CN116000510A - Tool positioning deviation compensation method and tool positioning equipment - Google Patents
Tool positioning deviation compensation method and tool positioning equipment Download PDFInfo
- Publication number
- CN116000510A CN116000510A CN202211673625.5A CN202211673625A CN116000510A CN 116000510 A CN116000510 A CN 116000510A CN 202211673625 A CN202211673625 A CN 202211673625A CN 116000510 A CN116000510 A CN 116000510A
- Authority
- CN
- China
- Prior art keywords
- vehicle body
- deviation
- controller
- value
- equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 230000033001 locomotion Effects 0.000 claims description 10
- 230000000007 visual effect Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000026058 directional locomotion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013102 re-test Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及工装定位设备技术领域,特别涉及一种工装定位偏差补偿方法和工装定位设备。The invention relates to the technical field of tool positioning equipment, in particular to a tool positioning deviation compensation method and tool positioning equipment.
背景技术Background technique
在白车身生产过程中,白车身侧围夹具定位,是一项最关键技术,直接决定着白车身合格率的高低。In the body-in-white production process, the side wall fixture positioning of the body-in-white is the most critical technology, which directly determines the qualified rate of the body-in-white.
现有技术的夹具定位后对夹具状态仅有接触开关对到位进行定性检测,无定量检测,整体精度只能通过夹具执行机构机械状态来保证的精度和准确性,不够科学、精准,存在以下问题:工装设备发生偏差,到位不能及时纠正,需要停线复测,加减垫片的方式对精度进行调节,工况承载下,精度情况未知,若有异常会导致白车身有缺陷,事后排查才发现问题;需要事后调整工装滑移机构的到位基准,且只能人工进行调整,耗时长;为了不影响后序白车身质量,只能停线进行调整,会影响白车身产量。After the fixture is positioned in the prior art, only the contact switch is used to qualitatively detect the position of the fixture, and there is no quantitative detection. The overall accuracy can only be guaranteed by the mechanical state of the fixture actuator. The precision and accuracy are not scientific and accurate, and there are the following problems : The tooling equipment deviates and cannot be corrected in time when it is in place. It is necessary to stop the line and retest, and adjust the accuracy by adding or subtracting gaskets. Under the load of the working condition, the accuracy is unknown. Problems were found; it was necessary to adjust the in-place benchmark of the tooling sliding mechanism afterwards, and it could only be adjusted manually, which took a long time; in order not to affect the quality of the subsequent body-in-white, the line had to be stopped for adjustment, which would affect the output of body-in-white.
发明内容Contents of the invention
本发明的目的在于提供一种工装定位偏差补偿方法,该工装定位偏差补偿方法能够通过采集装置监控通过移动定位装置携带车身的到位情况,同时控制器通过采集装置所返回的各种数值计算车身实际偏差值,从而让控制器通过伺服电机对移动定位装置进行超差补偿。The purpose of the present invention is to provide a tool positioning deviation compensation method, the tool positioning deviation compensation method can monitor the position of the vehicle body carried by the mobile positioning device through the acquisition device, and at the same time, the controller calculates the actual position of the vehicle body through various values returned by the acquisition device. Deviation value, so that the controller can perform over-tolerance compensation on the mobile positioning device through the servo motor.
为实现本发明目的,本发明采用如下技术方案:For realizing the object of the present invention, the present invention adopts following technical scheme:
根据本发明的一个方面,提供了一种工装定位偏差补偿方法,应用于工装定位设备上的白车身的合拼工装定位,所述工装定位设备包括控制器、采集装置和移动定位装置,所述控制器与所述采集装置和所述移动定位装置分别通讯连接,所述白车身连接于所述移动定位装置,所述采集装置被配置成采集所述白车身的车身关键要素,所述工装定位偏差补偿方法包括:在控制器内输入车身预设信息,并输入车身偏差阈值;采集装置采集车身关键要素,并传输至控制器;控制器将车身关键要素与车身预设信息进行比较获得车身实际偏差值;控制器将车身实际偏差值与车身偏差阈值进行比较;当车身实际偏差值≥车身偏差阈值的A倍时,控制器计算车身补偿值并控制移动定位装置根据车身补偿值移动;当车身实际偏差值<车身偏差阈值的A倍时,结束。According to one aspect of the present invention, a tool positioning deviation compensation method is provided, which is applied to the combined tool positioning of the body-in-white on the tool positioning equipment. The tool positioning equipment includes a controller, a collection device and a mobile positioning device. The controller communicates with the collection device and the mobile positioning device respectively, the body-in-white is connected to the mobile positioning device, the collection device is configured to collect key elements of the body-in-white, and the tool positioning The deviation compensation method includes: inputting preset information of the body into the controller, and inputting the deviation threshold of the body; the acquisition device collects the key elements of the body and transmits them to the controller; the controller compares the key elements of the body with the preset information of the body to obtain the actual Deviation value; the controller compares the actual deviation value of the vehicle body with the deviation threshold value of the vehicle body; when the actual deviation value of the vehicle body is greater than or equal to A times the deviation threshold value of the vehicle body, the controller calculates the compensation value of the vehicle body and controls the mobile positioning device to move according to the compensation value of the vehicle body; When the actual deviation value<A times of the vehicle body deviation threshold, the process ends.
根据本发明的一实施方式,其中,所述采集装置包括视觉传感器,所述视觉传感器用于采集白车身上若干个测点的车身关键要素,所述车身关键要素为所述测点所对应的三维位置信息。According to an embodiment of the present invention, wherein the collection device includes a visual sensor, the visual sensor is used to collect key elements of the vehicle body at several measuring points on the body in white, and the key elements of the vehicle body are corresponding to the measuring points. 3D position information.
