate transmission code length, including:
在第t次迭代时,获取第t-1次迭代得到的第二发射参数,将所述第二参数、所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数和第t-1次迭代得到的第二发射参数代入所述第一预设优化函数中,并根据所述第一约束条件对所述第一预设优化函数求解,得到第t次迭代的传输码长;t为大于或等于1的整数,当t为1时,第t-1次迭代得到的第二发射参数为所述初始第二发射参数;At the time of the t iteration, the second transmission parameter obtained in the t-1 iteration is obtained, and the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter and the second transmission parameters obtained in the t-1th iteration are substituted into the first preset optimization function, and the first preset optimization function is solved according to the first constraint condition to obtain the transmission of the tth iteration code length; t is an integer greater than or equal to 1, and when t is 1, the second transmission parameter obtained in the t-1th iteration is the initial second transmission parameter;
将所述第二参数、所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数和第t次迭代得到的传输码长代入所述第二预设优化函数中,并根据所述第二约束条件对所述第二预设优化函数求解,得到第t次迭代的第二发射参数;Substituting the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, and the transmission code length obtained by the t-th iteration into the second preset optimization function, And solving the second preset optimization function according to the second constraint condition to obtain the second transmission parameter of the t-th iteration;
根据所述第二参数、所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数、第t-1次迭代得到的第二发射参数和传输码长,以及第t次迭代得到的第二发射参数和传输码长,分别确定各个接收端的第t-1次的译码错误率、第t次的译码错误率;According to the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, the second transmission parameter and the transmission code length obtained in the t-1th iteration, and the tth The second transmission parameter and the transmission code length obtained by the second iteration determine respectively the decoding error rate of the t-1th time and the decoding error rate of the tth time of each receiving end;
根据所述第t-1次的译码错误率中的最大译码错误率,以及所述第t次的译码错误率中的最大译码错误率,计算第t次的目标函数值;Calculate the t-th objective function value according to the maximum decoding error rate in the t-1 th decoding error rate and the t-th decoding error rate in the maximum decoding error rate;
当所述第t次的目标函数值小于或等于所述预设收敛阈值时,结束迭代,并将第t次迭代的传输码长作为所述中间传输码长。When the t-th objective function value is less than or equal to the preset convergence threshold, the iteration ends, and the transmission code length of the t-th iteration is used as the intermediate transmission code length.
在一些实施例中,所述根据所述第二参数、所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数、第t-1次迭代得到的第二发射参数和传输码长,以及第t次迭代得到的第二发射参数和传输码长,分别确定各个接收端的第t-1次的译码错误率、第t次的译码错误率,包括:In some embodiments, the second transmission parameter obtained according to the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, and the t-1th iteration and the transmission code length, as well as the second transmission parameter and the transmission code length obtained in the tth iteration, respectively determine the decoding error rate of the t-1th time and the decoding error rate of the tth time of each receiving end, including:
根据所述第二参数、所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数,以及第t-1次迭代得到的第二发射参数和传输码长,计算确定各个接收端的第t-1次的译码错误率;Calculate and determine according to the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, and the second transmission parameter and transmission code length obtained in the t-1th iteration The decoding error rate of the t-1th time of each receiving end;
根据所述第二参数、所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数,以及第t次迭代得到的第二发射参数和传输码长,计算各个接收端的第t次的译码错误率。According to the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, and the second transmission parameter and transmission code length obtained in the tth iteration, calculate the The decoding error rate of the tth time.
在一些实施例中,所述根据所述第t-1次的译码错误率中的最大译码错误率,以及所述第t次的译码错误率中的最大译码错误率,计算第t次的目标函数值,包括:In some embodiments, according to the maximum decoding error rate in the decoding error rate of the t-1th time and the maximum decoding error rate in the decoding error rate of the tth time, the calculation of the first The objective function value of t times, including:
将第t-1次的译码错误率中的最大译码错误率与第t次的译码错误率中的最大译码错误率作差,得到差值;Making a difference between the maximum decoding error rate in the decoding error rate of the t-1th time and the maximum decoding error rate in the decoding error rate of the tth time to obtain a difference;
将得到的差值的绝对值与第t-1次的译码错误率中的最大译码错误率之间的比值,作为所述第t次的目标函数值。The ratio between the obtained absolute value of the difference and the maximum decoding error rate among the decoding error rates of the t-1th time is used as the objective function value of the tth time.
在一些实施例中,所述根据所述中间传输码长、所述第二参数、所述第一信道环境参数、所述第二信道环境参数、所述第一发射参数、所述第二预设优化函数和所述第二约束条件,得到所述多组传输参数,包括:In some embodiments, according to the intermediate transmission code length, the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, the second preset Assuming an optimization function and the second constraint condition, the multiple sets of transmission parameters are obtained, including:
对所述中间传输码长进行向下取整,得到一个整数;Rounding down the intermediate transmission code length to obtain an integer;
将所述整数和所述整数的相邻整数均作为候选传输码长;using the integer and adjacent integers of the integer as candidate transmission code lengths;
将各个候选传输码长、所述第二参数、所述第一信道环境参数、所述第二信道环境参数和所述第一发射参数代入所述第二预设优化函数中,并根据所述第二约束条件对所述第二预设优化函数求解,得到各个候选传输码长对应的一个候选第二发射参数;Substituting each candidate transmission code length, the second parameter, the first channel environment parameter, the second channel environment parameter, and the first transmission parameter into the second preset optimization function, and according to the The second constraint condition is to solve the second preset optimization function to obtain a candidate second transmission parameter corresponding to each candidate transmission code length;
将每个候选传输码长与对应的一个候选第二发射参数作为一组传输参数,得到所述多组传输参数。Each candidate transmission code length and a corresponding candidate second transmission parameter are used as a set of transmission parameters to obtain the multiple sets of transmission parameters.
在一些实施例中,所述第一预设优化函数为:In some embodiments, the first preset optimization function is:
所述第一约束条件为:The first constraint condition is:
其中,εn,i为第i个接收端的译码错误率,i=1,2,...,A,A为所述目标V2V多播组内的接收端的总数,γn,i(Pn)为第i个接收端的信干燥比,Vn,i(Pn)为第i个接收端的信道色散,Q(.)为高斯函数,Pn为第二发射参数、为正整数,m为传输码长,D为预设安全信息数据包大小,Mmin为传输码长下限值、Mmax为传输码长上限值,εmax为预设最大译码错误率。Wherein, ε n,i is the decoding error rate of the i-th receiver, i=1,2,...,A, A is the total number of receivers in the target V2V multicast group, γ n,i (P n ) is the SNR of the i-th receiving end, V n,i (P n ) is the channel dispersion of the i-th receiving end, Q(.) is a Gaussian function, P n is the second transmission parameter, is a positive integer, m is the transmission code length, D is the preset security information packet size, M min is the lower limit of the transmission code length, M max is the upper limit of the transmission code length, and ε max is the preset maximum decoding error rate .
在一些实施例中,所述第二预设优化函数为:In some embodiments, the second preset optimization function is:
所述第二约束条件为:The second constraint condition is:
其中,Pn,max为预设最大第二发射参数,γmax为预设最大信干燥比、Etot为预设系统总能源消耗。Wherein, P n,max is the preset maximum second transmission parameter, γ max is the preset maximum signal-to-dry ratio, and E tot is the preset total energy consumption of the system.
本发明具有如下有益技术效果:The present invention has the following beneficial technical effects:
通过优化发射参数和通信码长,以最小化V2V多播组最大译码错误率,能够使发射端的信息向多个接收端准确及时地传输,从而提高了多播的可靠性和有效性,提升了交通安全性。By optimizing the transmission parameters and communication code length, the maximum decoding error rate of the V2V multicast group can be minimized, so that the information of the transmitter can be transmitted to multiple receivers accurately and timely, thereby improving the reliability and effectiveness of multicast, and improving traffic safety.
以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
附图说明Description of drawings
图1为本发明实施例提供的示例性的V2V多播网络的模型图;FIG. 1 is a model diagram of an exemplary V2V multicast network provided by an embodiment of the present invention;
图2为本发明实施例提供的V2V多播通信最小-最大译码错误率资源分配方法的一个方法流程图;FIG. 2 is a flow chart of a method for V2V multicast communication minimum-maximum decoding error rate resource allocation method provided by an embodiment of the present invention;
图3为本发明实施例提供的示例性的数据包信息量、接收端个数对译码错误率的影响关系对比图;Fig. 3 is an exemplary data packet information amount provided by an embodiment of the present invention, and a comparison diagram of the impact relationship between the number of receiving ends on the decoding error rate;
图4为本发明实施例提供的示例性的车速、接收端个数对译码错误率的影响关系对比图。FIG. 4 is a comparative diagram of the relationship between exemplary vehicle speed and the number of receiving terminals on the decoding error rate according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below in conjunction with specific examples, but the embodiments of the present invention are not limited thereto.
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present invention, the terms "first" and "second" are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present invention, "plurality" means two or more, unless otherwise specifically defined.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples described in this specification.
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。Although the present invention has been described in conjunction with various embodiments herein, in the process of implementing the claimed invention, those skilled in the art can understand and Other variations of the disclosed embodiments are implemented. In the claims, the word "comprising" does not exclude other components or steps, and "a" or "an" does not exclude a plurality. A single processor or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that these measures cannot be combined to advantage.
目前,现有的车联网低时延高可靠场景大部分工作都是基于V2V单播需求进行资源分配。然而,V2V多播组可实现的最小译码错误率取决于组内所有接收端的译码错误率,需要考虑最差接收端的情况,以保证组播的有效性与可靠性,为此本发明提供一种V2V多播通信最小-最大译码错误率资源分配方法。At present, most of the existing low-latency and high-reliability scenarios of the Internet of Vehicles are based on resource allocation based on V2V unicast requirements. However, the minimum decoding error rate achievable by a V2V multicast group depends on the decoding error rates of all receivers in the group, and it is necessary to consider the situation of the worst receiver to ensure the effectiveness and reliability of multicast. For this reason, the present invention provides A minimum-maximum decoding error rate resource allocation method for V2V multicast communication.