根据本发明的一实施方式,其中,所述采集装置还被配置成采集所述移动定位装置的设备关键要素,所述工装定位偏差补偿方法还包括:在控制器内输入设备预设信息,并输入设备偏差阈值;当车身实际偏差值≥车身偏差阈值时,采集装置采集设备关键要素,并传输至控制器;控制器将设备关键要素与设备预设信息进行比较获得设备实际偏差;控制器将设备实际偏差与设备偏差阈值进行比较;当设备实际偏差≥设备偏差阈值时,控制器计算设备补偿值并控制移动定位装置根据设备补偿值移动;采集装置重新采集车身关键要素;当设备实际偏差<设备偏差阈值时,控制器控制移动定位装置根据车身补偿值移动。According to an embodiment of the present invention, wherein the collection device is further configured to collect key elements of the equipment of the mobile positioning device, the method for compensating tool positioning deviation further includes: inputting equipment preset information in the controller, and Input the equipment deviation threshold; when the actual deviation value of the vehicle body ≥ the deviation threshold value of the vehicle body, the acquisition device collects the key elements of the equipment and transmits them to the controller; the controller compares the key elements of the equipment with the preset information of the equipment to obtain the actual deviation of the equipment; the controller will The actual deviation of the equipment is compared with the threshold of equipment deviation; when the actual deviation of the equipment ≥ the threshold of equipment deviation, the controller calculates the compensation value of the equipment and controls the mobile positioning device to move according to the compensation value of the equipment; the acquisition device re-acquires the key elements of the car body; When the equipment deviation threshold is reached, the controller controls the mobile positioning device to move according to the vehicle body compensation value.
根据本发明的一实施方式,其中,所述工装定位设备还包括随行装置和对零装置,所述在控制器内输入设备预设信息包括:将移动定位装置安装至随行装置,并移动至与对零装置贴合;在控制器内设定设备预设信息;采集装置的读数标定为0并移出对零装置,以避免移动定位装置移动过程中与对零装置接触。According to an embodiment of the present invention, wherein the tool positioning device further includes an accompanying device and a zeroing device, the inputting device preset information in the controller includes: installing the mobile positioning device on the accompanying device, and moving it to the Fit the zero alignment device; set the equipment preset information in the controller; calibrate the reading of the acquisition device to 0 and remove the zero alignment device to avoid contact with the zero alignment device during the movement of the mobile positioning device.
根据本发明的一实施方式,其中,所述移动定位装置通过伺服电机控制移动,所述伺服电机与所述随行装置连接,所述采集装置还被配置成获取伺服电机的实时位置,所述控制器计算车身补偿值并控制移动定位装置根据车身补偿值移动包括:控制器计算获得车身实际偏差值Y0;采集装置获取伺服电机的实际位置X实际,并将此作为设备预设信息传输至控制器;根据伺服电机的脉冲对应角度计算移动定位装置每移动1mm时,伺服电机所需转动的圈数N;控制器计算车身补偿值X补偿=X实际-Y0×N,并通过伺服电机控制移动定位装置移动X补偿。According to an embodiment of the present invention, wherein, the movement of the mobile positioning device is controlled by a servo motor, and the servo motor is connected to the accompanying device, and the acquisition device is also configured to obtain the real-time position of the servo motor, and the control The controller calculates the body compensation value and controls the mobile positioning device to move according to the body compensation value, including: the controller calculates and obtains the actual deviation value Y 0 of the body; the acquisition device obtains the actual position X actual of the servo motor, and transmits this as equipment preset information to the control According to the corresponding angle of the pulse of the servo motor, calculate the number of turns N that the servo motor needs to rotate when the mobile positioning device moves 1mm; the controller calculates the body compensation value X compensation = X actual - Y 0 × N, and controls it through the servo motor The mobile positioning device moves X compensation .
根据本发明的一实施方式,其中,所述设备偏差阈值为-0.15mm至0.15mm,所述采集装置包括与控制器通讯连接的第一位置传感器,所述第一位置传感器的发射端朝向移动定位装置,当所述第一位置传感器的读数为正且大于0.15mm时,所述移动定位装置向所述第一位置传感器方向移动进行补偿,当所述第一位置传感器的读数为负且小于-0.15mm时,所述移动定位装置向远离所述第一位置传感器方向移动进行补偿。According to an embodiment of the present invention, wherein the equipment deviation threshold is -0.15 mm to 0.15 mm, the acquisition device includes a first position sensor connected in communication with the controller, and the transmitting end of the first position sensor moves toward Positioning device, when the reading of the first position sensor is positive and greater than 0.15 mm, the mobile positioning device moves to the direction of the first position sensor for compensation; when the reading of the first position sensor is negative and less than When -0.15mm, the moving positioning device moves away from the first position sensor for compensation.
根据本发明的一实施方式,其中,所述第一位置传感器的读数通过转换模块进行转换后传输至所述控制器,转换过程包括:设定所述第一位置传感器的量程读数包括Lmin、L0和Lmax,其中,Lmin<L0<Lmax,且L0=0;设定所述第一位置传感器的读数为L,所述转换模块的接收读数作所述控制器接收的车身关键要素为H;当Lmin<L<L0时,H=k1L+b1;当L0<L<Lmax时,H=k2L+b2。According to an embodiment of the present invention, wherein the reading of the first position sensor is converted by a conversion module and then transmitted to the controller, the conversion process includes: setting the range reading of the first position sensor to include L min , L 0 and L max , wherein, L min <L 0 <L max , and L 0 =0; set the reading of the first position sensor as L, and the reading received by the conversion module is the one received by the controller The key element of the body is H; when L min <L<L 0 , H=k 1 L+b 1 ; when L 0 <L<L max , H=k 2 L+b 2 .