图1是本发明实施例提供的示例性的V2V多播网络的模型图,如图1所示,车联网系统中包括基站gNB、V2V多播组和多个V2I用户端。该V2V多播组中包括一个发射端n与A个(例如,4个)接收端a,并且,gNB位于高速公路路边。发射端、接收端和用户端的发射机与接收机均配备单天线,V2V多播组复用V2I上行资源。该系统采用时分多址作为介质访问控制协议,V2V多播组内的发射端需要在τ=MmaxTs秒内将数据传输到多播组内的接收端,其中,Ts=1/B表示一个符号持续时间,B表示系统带宽,Mmax表示允许数据传输的最大符号数。信道在V2V发射端向接收端发送m个符号的持续时间内是准静态的。本发明提供的方法可以应用在基站侧。Fig. 1 is a model diagram of an exemplary V2V multicast network provided by an embodiment of the present invention. As shown in Fig. 1 , the IoV system includes a base station gNB, a V2V multicast group and multiple V2I clients. The V2V multicast group includes a transmitting terminal n and A (for example, 4) receiving terminals a, and the gNB is located on the roadside of the expressway. The transmitters and receivers at the transmitter, receiver, and user end are all equipped with a single antenna, and the V2V multicast group multiplexes V2I uplink resources. The system adopts time division multiple access as the media access control protocol. The transmitter in the V2V multicast group needs to transmit data to the receiver in the multicast group within τ=M max T s seconds, where T s =1/B Represents a symbol duration, B represents the system bandwidth, and M max represents the maximum number of symbols allowed for data transmission. The channel is quasi-static for the duration of m symbols sent from the V2V transmitter to the receiver. The method provided by the present invention can be applied at the base station side.
图2是本发明实施例提供的V2V多播通信最小-最大译码错误率资源分配方法的一个可选的流程图,如图2所示,所述方法包括以下步骤:Fig. 2 is an optional flow chart of a method for resource allocation of minimum-maximum decoding error rate in V2V multicast communication provided by an embodiment of the present invention. As shown in Fig. 2, the method includes the following steps:
S101、分别获取车联网系统的系统参数、车联网系统中目标V2V多播组中各个端前对应的第一信道环境参数、以及车联网系统中和目标V2V多播组使用相同通信资源的V2I用户端当前对应的第二信道环境参数与第一发射参数;目标V2V多播组包括一个发射端和多个接收端。S101. Obtain the system parameters of the Internet of Vehicles system, the first channel environment parameters corresponding to each terminal in the target V2V multicast group in the Internet of Vehicles system, and the V2I users in the Internet of Vehicles system that use the same communication resources as the target V2V multicast group The second channel environment parameter and the first transmission parameter currently corresponding to the terminal; the target V2V multicast group includes one transmitting terminal and multiple receiving terminals.
这里,目标V2V多播组可以为车联网系统中的任意一个V2V多播组。示例性的,可以为图1所示的V2V多播组,并且如图1所示,V2I用户端b和目标V2V多播组使用相同通信资源,从而对V2V多播组内的接收端造成通信干扰。Here, the target V2V multicast group may be any V2V multicast group in the Internet of Vehicles system. Exemplarily, it may be the V2V multicast group shown in FIG. 1, and as shown in FIG. 1, the V2I client b and the target V2V multicast group use the same communication resource, thereby causing communication to the receiving end in the V2V multicast group interference.
这里,车联网系统的系统参数可以包括:预设的V2V多播组间传输的安全信息数据包大小D,传输码长下限值Mmin,传输码长上限值Mmax(允许数据传输的最大符号数),预设最大译码错误率εmax、预设的发射端的发射功率Pn,max,预设最大信干燥比γmax、预设系统总能源消耗Etot,噪声功率σ2。Here, the system parameters of the Internet of Vehicles system may include: the size D of the security information data packet transmitted between the preset V2V multicast groups, the lower limit value of the transmission code length M min , the upper limit value of the transmission code length M max (allowing data transmission The maximum number of symbols), the preset maximum decoding error rate ε max , the preset transmit power P n,max of the transmitter, the preset maximum signal-to-dry ratio γ max , the preset total system energy consumption E tot , and the noise power σ 2 .
这里,基站可以从目标V2V多播组中的发射端处获取第一信道环境参数,以及从系统中的V2I用户端处获取第二信道环境参数。目标V2V多播组中各个端对应的第一信道环境参数为该V2V多播组中接收端到各个发射端的信道增益hn,i,i=1,2,...,A,A为目标V2V多播组内的接收端的总数,V2I用户端对应的第二信道环境参数为V2I用户端到各个发射端的信道增益hb,i。Here, the base station may acquire the first channel environment parameter from the transmitting end in the target V2V multicast group, and acquire the second channel environment parameter from the V2I user end in the system. The first channel environment parameter corresponding to each terminal in the target V2V multicast group is the channel gain h n,i from the receiving terminal to each transmitting terminal in the V2V multicast group, i=1,2,...,A, A is the target The total number of receiving terminals in the V2V multicast group, and the second channel environment parameter corresponding to the V2I user terminal is the channel gain h b,i from the V2I user terminal to each transmitting terminal.