根据本发明的一实施方式,其中,所述工装定位设备还包括与所述控制器通讯连接的报警装置,当车身实际偏差值<车身偏差阈值的A倍时,结束包括:当车身偏差阈值的B倍≤车身实际偏差值<车身偏差阈值的A倍时,控制器传输报警信号至所述报警装置,所述报警装置报警并结束;当车身实际偏差值<车身偏差阈值的B倍时,结束;其中,0.8≤B≤0.95,其中1≤A≤2。According to an embodiment of the present invention, wherein the tool positioning device further includes an alarm device communicated with the controller, when the actual deviation value of the vehicle body is < A times the deviation threshold value of the vehicle body, the end includes: when the deviation threshold value of the vehicle body exceeds When B times ≤ actual body deviation value < A times the body deviation threshold, the controller transmits an alarm signal to the alarm device, and the alarm device alarms and ends; when the actual body deviation value < B times the body deviation threshold, the end ; where, 0.8≤B≤0.95, where 1≤A≤2.
根据本发明的一实施方式,其中,当车身实际偏差值≥车身偏差阈值的A倍时,控制器计算车身补偿值并控制移动定位装置根据车身补偿值移动,其中,1≤A≤2。According to an embodiment of the present invention, wherein, when the actual deviation value of the vehicle body is greater than or equal to A times the deviation threshold value of the vehicle body, the controller calculates the compensation value of the vehicle body and controls the mobile positioning device to move according to the compensation value of the vehicle body, wherein 1≤A≤2.
根据本发明的另一方面,提供了一种工装定位设备。通过前述的工装定位偏差补偿方法进行控制。According to another aspect of the present invention, a tool positioning device is provided. It is controlled by the aforementioned tool positioning deviation compensation method.
本发明中的一个实施例具有如下优点或有益效果:An embodiment of the present invention has the following advantages or beneficial effects:
本发明的工装定位偏差补偿方法,通过采集装置的第一位置传感器和视觉传感器,监控通过移动定位装置携带车身的到位情况,同时控制器通过采集装置的第一位置传感器、第二位置传感器和视觉传感器的所返回的各种数值计算车身实际偏差值和设备实际偏差值,让控制器通过伺服电机对移动定位装置进行超差补偿,最终使得车身的侧围总成、顶盖总成和底盘总成分别运动到合适的相对位置,减少了人工参与匹配工装,降低了人力成本,提高了经济效益;可自主调试新车型导入,减少传感器安装,节约空间,避免干涉,减少开发费用。In the tool positioning deviation compensation method of the present invention, the first position sensor and the visual sensor of the acquisition device are used to monitor the in-position situation of the vehicle body carried by the mobile positioning device, and at the same time, the controller uses the first position sensor, the second position sensor and the visual The various values returned by the sensor calculate the actual deviation value of the body and the actual deviation value of the equipment, so that the controller can compensate the over-tolerance of the mobile positioning device through the servo motor, and finally make the side wall assembly, roof assembly and chassis assembly of the body The components are moved to the appropriate relative positions, which reduces manual participation in matching tooling, reduces labor costs, and improves economic benefits; it can independently debug and introduce new models, reduce sensor installation, save space, avoid interference, and reduce development costs.
附图说明Description of drawings
通过参照附图详细描述其示例实施方式,本发明的上述和其它特征及优点将变得更加明显。The above and other features and advantages of the present invention will become more apparent by describing in detail example embodiments thereof with reference to the accompanying drawings.
图1是根据一示例性实施方式示出的一种工装定位偏差补偿方法的流程图。Fig. 1 is a flow chart of a tool positioning deviation compensation method according to an exemplary embodiment.
图2是根据一示例性实施方式示出的一种工装定位设备的立体图。Fig. 2 is a perspective view of a tool positioning device according to an exemplary embodiment.
图3是根据一示例性实施方式示出的一种工装定位设备的定位夹具的立体图。Fig. 3 is a perspective view of a positioning fixture of a tool positioning device according to an exemplary embodiment.
图4是根据一示例性实施方式示出的一种工装定位设备的定位夹具的另一立体图。Fig. 4 is another perspective view of a positioning fixture of a tool positioning device according to an exemplary embodiment.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
1、移动定位装置;11、定位夹具;12、随行夹具;2、随行装置;3、对零装置;4、伺服电机。1. Mobile positioning device; 11. Positioning fixture; 12. Accompanying fixture; 2. Accompanying device; 3. Zeroing device; 4. Servo motor.
具体实施方式Detailed ways
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art. The same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
用语“一个”、“一”、“该”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。The terms "a", "an", "the", "said" are used to indicate the presence of one or more elements/components/etc; the terms "comprising" and "have" are used to indicate an open-ended inclusion means and means that additional elements/components/etc. may be present in addition to the listed elements/components/etc.
如图1至图4所示,图1示出了本发明提供的一种工装定位偏差补偿方法的流程图。图2示出了本发明提供的一种工装定位设备的立体图。图3示出了本发明提供的一种工装定位设备的定位夹具11的立体图。图4示出了本发明提供的一种工装定位设备的定位夹具11的另一立体图。As shown in FIG. 1 to FIG. 4 , FIG. 1 shows a flow chart of a tool positioning deviation compensation method provided by the present invention. Fig. 2 shows a perspective view of a tool positioning device provided by the present invention. FIG. 3 shows a perspective view of a
本发明实施例提供了一种工装定位偏差补偿方法,应用于工装定位设备上的白车身的合拼工装定位,工装定位设备包括控制器、采集装置和移动定位装置1,控制器与采集装置和移动定位装置1分别通讯连接,白车身连接于移动定位装置1,采集装置被配置成采集白车身的车身关键要素,工装定位偏差补偿方法包括:The embodiment of the present invention provides a tool positioning deviation compensation method, which is applied to the combined tool positioning of the body-in-white on the tool positioning equipment. The tool positioning equipment includes a controller, a collection device and a mobile positioning device 1, the controller and the collection device and The mobile positioning devices 1 are respectively connected by communication. The body-in-white is connected to the mobile positioning device 1. The acquisition device is configured to collect the key elements of the body-in-white. The tool positioning deviation compensation method includes:
S1:在控制器内输入车身预设信息,并输入车身偏差阈值;S1: Input the body preset information in the controller, and input the body deviation threshold;
S2:采集装置采集车身关键要素,并传输至控制器;S2: The collection device collects the key elements of the body and transmits them to the controller;
S3:控制器将车身关键要素与车身预设信息进行比较获得车身实际偏差值;控制器将车身实际偏差值与车身偏差阈值进行比较;S3: The controller compares the key elements of the body with the preset information of the body to obtain the actual deviation value of the body; the controller compares the actual deviation value of the body with the deviation threshold of the body;
S4:当车身实际偏差值≥车身偏差阈值的A倍时,控制器计算车身补偿值并控制移动定位装置1根据车身补偿值移动;S4: When the actual deviation value of the vehicle body is greater than or equal to A times the deviation threshold value of the vehicle body, the controller calculates the compensation value of the vehicle body and controls the mobile positioning device 1 to move according to the compensation value of the vehicle body;
S5:当车身实际偏差值<车身偏差阈值的A倍时,结束。S5: When the actual deviation value of the vehicle body is < A times the deviation threshold value of the vehicle body, end.