S102、根据第一信道环境参数、第二信道环境参数、第一发射参数、系统参数、预设发射参数和预设收敛阈值,通过优化方法得到多组传输参数;每组传输参数包括一个候选传输码长和一个候选第二发射参数。S102. According to the first channel environment parameter, the second channel environment parameter, the first transmission parameter, the system parameter, the preset transmission parameter and the preset convergence threshold, multiple sets of transmission parameters are obtained through an optimization method; each set of transmission parameters includes a candidate transmission code length and a candidate second transmission parameter.
这里,优化方法可以是坐标下降法。Here, the optimization method may be a coordinate descent method.
这里,每组传输参数由一个传输码长和一个发射功率组成。Here, each set of transmission parameters consists of a transmission code length and a transmission power.
这里,预设发射参数为初始第二发射功率Pn 0。Here, the preset transmission parameter is the initial second transmission power P n 0 .
在一些实施例中,系统参数包括第一参数和第二参数,基于此,S102可以通过以下步骤实现:In some embodiments, the system parameters include a first parameter and a second parameter. Based on this, S102 may be implemented through the following steps:
S1021、根据第一参数,确定第一预设优化函数的第一约束条件和第二预设优化函数的第二约束条件;预设优化函数用于表示译码错误率、信噪比、传输码长和第二发射参数之间的关系。S1021. According to the first parameter, determine the first constraint condition of the first preset optimization function and the second constraint condition of the second preset optimization function; the preset optimization function is used to represent the decoding error rate, signal-to-noise ratio, transmission code Long and the relationship between the second launch parameter.
具体的,第一参数为B、γmax、Pn,max、Mmin、Mmax、εmax和Etot。Specifically, the first parameters are B, γ max , P n,max , M min , M max , ε max and E tot .
具体的,第一预设优化函数为: Specifically, the first preset optimization function is:
具体的,第一约束条件为: Specifically, the first constraint condition is:
其中,εn,i为第i个接收端的译码错误率,γn,i(Pn)为第i个接收端的信干燥比,Vn,i(Pn)为第i个接收端的信道色散,Q(.)为高斯函数,Pn为第二发射参数、为正整数,m为传输码长。Among them, ε n,i is the decoding error rate of the i-th receiving end, γ n,i (P n ) is the signal-to-interference ratio of the i-th receiving end, V n,i (P n ) is the channel of the i-th receiving end Dispersion, Q(.) is a Gaussian function, P n is the second emission parameter, is a positive integer, and m is the transmission code length.
具体的,第二预设优化函数为:Specifically, the second preset optimization function is:
具体的,第二约束条件为: Specifically, the second constraint condition is:
这里,上述第一预设优化函数和第二预设优化函数是根据构建的最小-最大译码错误率最优化问题转化得到。V2V接收端i的接收信干燥比可以表示为:其中,Pb为V2I用户端b的发射功率,V2V发射端n至接收端i在有限码长下的编码速率(bits/s/Hz)可以表示为:/>(Q-1为高斯函数Q的逆函数,/>当V2V间传输的安全信息数据包大小固定为Dbits时,传输期间以码长m传输,那么编码率为Rn=D/mbit/s/Hz,V2V接收端i的译码错误率表示为:εn,i(m,Pn)=Q(fn,i(m,Pn)),/>因而,据此可以构建最小-最大译码错误率最优化问题:Here, the above-mentioned first preset optimization function and second preset optimization function are converted and obtained according to the constructed minimum-maximum decoding error rate optimization problem. The receiving signal-to-dry ratio of V2V receiver i can be expressed as: Among them, P b is the transmission power of V2I user terminal b, and the coding rate (bits/s/Hz) from V2V transmitting terminal n to receiving terminal i under the limited code length can be expressed as: /> (Q -1 is the inverse function of the Gaussian function Q, /> When the size of the security information data packet transmitted between V2V is fixed at Dbits, and the transmission period is transmitted with code length m, then the encoding rate is R n =D/mbit/s/Hz, and the decoding error rate of V2V receiver i is expressed as: ε n,i (m,P n )=Q(f n,i (m,P n )),/> Therefore, the minimum-maximum decoding error rate optimization problem can be constructed accordingly:
其中,约束条件C1表示传输码长m可实现范围是[Mmin,Mmax],C2确保传输码长为整数,C3表示V2V发射端的发射功率不能超过最大发射功率Pn,max,C4保证了V2V通信的可靠性,即限制每个接收端的译码错误率最大容忍为εmax,C5表示V2V多播所有传输最小信干噪比约束,C6表示系统总能源消耗在内。该最小-最大译码错误率最优化问题中,待优化的参数为m和Pn。通过固定第二发射功率Pn,连续码长优化子问题转为:/>通过引入辅助变量u,可以将该问题转化为凸优化问题,即得到上述第一预设优化函数。通过固定传输码长m,第二发射功率分配子问题转化为:/>通过引入辅助变量v,可以将该问题转化为凸优化问题,即得到上述第二预设优化函数。Among them, constraint condition C1 indicates that the achievable range of the transmission code length m is [M min , M max ], C2 ensures that the transmission code length is an integer, C3 indicates that the transmission power of the V2V transmitter cannot exceed the maximum transmission power P n,max , and C4 guarantees that The reliability of V2V communication, that is, to limit the maximum tolerance of the decoding error rate of each receiving end to ε max , C5 represents the minimum signal-to-interference-noise ratio constraint for all transmissions of V2V multicast, and C6 represents the total energy consumption of the system at Inside. In the minimum-maximum decoding error rate optimization problem, the parameters to be optimized are m and P n . By fixing the second transmission power P n , the continuous code length optimization sub-problem is transformed into: /> By introducing the auxiliary variable u, the problem can be transformed into a convex optimization problem, that is, the above-mentioned first preset optimization function can be obtained. By fixing the transmission code length m, the second transmission power allocation sub-problem is transformed into: /> By introducing an auxiliary variable v, this problem can be transformed into a convex optimization problem, that is, the above-mentioned second preset optimization function can be obtained.