采集装置包括视觉传感器,视觉传感器用于采集白车身上若干个测点的车身关键要素,车身关键要素为测点所对应的三维位置信息。The collection device includes a visual sensor, and the visual sensor is used to collect key elements of the vehicle body at several measuring points on the body-in-white. The key elements of the vehicle body are the three-dimensional position information corresponding to the measuring points.
如图1至图4所示,移动定位装置1包括左右两侧的定位夹具11和滑动连接于随行装置2上的随行夹具12,车身包括进行预装过的侧围总成、顶盖总成和底盘总成等,侧围总成和顶盖总成分别通过左右两侧的定位夹具11夹持在此定位焊接工位,当车身被运输到此工位时,在车身上分布有若干个测点,采集装置固定在此工位,且用于对若干个测点进行监测,采集此若干个测点的车身关键要素,S1步骤中,在控制器内设置车身预设信息,包括设计时各个测点的三维位置信息,并输入车身偏差阈值,也即需要自适应补偿的标准,S2步骤中,采集装置采集到位的移动定位装置1上的车身各测点的实时三维位置信息传输至控制器作为车身关键要素,S3步骤中,控制器将车身关键信息与车身预设信息进行比较获得车身实际偏差值,从而可以在S4步骤和S5步骤中根据车身实际偏差值是否大于等于车身偏差阈值的A倍来判断是否需要进行超差的自适应补偿,当需要补偿时,控制器计算车身补偿值并控制移动定位装置1至预设位置即可。As shown in Figures 1 to 4, the mobile positioning device 1 includes
在本发明的一个优选实施例中,采集装置还被配置成采集移动定位装置1的设备关键要素,工装定位偏差补偿方法还包括:在控制器内输入设备预设信息,并输入设备偏差阈值;当车身实际偏差值≥车身偏差阈值时,采集装置采集设备关键要素,并传输至控制器;控制器将设备关键要素与设备预设信息进行比较获得设备实际偏差;控制器将设备实际偏差与设备偏差阈值进行比较;当设备实际偏差≥设备偏差阈值时,控制器计算设备补偿值并控制移动定位装置1根据设备补偿值移动;采集装置重新采集车身关键要素;当设备实际偏差<设备偏差阈值时,控制器控制移动定位装置1根据车身补偿值移动。In a preferred embodiment of the present invention, the collection device is further configured to collect key elements of the equipment of the mobile positioning device 1, and the tool positioning deviation compensation method further includes: inputting equipment preset information in the controller, and inputting the equipment deviation threshold; When the actual deviation value of the vehicle body ≥ the deviation threshold value of the vehicle body, the acquisition device collects the key elements of the equipment and transmits them to the controller; the controller compares the key elements of the equipment with the preset information of the equipment to obtain the actual deviation of the equipment; the controller compares the actual deviation of the equipment with the equipment The deviation threshold is compared; when the actual deviation of the equipment ≥ the deviation threshold of the equipment, the controller calculates the compensation value of the equipment and controls the mobile positioning device 1 to move according to the compensation value of the equipment; the acquisition device re-collects the key elements of the vehicle body; when the actual deviation of the equipment < the deviation threshold of the equipment , the controller controls the mobile positioning device 1 to move according to the vehicle body compensation value.
如图1和图2所示,当判断车身的侧围总成、顶盖总成和底盘总成中的任意一个部件上的测点发生偏移需要补偿时,可以先进一步查看移动定位装置1是否发生偏移,通过采集装置采集移动定位装置1的设备关键要素并传输至控制器,控制器通过将设备关键要素与设备预设信息进行比较从而获得设备实际偏差,将设备实际偏差与预设在其内的设备偏差阈值进行比较,当设备实际偏差超出设备偏差阈值时,则控制器计算设备补偿值,优先通过控制器控制移动定位设备根据设备补偿值移动到预设点位,然后重新通过采集装置采集车身关键要素,重新进行车身补偿值的计算,当设备实际偏差小于设备偏差阈值时,则控制器计算车身补偿值并控制移动定位装置1根据车身补偿值移动。As shown in Figure 1 and Figure 2, when it is judged that the measuring points on any part of the side wall assembly, roof assembly and chassis assembly of the body need to be compensated, you can further check the mobile positioning device 1 Whether there is an offset, the key elements of the equipment of the mobile positioning device 1 are collected by the acquisition device and transmitted to the controller. The controller obtains the actual deviation of the equipment by comparing the key elements of the equipment with the preset information of the equipment, and compares the actual deviation of the equipment with the preset information It is compared with the equipment deviation threshold within it. When the actual deviation of the equipment exceeds the equipment deviation threshold, the controller calculates the equipment compensation value, and the controller first controls the mobile positioning equipment to move to the preset point according to the equipment compensation value, and then passes through the The acquisition device collects the key elements of the vehicle body, and recalculates the compensation value of the vehicle body. When the actual deviation of the equipment is less than the deviation threshold of the equipment, the controller calculates the compensation value of the vehicle body and controls the mobile positioning device 1 to move according to the compensation value of the vehicle body.
在本发明的一个优选实施例中,工装定位设备还包括随行装置2和连接于随行装置2的对零装置3,在控制器内输入设备预设信息包括:将移动定位装置1安装至随行装置2,并移动至与对零装置3贴合;在控制器内设定设备预设信息;采集装置的读数标定为0并移出对零装置3,以避免移动定位装置1移动过程中与对零装置3接触。In a preferred embodiment of the present invention, the tool positioning equipment also includes an accompanying
如图1、图2和图4所示,随行装置2为随行滚床,随行滚床固定在地面上,随行夹具12可以在随行滚床上滑动,车身安装在随行夹具12上,从而将车身从上一个工位送到此工位,对零装置3设置在与移动定位装置1的随行夹具12的一个测点相对应的位置,可以是与随行滚床连接,还可以是直接设置于地面上,第一个随行夹具12带着底盘总成移动到此工位时,移动定位装置1于对零装置3相抵,此时采集装置的读数标定为零,将移动定位装置1所处的位置设定为标准位置,当后续第二个、第三个随行夹具12移动到此工位时,均以这个标准位置为准,从而控制车身焊接的一致性,对移动定位装置1的位置进行标定后,车身的其他部件可能与汽车底盘产生干涉时相互间的作用力而造成移动定位装置1超过标准位置后与对零位置抵接而造成结果不准确,还可能因为伺服电机4的负载过小而造成移动定位装置1未到标准位置产生,因此移除对零装置3,从而使其与移动定位装置1不接触,以便后续在该方向上实现自适应补偿。As shown in Fig. 1, Fig. 2 and Fig. 4, accompanying device 2 is a traveling roller bed, and accompanying roller bed is fixed on the ground, and accompanying fixture 12 can slide on the traveling roller bed, and vehicle body is installed on the traveling fixture 12, thereby vehicle body from The previous station is sent to this station, and the zero alignment device 3 is set at a position corresponding to a measuring point of the traveling fixture 12 of the mobile positioning device 1, which can be connected with the traveling roller bed, or directly installed on the ground , when the first traveling fixture 12 moves to this station with the chassis assembly, the mobile positioning device 1 is offset against the zero-setting device 3, at this time the reading of the acquisition device is marked as zero, and the position of the mobile positioning device 1 is set Set as the standard position, when the second and third accompanying fixtures 12 move to this station, this standard position shall be taken as the standard, so as to control the consistency of the body welding, after the position of the mobile positioning device 1 is calibrated , when other parts of the vehicle body may interfere with the chassis of the car, the mutual force will cause the mobile positioning device 1 to touch the zero position after exceeding the standard position, resulting in inaccurate results. It may also be because the load of the
在本发明的一个优选实施例中,移动定位装置1通过伺服电机4控制移动,伺服电机4与随行装置2连接,采集装置还被配置成获取伺服电机4的实时位置,控制器计算车身补偿值并控制移动定位装置1根据车身补偿值移动包括:控制器计算获得车身实际偏差值Y0;采集装置获取伺服电机4的实际位置X实际,并将此作为设备预设信息传输至控制器;根据伺服电机4的脉冲对应角度计算移动定位装置1每移动1mm时,伺服电机4所需转动的圈数N;控制器计算车身补偿值X补偿=X实际-Y0×N,并通过伺服电机4控制移动定位装置1移动X补偿。In a preferred embodiment of the present invention, the mobile positioning device 1 controls the movement through the
如图2至图4所示,控制器还包括运动控制模块,用于控制伺服电机4的运转,系统将Y0传递给控制器,将伺服电机4的脉冲对应角度输入控制器,使得控制器可以测得移动定位装置1每移动1mm时,伺服电机4所转动的圈数为N,则Y0×N为伺服电机4的转子上某一点在伺服电机4驱动移动定位装置1移动Y0时所需运行的距离,采集装置还包括第二位置传感器,用于获取伺服电机4的转子上某一个点的实际位置X实际,控制器计算出车身补偿值为伺服电机4最终将移动定位装置1送到预设位置时其转子的运动量,也即车身补偿值,从而使得运动控制模块驱动伺服电机4对移动定位装置1根据车身补偿值X补偿进行补偿。As shown in Figures 2 to 4, the controller also includes a motion control module for controlling the operation of the
在本发明的一个优选实施例中,设备偏差阈值为-0.15mm至0.15mm,采集装置包括与控制器通讯连接的第一位置传感器,第一位置传感器的发射端朝向移动定位装置1,当第一位置传感器的读数为正且大于0.15mm时,移动定位装置1向第一位置传感器方向移动进行补偿,当第一位置传感器的读数为负且小于-0.15mm时,移动定位装置1向远离第一位置传感器方向移动进行补偿。In a preferred embodiment of the present invention, the equipment deviation threshold is -0.15mm to 0.15mm, and the acquisition device includes a first position sensor connected in communication with the controller, the transmitting end of the first position sensor faces the mobile positioning device 1, when the first position sensor When the reading of a position sensor is positive and greater than 0.15mm, the mobile positioning device 1 moves to the direction of the first position sensor for compensation; when the reading of the first position sensor is negative and less than -0.15mm, the mobile positioning device 1 moves away from the first position sensor. A position sensor is compensated for directional movement.