S1022、将预设发射参数作为初始第二发射参数,根据初始第二发射参数、第二参数、第一信道环境参数、第二信道环境参数、第一发射参数、预设收敛阈值、第一预设优化函数、第一约束条件、第二预设优化函数和第二约束条件,通过坐标下降法进行传输码长和第二发射参数的多次迭代,得到中间传输码长。S1022. Using the preset transmission parameter as the initial second transmission parameter, according to the initial second transmission parameter, the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, the preset convergence threshold, the first preset The optimization function, the first constraint condition, the second preset optimization function and the second constraint condition are set, and the transmission code length and the second transmission parameter are iterated multiple times through the coordinate descent method to obtain the intermediate transmission code length.
具体的,第二参数为功率噪声σ2和安全信息数据包大小D。Specifically, the second parameter is the power noise σ 2 and the size D of the security information data packet.
具体的,S1022可以通过以下步骤实现:Specifically, S1022 can be implemented through the following steps:
S1、在第t次迭代时,获取第t-1次迭代得到的第二发射参数,将第二参数、第一信道环境参数、第二信道环境参数、第一发射参数和第t-1次迭代得到的第二发射参数代入第一预设优化函数中,并根据第一约束条件对第一预设优化函数求解,得到第t次迭代的传输码长;t为大于或等于1的整数,当t为1时,第t-1次迭代得到的第二发射参数为初始第二发射参数。S1. In the t-th iteration, obtain the second transmission parameter obtained in the t-1th iteration, and combine the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter and the t-1th iteration Substituting the second transmission parameter obtained by iteration into the first preset optimization function, and solving the first preset optimization function according to the first constraint condition, to obtain the transmission code length of the t-th iteration; t is an integer greater than or equal to 1, When t is 1, the second transmission parameter obtained in the t-1th iteration is the initial second transmission parameter.
这里,可以借助MATLAB等求解工具进行求解。Here, solving tools such as MATLAB can be used to solve the problem.
S2、将第二参数、第一信道环境参数、第二信道环境参数、第一发射参数和第t次迭代得到的传输码长代入第二预设优化函数中,并根据第二约束条件对第二预设优化函数求解,得到第t次迭代的第二发射参数。S2. Substituting the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, and the transmission code length obtained by the t-th iteration into the second preset optimization function, and performing the first optimization function according to the second constraint condition The second preset optimization function is solved to obtain the second transmission parameter of the t-th iteration.
S3、根据第二参数、第一信道环境参数、第二信道环境参数、第一发射参数、第t-1次迭代得到的第二发射参数和传输码长,以及第t次迭代得到的第二发射参数和传输码长,分别确定各个接收端的第t-1次的译码错误率、第t次的译码错误率。S3. According to the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, the second transmission parameter and the transmission code length obtained in the t-1th iteration, and the second transmission code length obtained in the tth iteration The transmission parameters and the transmission code length respectively determine the decoding error rate of the t-1th time and the decoding error rate of the tth time of each receiving end.
具体的,可以将σ2、D、Pb、hn,i、hm,i、第t-1次迭代得到的Pn、第t-1次迭代得到的m代入εn,i的计算公式中,计算得到每个接收端i的第t-1次的译码错误率;以及,将σ2、D、Pb、hn,i、hm,i、第t-1次迭代得到的Pn、第t-1次迭代得到的m代入εn,i的计算公式中,计算得到每个接收端i的第t次的译码错误率。Specifically, σ 2 , D, P b , h n,i , h m,i , P n obtained from the t-1th iteration, and m obtained from the t-1th iteration can be substituted into the calculation of ε n,i In the formula, the t-1 decoding error rate of each receiver i is calculated; and, σ 2 , D, P b , h n,i , h m,i , the t-1 iteration are Substitute P n from the t-1th iteration into the calculation formula of εn ,i to calculate the t-th decoding error rate of each receiver i.
S4、根据第t-1次的译码错误率中的最大译码错误率,以及第t次的译码错误率中的最大译码错误率,计算第t次的目标函数值。S4. According to the maximum decoding error rate among the decoding error rates of the t-1th time and the maximum decoding error rate among the decoding error rates of the tth time, calculate the objective function value of the tth time.
具体的,可以将第t-1次的译码错误率中的最大译码错误率εt-1与第t次的译码错误率中的最大译码错误率εt作差,得到差值;将得到的差值的绝对值|εt-1-εt|与第t-1次的译码错误率中的最大译码错误率εt-1之间的比值,作为第t次的目标函数值|εt-1-εt|/εt-1。Specifically, the maximum decoding error rate ε t-1 in the decoding error rate of the t- 1th time and the maximum decoding error rate ε t in the decoding error rate of the t-th time can be made to obtain the difference ; The ratio between the absolute value of the obtained difference |ε t-1 -ε t | and the maximum decoding error rate ε t-1 in the decoding error rate of the t-1th time is used as the ratio of the t-th time Objective function value |ε t-1 -ε t |/ε t-1 .
S5、当第t次的目标函数值小于或等于预设收敛阈值时,结束迭代,并将第t次迭代的传输码长作为中间传输码长。S5. When the objective function value of the t-th iteration is less than or equal to the preset convergence threshold, the iteration ends, and the transmission code length of the t-th iteration is used as an intermediate transmission code length.
例如,当|εt-1-εt|/εt-1≤Δ时,结束迭代,将第t次迭代的传输码长作为中间传输码长m*。For example, when |ε t-1 -ε t |/ε t-1 ≤ Δ, the iteration ends, and the transmission code length of the t-th iteration is used as the intermediate transmission code length m*.
S1023、根据中间传输码长、第二参数、第一信道环境参数、第二信道环境参数、第一发射参数、第二预设优化函数和第二约束条件,得到多组传输参数。S1023. Obtain multiple sets of transmission parameters according to the intermediate transmission code length, the second parameter, the first channel environment parameter, the second channel environment parameter, the first transmission parameter, the second preset optimization function, and the second constraint condition.
具体的,可以对中间传输码长m*进行向下取整,得到一个整数;将该整数和该整数的相邻整数均作为候选传输码长;将各个候选传输码长、第二参数、第一信道环境参数、第二信道环境参数和第一发射参数代入第二预设优化函数中,并根据第二约束条件对第二预设优化函数求解,得到各个候选传输码长对应的一个候选第二发射参数;将每个候选传输码长与对应的一个候选第二发射参数作为一组传输参数,得到多组传输参数。Specifically, the intermediate transmission code length m* can be rounded down to obtain an integer; the integer and adjacent integers of the integer can be used as candidate transmission code lengths; each candidate transmission code length, the second parameter, the first A channel environment parameter, a second channel environment parameter and a first transmission parameter are substituted into the second preset optimization function, and the second preset optimization function is solved according to the second constraint condition to obtain a candidate first code length corresponding to each candidate transmission code length Two transmission parameters: using each candidate transmission code length and a corresponding candidate second transmission parameter as a set of transmission parameters to obtain multiple sets of transmission parameters.
例如,候选传输码长可以为:从而可以将m1、σ2、D、Pb、hn,i、hm,i代入上述第二预设优化函数,并通过对第二预设优化函数求解,得到一个对应的候选第二发射功率P1n,以及将m2、σ2、D、Pb、hn,i、hm,i代入上述第二预设优化函数,并通过对第二预设优化函数求解,得到一个对应的候选第二发射功率P2n,则(m1;P1n)和(m2;P2n)为得到的两组传输参数。For example, the candidate transmission code length can be: Therefore, m1, σ 2 , D, P b , h n,i , and h m,i can be substituted into the above-mentioned second preset optimization function, and by solving the second preset optimization function, a corresponding candidate second launch Power P1 n , and substituting m2, σ 2 , D, P b , h n,i , h m,i into the above-mentioned second preset optimization function, and solving the second preset optimization function to obtain a corresponding candidate For the second transmit power P2 n , then (m1; P1 n ) and (m2; P2 n ) are the obtained two sets of transmission parameters.
S103、从多组传输参数中选出一组传输参数,作为发射端与多个接收端当前通信时发射端的最优传输参数;其中,在最优传输参数下,各个接收端的译码错误率中的最大译码错误率最小。S103. Select a set of transmission parameters from multiple sets of transmission parameters as the optimal transmission parameters of the transmitting end when the transmitting end communicates with multiple receiving ends; wherein, under the optimal transmission parameters, the decoding error rate of each receiving end is The maximum decoding error rate is the smallest.
具体的,可以确定每组传输参数下各个接收端的译码错误率中的最大译码错误率,得到与多组传输参数一一对应的多个最大译码错误率;将多个最大译码错误率中的最小值对应的一组传输参数,作为最优传输参数。Specifically, the maximum decoding error rate among the decoding error rates of each receiving terminal under each set of transmission parameters can be determined, and multiple maximum decoding error rates corresponding to multiple sets of transmission parameters can be obtained; A set of transmission parameters corresponding to the minimum value in the error rate is used as the optimal transmission parameter.