其中,当第一位置传感器的读数为正且大于0.15mm时,表示移动定位装置1还未到达第一位置传感器标记为0的位置,也即移动定位装置1的标定位置,移动定位装置1向第一位置传感器方向移动进行补偿,当第一位置传感器的读数为负且小于-0.15mm时,表示移动定位装置1已经移动超过了第一位置传感器标记为0的位置,也即移动定位装置1的标定位置,移动定位装置1向远离第一位置传感器方向移动进行补偿,当第一位置传感器的读数在-0.15mm至0.15mm之间时,控制器认为移动定位装置1处于理想工况,从而控制器不发出补偿信号。Wherein, when the reading of the first position sensor is positive and greater than 0.15mm, it means that the mobile positioning device 1 has not yet reached the position marked as 0 by the first position sensor, that is, the calibration position of the mobile positioning device 1, and the mobile positioning device 1 is in the direction of The direction movement of the first position sensor is compensated. When the reading of the first position sensor is negative and less than -0.15mm, it means that the mobile positioning device 1 has moved beyond the position marked as 0 by the first position sensor, that is, the mobile positioning device 1 calibrated position, the mobile positioning device 1 moves away from the first position sensor for compensation, when the reading of the first position sensor is between -0.15mm and 0.15mm, the controller considers that the mobile positioning device 1 is in an ideal working condition, thus The controller does not issue a compensation signal.
在本发明的一个优选实施例中,第一位置传感器的读数通过转换模块进行转换后传输至控制器,转换过程包括:设定第一位置传感器的量程读数包括Lmin、L0和Lmax,其中,Lmin<L0<Lmax,且L0=0;设定第一位置传感器的读数为L,转换模块的接收读数作控制器接收的车身关键要素为H;当Lmin<L<L0时,H=k1L+b1;当L0<L<Lmax时,H=k2L+b2。In a preferred embodiment of the present invention, the readings of the first position sensor are converted by the conversion module and then transmitted to the controller. The conversion process includes: setting the range readings of the first position sensor to include L min , L 0 and L max , Among them, L min <L 0 <L max , and L 0 =0; set the reading of the first position sensor as L, and the reading received by the conversion module as the key element of the vehicle body received by the controller is H; when L min <L< When L 0 , H=k 1 L+b 1 ; when L 0 <L<L max , H=k 2 L+b 2 .
其中,第一位置传感器的量程读数包括量程最小值Lmin、量程中间值L0和量程最大值Lmax,第一位置传感器调零后,移动定位装置1可能会超过或未到达第一位置传感器的标零位置,则通常设置Lmin=-Lmax,例如,设置Lmin=-10mm,Lmax=10mm,L0=0,则当第一位置传感器的读数为Lmin时,可以设定转换模块的读数为Hmin=-32767常量,当第一位置传感器的读数为Lmax时,可以设定转换模块的读数为Hmax=32767常量,则当第一位置传感器的读数为L0时,可以设定转换模块的读数为H0=0,此时H0为理论值,可能存在误差,当L0存在微小误差时,H0可能为-390或其他数值,当H0=-390时,相当于L0存在0.01mm的误差,当Lmin<L<L0时,第一位置传感器的读数为负,则转换模块对控制器所输出的读数H=k1L+b1,经过若干次试验得出本实施例优选为k1=1/32.4,b1=12,当L0<L<Lmax时,第一位置传感器的读数为正,则转换模块对控制器所输出的读数H=k2L+b2,经过若干次试验得出本实施例优选为k2=1/33.2,b2=12。Wherein, the range reading of the first position sensor includes the minimum value of the range L min , the middle value of the range L 0 and the maximum value of the range L max , after the first position sensor is zeroed, the mobile positioning device 1 may exceed or fail to reach the first position sensor If the zero mark position is set, L min =-L max is usually set, for example, set L min =-10mm, L max =10mm, L 0 =0, then when the reading of the first position sensor is L min , you can set The reading of the conversion module is H min =-32767 constant, when the reading of the first position sensor is L max , the reading of the conversion module can be set as H max =32767 constant, then when the reading of the first position sensor is L 0 , the reading of the conversion module can be set as H 0 =0. At this time, H 0 is a theoretical value, and there may be errors. When there is a slight error in L 0 , H 0 may be -390 or other values. When H 0 =-390 , it is equivalent to an error of 0.01mm in L 0 , when L min <L<L 0 , the reading of the first position sensor is negative, then the conversion module reads H=k 1 L+b 1 output by the controller, After several experiments, it is found that this embodiment is preferably k 1 =1/32.4, b 1 =12, when L 0 <L<L max , the reading of the first position sensor is positive, then the conversion module outputs to the controller The reading H=k 2 L+b 2 , after several experiments, it is obtained that k 2 =1/33.2, b 2 =12 in this embodiment is preferred.
在本发明的一个优选实施例中,工装定位设备还包括与控制器通讯连接的报警装置,当车身实际偏差值<车身偏差阈值的A倍时,结束包括:当车身偏差阈值的B倍≤车身实际偏差值<车身偏差阈值的A倍时,控制器传输报警信号至报警装置,报警装置报警并结束;当车身实际偏差值<车身偏差阈值的B倍时,结束;其中,0.8≤B≤0.95,其中1≤A≤2。In a preferred embodiment of the present invention, the tooling positioning equipment also includes an alarm device communicated with the controller. When the actual deviation value of the vehicle body is < A times the vehicle body deviation threshold, the end includes: when B times the vehicle body deviation threshold ≤ the vehicle body When the actual deviation value<A times the body deviation threshold, the controller transmits an alarm signal to the alarm device, and the alarm device alarms and ends; when the actual deviation value of the body is<B times the body deviation threshold, it ends; where, 0.8≤B≤0.95 , where 1≤A≤2.
其中,当车身实际偏差值大于等于设定车身偏差阈值的B倍而小于A倍时,则控制器反馈此条数据仅为预警,不控制补偿,但需要相关区域持续关注连续生产时的车身变化,当车身实际偏差值小于车身偏差阈值的B倍时,则控制器反馈此条数据为正常,车身处于理想工况,不控制补偿直接结束。其中B为0.8至0.95之间任意一个数,A为1至2之间任意一个数。Among them, when the actual deviation value of the vehicle body is greater than or equal to the B times of the set vehicle body deviation threshold and less than A times, the controller feedbacks this data only as an early warning and does not control compensation, but the relevant areas need to continue to pay attention to the body changes during continuous production , when the actual deviation value of the vehicle body is less than B times the deviation threshold value of the vehicle body, the controller will feedback that this data is normal, the vehicle body is in an ideal working condition, and the compensation will end without control. Where B is any number between 0.8 and 0.95, and A is any number between 1 and 2.
在本发明的一个优选实施例中,当车身实际偏差值≥车身偏差阈值的A倍时,控制器计算车身补偿值并控制移动定位装置1根据车身补偿值移动,其中,1≤A≤2。In a preferred embodiment of the present invention, when the actual deviation of the vehicle body ≥ A times the threshold deviation of the vehicle body, the controller calculates the compensation value of the vehicle body and controls the mobile positioning device 1 to move according to the compensation value of the vehicle body, where 1≤A≤2.
其中,当车身实际偏差值大于等于车身偏差阈值的A倍时,则控制器反馈此条数据超差,且移动定位装置1需要精度补偿,控制器发出补偿信息,第一位置传感器对补偿信息进行确认,当补偿到位时,则该设备完成自适应补偿。Wherein, when the actual deviation value of the vehicle body is greater than or equal to A times the deviation threshold value of the vehicle body, the controller feeds back that the data is out of tolerance, and the mobile positioning device 1 needs precision compensation, the controller sends compensation information, and the first position sensor performs compensation information Confirm that when the compensation is in place, the device completes the adaptive compensation.
本发明的工装定位偏差补偿方法,通过采集装置的第一位置传感器和视觉传感器,监控通过移动定位装置1携带车身的到位情况,同时控制器通过采集装置的第一位置传感器、第二位置传感器和视觉传感器的所返回的各种数值计算车身实际偏差值和设备实际偏差值,让控制器通过伺服电机4对移动定位装置1进行超差补偿,最终使得车身的侧围总成、顶盖总成和底盘总成分别运动到合适的相对位置,减少了人工参与匹配工装,降低了人力成本,提高了经济效益;可自主调试新车型导入,减少传感器安装,节约空间,避免干涉,减少开发费用。In the tooling positioning deviation compensation method of the present invention, the first position sensor and the visual sensor of the acquisition device are used to monitor the position of the vehicle body carried by the mobile positioning device 1, and the controller simultaneously passes the first position sensor, the second position sensor and the first position sensor of the acquisition device. The various values returned by the visual sensor calculate the actual deviation value of the vehicle body and the actual deviation value of the equipment, so that the controller can compensate the mobile positioning device 1 through the
本发明实施例的一种工装定位设备,通过前述的工装定位偏差补偿方法进行控制。A tool positioning device according to an embodiment of the present invention is controlled by the aforementioned tool positioning deviation compensation method.
在本发明实施例中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明实施例中的具体含义。In the embodiments of the present invention, the term "multiple" refers to two or more, unless otherwise clearly defined. Terms such as "installation", "connection" and "fixation" should be understood in a broad sense, for example, "connection" can be a fixed connection, a detachable connection, or an integral connection. Those of ordinary skill in the art can understand the specific meanings of the above terms in the embodiments of the present invention according to specific situations.
本发明实施例的描述中,需要理解的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本发明实施例的限制。In the description of the embodiments of the present invention, it should be understood that the orientations or positional relationships indicated by the terms "upper" and "lower" are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the embodiments of the present invention and The description is simplified, but does not indicate or imply that the referred device or unit must have a specific direction, be constructed and operated in a specific orientation, and therefore, should not be construed as limiting the embodiments of the present invention.
在本说明书的描述中,术语“一个实施例”、“一个优选实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, the description of the terms "one embodiment", "one preferred embodiment" and the like mean that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one of the embodiments of the present invention Examples or examples. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
以上仅为本发明实施例的优选实施例而已,并不用于限制本发明实施例,对于本领域的技术人员来说,本发明实施例可以有各种更改和变化。凡在本发明实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明实施例的保护范围之内。The above are only preferred embodiments of the embodiments of the present invention, and are not intended to limit the embodiments of the present invention. For those skilled in the art, various modifications and changes may be made to the embodiments of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principle of the embodiments of the present invention shall be included in the protection scope of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211673625.5A CN116000510A (en) | 2022-12-26 | 2022-12-26 | Tool positioning deviation compensation method and tool positioning equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211673625.5A CN116000510A (en) | 2022-12-26 | 2022-12-26 | Tool positioning deviation compensation method and tool positioning equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116000510A true CN116000510A (en) | 2023-04-25 |
Family
ID=86024176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211673625.5A Pending CN116000510A (en) | 2022-12-26 | 2022-12-26 | Tool positioning deviation compensation method and tool positioning equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116000510A (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005044274A1 (en) * | 2005-09-16 | 2007-03-29 | Daimlerchrysler Ag | Automobile bodywork quality control, at the production line, scans the contour for the actual contour to be compared with a three-dimensional nominal contour |
CN101461754A (en) * | 2007-12-17 | 2009-06-24 | 刘丽元 | Rehabilitation training device for lower limb arthrosis |
CN101615023A (en) * | 2008-06-27 | 2009-12-30 | 深圳市大族激光科技股份有限公司 | A kind of method, Apparatus and system of measuring the control performance of lathe servo-drive system |
CN103256425A (en) * | 2013-05-31 | 2013-08-21 | 中冶长天国际工程有限责任公司 | Method, device and system for sintering control |
CN104467498A (en) * | 2014-12-18 | 2015-03-25 | 阳光电源股份有限公司 | Neutral-point level control method and system for five-level photovoltaic inverter |
CN105470178A (en) * | 2015-12-31 | 2016-04-06 | 北京七星华创电子股份有限公司 | Method for optimizing maintaining period of silicon wafer carrying device |
CN105675295A (en) * | 2016-01-13 | 2016-06-15 | 中国航空动力机械研究所 | Micro-crack alarming method and device for fatigue test of casting part of helicopter transmission system |
US20170357239A1 (en) * | 2014-12-29 | 2017-12-14 | Broetje-Automation Gmbh | Method for compensating for a deviation in an operating point |
US20180074366A1 (en) * | 2016-09-14 | 2018-03-15 | Boe Technology Group Co., Ltd. | Compensating method and system for cell assembly |
CN112418746A (en) * | 2019-08-22 | 2021-02-26 | 北京京东乾石科技有限公司 | Monitoring method and device, storage medium, and electronic device for article transportation process |
CN112589401A (en) * | 2020-11-09 | 2021-04-02 | 苏州赛腾精密电子股份有限公司 | Assembling method and system based on machine vision |
CN114427836A (en) * | 2022-02-10 | 2022-05-03 | 上汽通用五菱汽车股份有限公司 | Method for controlling dimensional precision of vehicle body process |
-
2022
- 2022-12-26 CN CN202211673625.5A patent/CN116000510A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005044274A1 (en) * | 2005-09-16 | 2007-03-29 | Daimlerchrysler Ag | Automobile bodywork quality control, at the production line, scans the contour for the actual contour to be compared with a three-dimensional nominal contour |
CN101461754A (en) * | 2007-12-17 | 2009-06-24 | 刘丽元 | Rehabilitation training device for lower limb arthrosis |
CN101615023A (en) * | 2008-06-27 | 2009-12-30 | 深圳市大族激光科技股份有限公司 | A kind of method, Apparatus and system of measuring the control performance of lathe servo-drive system |
CN103256425A (en) * | 2013-05-31 | 2013-08-21 | 中冶长天国际工程有限责任公司 | Method, device and system for sintering control |
CN104467498A (en) * | 2014-12-18 | 2015-03-25 | 阳光电源股份有限公司 | Neutral-point level control method and system for five-level photovoltaic inverter |
US20170357239A1 (en) * | 2014-12-29 | 2017-12-14 | Broetje-Automation Gmbh | Method for compensating for a deviation in an operating point |
CN105470178A (en) * | 2015-12-31 | 2016-04-06 | 北京七星华创电子股份有限公司 | Method for optimizing maintaining period of silicon wafer carrying device |
CN105675295A (en) * | 2016-01-13 | 2016-06-15 | 中国航空动力机械研究所 | Micro-crack alarming method and device for fatigue test of casting part of helicopter transmission system |
US20180074366A1 (en) * | 2016-09-14 | 2018-03-15 | Boe Technology Group Co., Ltd. | Compensating method and system for cell assembly |
CN112418746A (en) * | 2019-08-22 | 2021-02-26 | 北京京东乾石科技有限公司 | Monitoring method and device, storage medium, and electronic device for article transportation process |
CN112589401A (en) * | 2020-11-09 | 2021-04-02 | 苏州赛腾精密电子股份有限公司 | Assembling method and system based on machine vision |
CN114427836A (en) * | 2022-02-10 | 2022-05-03 | 上汽通用五菱汽车股份有限公司 | Method for controlling dimensional precision of vehicle body process |
Non-Patent Citations (3)
Title |
---|
叶夏亮;刘银华;: "模式相关性分析在车身多偏差源诊断中的研究", 机械设计与制造, no. 05, 8 May 2015 (2015-05-08) * |
张德良: "《机电一体化设计与应用研究》", vol. 1, 31 July 2020, 天津科学技术出版社, pages: 155 - 156 * |
李明悦;王灵犀;: "误差显示系统的开发及在车身焊装误差控制中的应用", 沈阳理工大学学报, no. 06, 15 December 2007 (2007-12-15) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4811347B2 (en) | Calibration robot system and distance sensor calibration method | |
CN106989699B (en) | Laser centering instrument calibration equipment and method for measuring indication error of laser centering instrument through laser centering instrument calibration equipment | |
CN101968641B (en) | Error correction system of machine tool XY plane | |
CN110253308B (en) | Machine tool and method for compensating gantry double-drive motion deviation | |
US9970744B2 (en) | Method for operating a coordinate measuring machine | |
CN203908525U (en) | Automated calibration device for linear displacement transducer | |
CN110974421B (en) | Calibration method and system for TCP of surgical robot and storage medium | |
CN103630099A (en) | Automated linear displacement sensor calibration device | |
CN110160436B (en) | Error measuring method and device of linear displacement sensor | |
CN102003955B (en) | Position detecting and sensing device based on image analysis and position detection method thereof | |
CN102538685A (en) | Displacement detection system with twist error correcting function | |
CN116000510A (en) | Tool positioning deviation compensation method and tool positioning equipment | |
CN102426002B (en) | Steel die matching online measurement system and method | |
CN110900305B (en) | A method for measuring the positioning error of a machine tool table | |
WO2023097711A1 (en) | New intelligent machine tool machining system | |
CN110726362B (en) | Displacement measuring device, error temperature compensation system and method | |
CN114408148B (en) | A pontoon bridge power unit throttle control system and method | |
CN210242686U (en) | Bridge displacement detection device | |
CN110455175B (en) | Bridge displacement detection device and method | |
CN117848259A (en) | Burr detection device and burr height detection method | |
CN221496046U (en) | Mobile chassis of mobile robot on railway sleeper | |
CN111576103A (en) | System for automatically adjusting installation position of track slab | |
CN222837529U (en) | Mechanical precision plate thickness detection device | |
CN220418429U (en) | Main beam strain monitoring sensor calibration auxiliary device | |
CN113375602B (en) | Calibration compensation method of engine swing angle measuring system based on grating sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230425 |