本发明通过优化发射功率和通信码长,控制系统总能耗与编码速率,最小化了V2V多播组最大译码错误率,能够使发射端的信息向多个接收端准确及时地传输,从而提高了多播的可靠性和有效性,提升了交通安全性。The present invention minimizes the maximum decoding error rate of the V2V multicast group by optimizing the transmission power and communication code length, and controls the total energy consumption and coding rate of the system. It improves the reliability and effectiveness of multicast, and improves traffic safety.
以下将结合仿真实验对本发明所能达到的技术效果作进一步的描述。The technical effect that the present invention can achieve will be further described below in combination with simulation experiments.
对比方法为拟凸的路径跟踪资源分配算法(Path-Following Algorithm,PFA)和等功率分配(Equal power allocation,EPA)。其中,PFA对比方法将非凸问题近似转化为拟凸问题,基于路径跟踪算法对码长与功率联合分配;EPA以本方法为基准取功率为最大门限值,只对码长进行优化。The comparison methods are quasi-convex path-following algorithm (Path-Following Algorithm, PFA) and equal power allocation (Equal power allocation, EPA). Among them, the PFA comparison method approximately converts the non-convex problem into a quasi-convex problem, and jointly allocates the code length and power based on the path tracking algorithm; EPA takes the power as the maximum threshold based on this method, and only optimizes the code length.
图3给出了在Pn,max=23dBm,Mmax=200时,本方法(MDEP)和对比方法(PFA、EPA)的数据包信息量、接收端个数对译码错误率的影响关系图。从图3中可以看出,随着数据包信息量的提升,译码错误率也随之增大。这意味着,越长的数据信息量编入同一码长的块中,在传输时越容易产生错误。本方法(MDEP)在接收端数量为I=5与I=10时,皆比其他两种方法的译码错误率低。因为本方法(MDEP)对码长与发射功率进行联合最优化,而EPA只针对码长进行优化,PFA将问题近似为拟凹,无法确保求解的最优性。当接收端数量增多时,各方法译码错误率均增大,更多的接收端意味着更大的传输范围,路径损耗增加导致传输质量下降。Figure 3 shows the When P n,max =23dBm, M max =200, this method (MDEP) and the comparison method (PFA, EPA) the data packet information amount, the number of receivers on the decoding error rate. It can be seen from Figure 3 that as the amount of information in the data packet increases, the decoding error rate also increases. This means that the longer the amount of data information is encoded into a block with the same code length, the easier it is to generate errors during transmission. This method (MDEP) has a lower decoding error rate than the other two methods when the number of receiving ends is I=5 and I=10. Because this method (MDEP) jointly optimizes the code length and transmit power, while EPA only optimizes the code length, and PFA approximates the problem as quasi-concave, which cannot ensure the optimality of the solution. When the number of receivers increases, the decoding error rate of each method increases, more receivers mean a larger transmission range, and the increase in path loss leads to a decrease in transmission quality.
图4给出了在Pn,max=23dBm,Mmax=200,D=200bits时,本方法(MDEP)和对比方法(PFA)车速、接收端个数对译码错误率的影响关系图。由图4可看出,随着车速的提升,译码错误率随之增大。这意味着,3GPP TR 36.885中描述的高速公路模型平均间距为2.5×vs/3.6m,车速越大V2V组间最大传输距离越大,极大的路径损耗使系统性能急剧下降。但本方法收敛于错误率约束阈值0.001能达到低时延高可靠通信需求,对比方法PFA收敛于上限0.5。本方法在接收端I=5和I=10时都优于对比方法。Fig. 4 shows the relationship diagram of the influence of the vehicle speed and the number of receivers on the decoding error rate in this method (MDEP) and the comparison method (PFA) when P n,max =23dBm, M max =200, D=200 bits. It can be seen from Figure 4 that as the vehicle speed increases, the decoding error rate increases. This means that the average spacing of the expressway model described in 3GPP TR 36.885 is 2.5×v s /3.6m, the greater the vehicle speed, the greater the maximum transmission distance between V2V groups, and the extremely large path loss will cause a sharp drop in system performance. However, this method converges to an error rate constraint threshold of 0.001, which can meet the requirements of low-latency and high-reliability communication, and the comparison method PFA converges to an upper limit of 0.5. This method is better than the comparison method at the receiving end I=5 and I=10.
本发明通过与对比方法对比性能,分析数据包信息量、车速、接收端数量对V2V多播译码错误率影响,验证了本方法的优越性,可以达到低时延高可靠中99.9%以上的可靠率,提高了V2V多播传输的可靠性以及安全性。The present invention compares the performance with the comparison method, and analyzes the influence of the amount of data packet information, vehicle speed, and the number of receiving terminals on the V2V multicast decoding error rate, and verifies the superiority of the method, which can achieve more than 99.9% of low delay and high reliability. The reliability rate improves the reliability and security of V2V multicast transmission.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310273069.0A CN116390054B (en) | 2023-03-20 | 2023-03-20 | A minimum-maximum decoding error rate resource allocation method for V2V multicast communication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310273069.0A CN116390054B (en) | 2023-03-20 | 2023-03-20 | A minimum-maximum decoding error rate resource allocation method for V2V multicast communication |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116390054A true CN116390054A (en) | 2023-07-04 |
CN116390054B CN116390054B (en) | 2024-08-20 |
Family
ID=86963980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310273069.0A Active CN116390054B (en) | 2023-03-20 | 2023-03-20 | A minimum-maximum decoding error rate resource allocation method for V2V multicast communication |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116390054B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170331670A1 (en) * | 2016-05-13 | 2017-11-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Network Architecture, Methods, and Devices for a Wireless Communications Network |
CN108012335A (en) * | 2017-10-20 | 2018-05-08 | 西安电子科技大学 | Multipath resource distribution method is virtualized under a kind of software defined network |
US20200146044A1 (en) * | 2018-11-02 | 2020-05-07 | Huawei Technologies Co., Ltd. | Methods and apparatus for sidelink communications and resource allocation |
US20220191916A1 (en) * | 2019-03-21 | 2022-06-16 | Apple Inc. | Time-domain resource allocation for configured grant transmissions in new radio (nr) systems |
US20220312407A1 (en) * | 2019-08-29 | 2022-09-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Resource selection for multiplexed transmission |
WO2023279388A1 (en) * | 2021-07-09 | 2023-01-12 | 南京航空航天大学 | Energy-efficient channel state information transmission method in nr-v2x network |
-
2023
- 2023-03-20 CN CN202310273069.0A patent/CN116390054B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170331670A1 (en) * | 2016-05-13 | 2017-11-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Network Architecture, Methods, and Devices for a Wireless Communications Network |
CN108012335A (en) * | 2017-10-20 | 2018-05-08 | 西安电子科技大学 | Multipath resource distribution method is virtualized under a kind of software defined network |
US20200146044A1 (en) * | 2018-11-02 | 2020-05-07 | Huawei Technologies Co., Ltd. | Methods and apparatus for sidelink communications and resource allocation |
US20220191916A1 (en) * | 2019-03-21 | 2022-06-16 | Apple Inc. | Time-domain resource allocation for configured grant transmissions in new radio (nr) systems |
US20220312407A1 (en) * | 2019-08-29 | 2022-09-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Resource selection for multiplexed transmission |
WO2023279388A1 (en) * | 2021-07-09 | 2023-01-12 | 南京航空航天大学 | Energy-efficient channel state information transmission method in nr-v2x network |
Non-Patent Citations (1)
Title |
---|
颜留单;高月红;: "V2V系统中半静态资源分配算法的研究", 电信工程技术与标准化, no. 05, 15 May 2017 (2017-05-15) * |
Also Published As
Publication number | Publication date |
---|---|
CN116390054B (en) | 2024-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102833691B (en) | D2D (Device-to-Device) multimedia broadcast multicast service method on basis of beam forming and fountain codes | |
Shah et al. | Performance optimization of cluster-based MAC protocol for VANETs | |
US20090073911A1 (en) | Feedback method for multicast service in wireless communication system, and a system implementing the method | |
Jang et al. | URLLC mode optimal resource allocation to support HARQ in 5G wireless networks | |
Xiao et al. | Power control for clustering car-following V2X communication system with non-orthogonal multiple access | |
CN106211339A (en) | Method and device for resource allocation in vehicle networking system | |
Chen et al. | RLFN-VRA: Reinforcement learning-based flexible numerology V2V resource allocation for 5G NR V2X networks | |
CN113573356A (en) | Data processing methods in the Industrial Internet of Things | |
Xu et al. | Resource allocation for scalable video streaming in highway VANET | |
Dong et al. | Manager selection and resource allocation for 5G-V2X platoon systems with finite blocklength | |
KR20080098263A (en) | Communication method in ad hoc network | |
Pervez et al. | Dynamic resource management to enhance video streaming experience in a C-V2X network | |
CN106973362B (en) | A D2D communication method based on network coding in cellular network | |
Kallel et al. | A flexible numerology configuration for efficient resource allocation in 3GPP V2X 5G new radio | |
CN103229566B (en) | Method and apparatus for the distributed transmission power control in wireless network | |
CN116390054B (en) | A minimum-maximum decoding error rate resource allocation method for V2V multicast communication | |
Tahi | Resource allocation in C-V2X: A review | |
CN116233991A (en) | A Method of Realizing V2V Link Rate and Maximization Based on Graph Neural Network | |
Bayu et al. | Performance of C-V2X communications for high density traffic highway scenarios | |
CN106911445B (en) | A Multi-dimensional Resource Optimization Algorithm for Incremental AF-OFDM Cooperative Networks | |
Chen et al. | Energy‐Efficient Resource Allocation for NOMA‐Enabled Internet of Vehicles | |
CN106301501B (en) | An optimization method for real-time data transmission based on joint coding and modulation | |
WO2022100605A1 (en) | Sidelink data transmission method and related apparatus | |
US20210385170A1 (en) | Systems and methods for intelligent throughput distribution amongst applications of a user equipment | |
Daknou et al. | A MAC multi-channel scheme based on learning-automata for clustered VANETs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |