CN115979679A - Method, apparatus and storage medium for testing actual road of automatic driving system - Google Patents
Method, apparatus and storage medium for testing actual road of automatic driving system Download PDFInfo
- Publication number
- CN115979679A CN115979679A CN202310280259.5A CN202310280259A CN115979679A CN 115979679 A CN115979679 A CN 115979679A CN 202310280259 A CN202310280259 A CN 202310280259A CN 115979679 A CN115979679 A CN 115979679A
- Authority
- CN
- China
- Prior art keywords
- vehicle
- data
- driving
- vehicle dynamics
- dynamics parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000008447 perception Effects 0.000 claims abstract description 34
- 238000010998 test method Methods 0.000 claims abstract description 17
- 238000012549 training Methods 0.000 claims description 41
- 230000001133 acceleration Effects 0.000 claims description 19
- 230000007613 environmental effect Effects 0.000 claims description 13
- 238000011156 evaluation Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 7
- 238000013528 artificial neural network Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 5
- 238000000513 principal component analysis Methods 0.000 claims description 5
- 230000036461 convulsion Effects 0.000 claims description 4
- 238000003064 k means clustering Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000000306 recurrent effect Effects 0.000 claims 1
- 230000006399 behavior Effects 0.000 description 15
- 238000004590 computer program Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000011425 standardization method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
- G01M17/06—Steering behaviour; Rolling behaviour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明涉及自动驾驶领域,公开了一种自动驾驶系统实际道路测试方法、设备和存储介质。该方法包括:在被测车辆在实际社会道路上以自动驾驶模式行驶的过程中,实时获取驾驶环境感知数据;对所述被测车辆的行驶时段进行切分,得到多个时段,对驾驶环境感知数据进行分割,将驾驶环境感知数据分别输入到驾驶员模型中,得到拟人化的驾驶员控制数据;将拟人化的驾驶员控制数据分别输入到车辆动力学模型中,得到第一车辆动力学参数数据;将与同一时段对应的第一车辆动力学参数数据与第二车辆动力学参数数据进行比较,确定自动驾驶系统的测试结果。本实施例实现了自动驾驶系统实际道路测试,解决了自动驾驶系统智能化性能难以测试评价的问题。
The invention relates to the field of automatic driving, and discloses an actual road test method, equipment and storage medium of an automatic driving system. The method includes: acquiring driving environment perception data in real time while the tested vehicle is driving in an automatic driving mode on actual social roads; segmenting the driving period of the tested vehicle to obtain multiple periods, and analyzing the driving environment Segment the perception data, input the driving environment perception data into the driver model respectively, and obtain the anthropomorphic driver control data; input the anthropomorphic driver control data into the vehicle dynamics model respectively, and obtain the first vehicle dynamics model Parameter data: comparing the first vehicle dynamics parameter data corresponding to the same time period with the second vehicle dynamics parameter data to determine the test result of the automatic driving system. This embodiment realizes the actual road test of the automatic driving system, and solves the problem that the intelligent performance of the automatic driving system is difficult to test and evaluate.
Description
技术领域technical field
本发明涉及自动驾驶领域,尤其涉及一种自动驾驶系统实际道路测试方法、设备和存储介质。The invention relates to the field of automatic driving, in particular to an actual road test method, device and storage medium of an automatic driving system.
背景技术Background technique
自动驾驶不仅是车辆工程领域的研究前沿,也是未来汽车工业的发展方向,同时还是解决交通安全、能源浪费和环境污染等问题的重要技术手段。随着自动驾驶汽车进入新的纵深发展阶段,如何全面准确地测试自动驾驶系统的综合性能,是当前整个汽车行业和学术界关注的研究热点。相比于传统汽车测试,对于自动驾驶汽车特有的“智能化”属性如何进行全面的测试评价,在国内外尚无普遍认同的测试自动驾驶产品的功能与性能的方案。目前最被国际社会接受认可的自动驾驶测试方法—“多支柱法”自动驾驶测试准则,即通过仿真测试、场地测试和实际道路测试等多种途径与方式进行测试,其中,实际道路测试可以较好地验证自动驾驶系统在应对各种随机交通情况下的智能化的性能表现。Autonomous driving is not only the research frontier in the field of vehicle engineering, but also the development direction of the future automobile industry. It is also an important technical means to solve problems such as traffic safety, energy waste and environmental pollution. As autonomous vehicles enter a new stage of in-depth development, how to comprehensively and accurately test the comprehensive performance of autonomous driving systems is currently a research focus of the entire automotive industry and academia. Compared with traditional vehicle testing, there is no universally recognized solution for testing the functions and performance of autonomous driving products at home and abroad on how to conduct a comprehensive test and evaluation of the unique "intelligence" attributes of autonomous driving vehicles. At present, the most accepted test method for autonomous driving by the international community - the "multi-pillar method" automatic driving test criteria, that is, testing through various methods and methods such as simulation test, field test and actual road test. Among them, the actual road test can be compared It is a good way to verify the intelligent performance of the automatic driving system in various random traffic situations.
驾驶员模型最初是由车辆动力学工程师提出和完成的,人们称这类驾驶员模型为“虚拟测试驾驶员”,用于闭环测试和仿真,即通过操作车辆在给定或自行设定的速度下沿着指定路线行驶。中国专利202011312152.7提出一种基于驾驶员模型的测试方法及装置,通过触发匹配他车车辆对应的驾驶员模型,匹配他车车辆基于其对应的驾驶员模型行驶,以便辅助被测车辆的自动驾驶算法的测试,以实现对被测车辆性能的准确测试。但是并没有考虑如何在实际道路测试中,基于驾驶员模型进行自动驾驶系统功能及性能测试,无法验证自动驾驶系统在更为复杂的真实环境下的智能化性能表现。中国专利201410055985.8提出一种基于驾驶员模型的车辆转向系统参数的辅助设计系统和方法,整个测试过程模拟的是人的驾驶过程,通过改变转向系统参数,获得汽车的状态响应,通过对状态响应的分析,优化转向系统的参数,使转向系统的性能更加符合人的驾驶特性。但是没有考虑自动驾驶系统的整车表现,只是关注如何基于驾驶员模型开展车辆转向系统的测试验证。中国专利202210432328.5提出一种基于个性化驾驶员模型的自动驾驶测试场景生成方法,以人类驾驶数据作为数据来源,通过构建个性化具有不同风格的驾驶员模型,能够有效提升测试场景的真实性和复杂性。但是没有考虑如何将驾驶员模型应用于实际道路测试的具体环节,也没有给出具体的测试系统及方案。The driver model was originally proposed and completed by vehicle dynamics engineers. People call this type of driver model "virtual test driver", which is used for closed-loop testing and simulation, that is, by operating the vehicle at a given or self-set speed Drive along the designated route. Chinese patent 202011312152.7 proposes a test method and device based on a driver model. By triggering and matching the driver model corresponding to other vehicles, the matching other vehicle drives based on its corresponding driver model, so as to assist the automatic driving algorithm of the tested vehicle to achieve accurate testing of the performance of the vehicle under test. However, it does not consider how to test the function and performance of the automatic driving system based on the driver model in the actual road test, and cannot verify the intelligent performance of the automatic driving system in a more complex real environment. Chinese patent 201410055985.8 proposes an auxiliary design system and method for vehicle steering system parameters based on the driver model. The entire test process simulates the human driving process. By changing the steering system parameters, the state response of the car is obtained. Through the state response Analyze and optimize the parameters of the steering system to make the performance of the steering system more in line with human driving characteristics. However, it does not consider the vehicle performance of the automatic driving system, but only focuses on how to test and verify the vehicle steering system based on the driver model. Chinese patent 202210432328.5 proposes a method for generating autonomous driving test scenarios based on personalized driver models, using human driving data as the data source, and building personalized driver models with different styles can effectively improve the authenticity and complexity of test scenarios sex. However, it does not consider how to apply the driver model to the specific link of the actual road test, nor does it give a specific test system and program.
有鉴于此,特提出本发明。In view of this, the present invention is proposed.
发明内容Contents of the invention
为了解决上述技术问题,本发明提供了一种自动驾驶系统实际道路测试方法、设备和存储介质,实现了自动驾驶系统实际道路测试,解决了自动驾驶系统智能化性能难以测试评价的问题。In order to solve the above technical problems, the present invention provides an actual road test method, equipment and storage medium of an automatic driving system, which realizes the actual road test of the automatic driving system and solves the problem that the intelligent performance of the automatic driving system is difficult to test and evaluate.
本发明实施例提供了一种自动驾驶系统实际道路测试方法,该方法包括:An embodiment of the present invention provides an actual road test method for an automatic driving system, the method comprising:
在被测车辆在实际社会道路上以自动驾驶模式行驶的过程中,实时获取驾驶环境感知数据;Real-time acquisition of driving environment perception data while the tested vehicle is driving in automatic driving mode on actual social roads;
基于所述驾驶环境感知数据,按照不同的环境场景类型对所述被测车辆的行驶时段进行切分,得到多个时段,其中,不同时段对应的环境场景类型不同;Based on the driving environment perception data, the driving period of the vehicle under test is segmented according to different environmental scene types to obtain multiple time periods, wherein different types of environmental scenes correspond to different time periods;
根据所述多个时段对所述驾驶环境感知数据进行分割,以确定与每个时段分别对应的子驾驶环境感知数据;Segmenting the driving environment perception data according to the plurality of time periods, so as to determine sub-driving environment perception data respectively corresponding to each time period;
将与每个时段分别对应的子驾驶环境感知数据分别输入到驾驶员模型中,得到与每个时段分别对应的拟人化的驾驶员控制数据;Input the sub-driving environment perception data corresponding to each time period respectively into the driver model to obtain anthropomorphic driver control data corresponding to each time period;
将与每个时段分别对应的拟人化的驾驶员控制数据分别输入到车辆动力学模型中,得到与每个时段分别对应的第一车辆动力学参数数据;将与同一时段对应的第一车辆动力学参数数据与第二车辆动力学参数数据进行比较,确定自动驾驶系统的测试结果,其中,所述第二车辆动力学参数数据是通过对所述被测车辆中CAN总线传输的数据进行读取得到。Input the anthropomorphic driver control data corresponding to each time period into the vehicle dynamics model to obtain the first vehicle dynamics parameter data corresponding to each time period; the first vehicle dynamics data corresponding to the same time period Compare the data of the physical parameters with the data of the second vehicle dynamics parameters to determine the test result of the automatic driving system, wherein the data of the second vehicle dynamics parameters is read from the data transmitted by the CAN bus in the vehicle under test get.
本发明实施例提供了一种电子设备,所述电子设备包括:An embodiment of the present invention provides an electronic device, and the electronic device includes:
处理器和存储器;processor and memory;
所述处理器通过调用所述存储器存储的程序或指令,用于执行任一实施例所述的自动驾驶系统实际道路测试方法的步骤。The processor is used to execute the steps of the actual road test method for the automatic driving system described in any embodiment by calling the program or instruction stored in the memory.
本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储程序或指令,所述程序或指令使计算机执行任一实施例所述的自动驾驶系统实际道路测试方法的步骤。An embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores a program or an instruction, and the program or instruction causes a computer to execute the steps of the actual road test method for an automatic driving system described in any embodiment .
本发明实施例具有以下技术效果:Embodiments of the present invention have the following technical effects:
提出一种基于成熟驾驶员模型的自动驾驶实际道路测试方法,可以面向自动驾驶实际道路测试随机性的挑战,充分利用成熟驾驶员模型的泛化能力,可以针对实际、随机的自动驾驶测试路线,自动生成拟人化的驾驶行为,并且通过与自动驾驶系统的自动行为进行横向对比,生成自动驾驶系统智能化性能方面的测试结果,较为科学地提出一种用于测试评价自动驾驶智能化性能的合理方法。A practical road test method for automatic driving based on a mature driver model is proposed, which can face the challenge of randomness in the actual road test of automatic driving, and fully utilizes the generalization ability of the mature driver model. The anthropomorphic driving behavior is automatically generated, and the test results of the intelligent performance of the automatic driving system are generated through horizontal comparison with the automatic behavior of the automatic driving system, and a reasonable method for testing and evaluating the intelligent performance of the automatic driving system is scientifically proposed. method.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work.
图1是本发明实施例提供的一种自动驾驶系统实际道路测试方法的流程图;Fig. 1 is a flow chart of an actual road test method for an automatic driving system provided by an embodiment of the present invention;
图2是本发明实施例提供的一种自动驾驶系统实际道路测试系统的结构示意图;2 is a schematic structural diagram of an actual road test system for an automatic driving system provided by an embodiment of the present invention;
图3为本发明实施例提供的一种电子设备的结构示意图。FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。In order to make the object, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be clearly and completely described below. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明实施例提供的自动驾驶系统实际道路测试方法,可以面向自动驾驶实际道路测试随机性的挑战,充分利用成熟驾驶员模型的泛化能力,可以针对实际、随机的自动驾驶测试路线,自动生成拟人化的驾驶行为,并且通过与自动驾驶系统的自动行为进行横向对比,生成自动驾驶系统智能化性能方面的测试结果,较为科学地提出一种用于测试评价自动驾驶智能化性能的合理方法。本发明实施例提供的自动驾驶系统实际道路测试方法可以由电子设备执行。The actual road test method of the automatic driving system provided by the embodiment of the present invention can face the challenge of randomness in the actual road test of automatic driving, fully utilize the generalization ability of the mature driver model, and can automatically generate the actual and random automatic driving test route Anthropomorphic driving behavior, and through horizontal comparison with the automatic behavior of the automatic driving system, the test results of the intelligent performance of the automatic driving system are generated, and a reasonable method for testing and evaluating the intelligent performance of the automatic driving system is scientifically proposed. The actual road test method for the automatic driving system provided in the embodiment of the present invention can be executed by electronic equipment.
图1是本发明实施例提供的一种自动驾驶系统实际道路测试方法的流程图。参见图1,该自动驾驶系统实际道路测试方法具体包括:Fig. 1 is a flow chart of an actual road test method for an automatic driving system provided by an embodiment of the present invention. Referring to Figure 1, the actual road test method of the automatic driving system specifically includes:
S110、在被测车辆在实际社会道路上以自动驾驶模式行驶的过程中,实时获取驾驶环境感知数据。S110. Acquiring driving environment perception data in real time while the vehicle under test is driving in an automatic driving mode on an actual social road.
其中,所述驾驶环境感知数据包括被测车辆前方障碍物信息,被测车辆前方车辆信息,红绿灯信息,限速标志信息,道路曲率信息,被测车辆的位置信息,横、纵向动力学参数信息,前方车辆相较于被测车辆的相对速度以及前方车辆相较于被测车辆的相对距离中的至少一个。Wherein, the driving environment perception data includes obstacle information in front of the vehicle under test, vehicle information in front of the vehicle under test, traffic light information, speed limit sign information, road curvature information, position information of the vehicle under test, and horizontal and longitudinal dynamic parameter information , at least one of the relative speed of the front vehicle compared to the measured vehicle and the relative distance of the front vehicle compared to the measured vehicle.
所述驾驶环境感知数据由所述被测车辆中的摄像头、GPS/INS组合导航系统以及毫米波雷达传感器采集得到,所述摄像头安装于所述被测车辆前挡风玻璃的内侧。具体的,所述摄像头经过标定,用来实时感知车辆前方障碍物信息、前方车辆信息、红绿灯信息、限速标志信息和道路曲率信息。所述GPS/INS组合导航系统用来实时获取车辆的位置信息以及横纵向动力学参数信息。所述毫米波雷达传感器用来获取前方车辆相较于被测自动驾驶车辆的相对速度、相对距离信息。The driving environment perception data is collected by a camera, a GPS/INS integrated navigation system and a millimeter-wave radar sensor in the vehicle under test, and the camera is installed on the inside of the front windshield of the vehicle under test. Specifically, the camera is calibrated and used to perceive information of obstacles in front of the vehicle, information of vehicles in front, traffic light information, speed limit sign information and road curvature information in real time. The GPS/INS integrated navigation system is used for real-time acquisition of vehicle position information and horizontal and vertical dynamic parameter information. The millimeter-wave radar sensor is used to obtain the relative speed and relative distance information of the front vehicle compared with the tested self-driving vehicle.
S120、基于所述驾驶环境感知数据,按照不同的环境场景类型对所述被测车辆的行驶时段进行切分,得到多个时段,其中,不同时段对应的环境场景类型不同。S120. Based on the driving environment perception data, segment the driving time period of the vehicle under test according to different environmental scene types to obtain multiple time periods, wherein different time periods correspond to different types of environmental scenes.
S130、根据所述多个时段对所述驾驶环境感知数据进行分割,以确定与每个时段分别对应的子驾驶环境感知数据。S130. Segment the driving environment perception data according to the multiple time periods, so as to determine sub-driving environment perception data corresponding to each time period.
其中,所述环境场景类型包括社会车辆右转弯、社会车辆左转弯、社会车辆跟车行驶、社会车辆的前方车辆切入、社会车辆的前方车辆切出、或者社会车辆变道。Wherein, the environment scene type includes social vehicles turning right, social vehicles turning left, social vehicles following vehicles, social vehicles cutting in front vehicles, social vehicles cutting ahead vehicles, or social vehicles changing lanes.
换言之,将被测车辆在一个具体的环境场景中的行驶历程划分为一个时段。In other words, the driving history of the tested vehicle in a specific environmental scene is divided into a time period.
通过基于所述驾驶环境感知数据,按照不同的环境场景类型对所述被测车辆的行驶时段进行切分,实现了将本次实际道路测试所经历过的测试场景进行片段化分割,获取不同环境场景所对应的起止时间。By segmenting the driving period of the vehicle under test according to different environmental scene types based on the driving environment perception data, the test scenes experienced in this actual road test are segmented and segmented to obtain different environmental scenarios. The start and end time corresponding to the scene.
通过按照环境场景进行分类,可以测试自动驾驶系统在具体场景中的性能表现,有利于提升测试准确度以及测试覆盖度,保证测试的全面性。By classifying according to environmental scenarios, the performance of the automatic driving system in specific scenarios can be tested, which is conducive to improving the test accuracy and test coverage, and ensuring the comprehensiveness of the test.
S140、将与每个时段分别对应的子驾驶环境感知数据分别输入到驾驶员模型中,得到与每个时段分别对应的拟人化的驾驶员控制数据。S140. Input the sub-driving environment perception data corresponding to each time period into the driver model to obtain anthropomorphic driver control data corresponding to each time period.
其中,所述拟人化的驾驶员控制数据包括油门踏板开度、制动踏板开度以及方向盘转角中的至少一个。通过驾驶员模型模拟真实驾驶员在具体环境场景下的驾驶行为,将该驾驶行为与自动驾驶系统的自动驾驶行为进行比较,从而确定自动驾驶系统的智能化性能表现,实现对自动驾驶系统的测试。Wherein, the anthropomorphic driver control data includes at least one of the opening degree of the accelerator pedal, the opening degree of the brake pedal and the steering wheel angle. Simulate the driving behavior of real drivers in specific environmental scenarios through the driver model, and compare the driving behavior with the automatic driving behavior of the automatic driving system, so as to determine the intelligent performance of the automatic driving system and realize the test of the automatic driving system .
S150、将与每个时段分别对应的拟人化的驾驶员控制数据分别输入到车辆动力学模型中,得到与每个时段分别对应的第一车辆动力学参数数据。S150. Input the anthropomorphic driver control data respectively corresponding to each time period into the vehicle dynamics model to obtain first vehicle dynamics parameter data corresponding to each time period.
进一步的,为了提高驾驶行为的模拟精度,进而提高自动驾驶系统的测试精度,对所述驾驶员模型进行改进,使所述驾驶员模型能够基于驾驶环境感知数据得到不同驾驶风格的拟人化的驾驶员控制数据。Further, in order to improve the simulation accuracy of driving behavior, and then improve the test accuracy of the automatic driving system, the driver model is improved so that the driver model can obtain anthropomorphic driving with different driving styles based on the driving environment perception data. staff control the data.
对应的,所述与每个时段分别对应的拟人化的驾驶员控制数据包括:与每个时段分别对应的不同驾驶风格的拟人化的驾驶员控制数据,所述不同驾驶风格包括保守型、普通型以及激进型。Correspondingly, the anthropomorphic driver control data respectively corresponding to each time period includes: anthropomorphic driver control data of different driving styles respectively corresponding to each time period, the different driving styles include conservative, common type and aggressive type.
所述将与每个时段分别对应的拟人化的驾驶员控制数据分别输入到车辆动力学模型中,得到与每个时段分别对应的第一车辆动力学参数数据,包括:Said inputting the anthropomorphic driver control data respectively corresponding to each time period into the vehicle dynamics model to obtain the first vehicle dynamics parameter data respectively corresponding to each time period, including:
将与每个时段分别对应的不同驾驶风格的拟人化的驾驶员控制数据分别输入到车辆动力学模型中,得到与每个时段分别对应的不同驾驶风格的子车辆动力学参数数据,所述不同驾驶风格的子车辆动力学参数数据组成所述第一车辆动力学参数数据。即一个时段对应有三个子车辆动力学参数数据,分别是保守型驾驶员对应的子车辆动力学参数数据,普通型驾驶员对应的子车辆动力学参数数据以及激进型驾驶员对应的子车辆动力学参数数据。Input the anthropomorphic driver control data of different driving styles corresponding to each time period into the vehicle dynamics model, and obtain the sub-vehicle dynamics parameter data of different driving styles corresponding to each time period, the different The sub-vehicle dynamic parameter data of the driving style constitute the first vehicle dynamic parameter data. That is, there are three sub-vehicle dynamics parameter data corresponding to a time period, which are the sub-vehicle dynamics parameter data corresponding to the conservative driver, the sub-vehicle dynamics parameter data corresponding to the ordinary driver, and the sub-vehicle dynamics data corresponding to the aggressive driver. parameter data.
因此,需要通过一定的策略对上述三个子车辆动力学参数数据进行筛选,最终保留其中一个。示例性的,所述将与同一时段对应的第一车辆动力学参数数据与第二车辆动力学参数数据进行比较,确定自动驾驶系统的测试结果之前,所述方法还包括:Therefore, it is necessary to screen the above three sub-vehicle dynamics parameter data through a certain strategy, and finally retain one of them. Exemplarily, before comparing the first vehicle dynamics parameter data corresponding to the same time period with the second vehicle dynamics parameter data, and determining the test result of the automatic driving system, the method further includes:
将一时段所对应的不同驾驶风格的子车辆动力学参数数据分别与该一时段所对应的第二车辆动力学参数数据进行相似度计算,将相似度最大的子车辆动力学参数数据确定为该一时段对应的第一车辆动力学参数数据。Carry out similarity calculation between the sub-vehicle dynamics parameter data of different driving styles corresponding to a period and the second vehicle dynamics parameter data corresponding to the period, and determine the sub-vehicle dynamics parameter data with the largest similarity as the The first vehicle dynamics parameter data corresponding to a period of time.
S160、将与同一时段对应的第一车辆动力学参数数据与第二车辆动力学参数数据进行比较,确定自动驾驶系统的测试结果。S160. Comparing the first vehicle dynamics parameter data corresponding to the same time period with the second vehicle dynamics parameter data, and determining the test result of the automatic driving system.
其中,所述第二车辆动力学参数数据是通过对所述被测车辆中CAN总线传输的数据进行读取得到。Wherein, the second vehicle dynamics parameter data is obtained by reading the data transmitted by the CAN bus in the vehicle under test.
示例性的,所述将与同一时段对应的第一车辆动力学参数数据与第二车辆动力学参数数据进行比较,确定自动驾驶系统的测试结果,包括:Exemplarily, the comparing the first vehicle dynamics parameter data corresponding to the same time period with the second vehicle dynamics parameter data to determine the test result of the automatic driving system includes:
将与同一时段对应的第一车辆动力学参数数据与第二车辆动力学参数数据逐一进行比较,基于均方根误差确定每项指标的相似度;Comparing the first vehicle dynamics parameter data corresponding to the same time period with the second vehicle dynamics parameter data one by one, and determining the similarity of each index based on the root mean square error;
将不同指标的相似度进行加权求和,获得所述测试结果;Carrying out weighted summation of the similarities of different indicators to obtain the test result;
所述第一车辆动力学参数数据与所述第二车辆动力学参数数据均包括纵向加速度、纵向急动度、横向加速度、横向急动度、横摆角以及横摆角速度中的至少一项指标。Both the first vehicle dynamics parameter data and the second vehicle dynamics parameter data include at least one index of longitudinal acceleration, longitudinal jerk, lateral acceleration, lateral jerk, yaw angle and yaw rate .
本实施例具有以下技术效果:提出一种基于成熟驾驶员模型的自动驾驶实际道路测试方法,可以面向自动驾驶实际道路测试随机性的挑战,充分利用成熟驾驶员模型的泛化能力,可以针对实际、随机的自动驾驶测试路线,自动生成拟人化的驾驶行为,并且通过与自动驾驶系统的自动行为进行横向对比,生成自动驾驶系统智能化性能方面的测试结果,较为科学地提出一种用于测试评价自动驾驶智能化性能的合理方法。This embodiment has the following technical effects: a method for actual road testing of automatic driving based on a mature driver model is proposed, which can face the challenge of randomness in actual road testing of automatic driving, fully utilizes the generalization ability of a mature driver model, and can be aimed at actual , random automatic driving test route, automatically generate anthropomorphic driving behavior, and generate test results for the intelligent performance of the automatic driving system through horizontal comparison with the automatic behavior of the automatic driving system, and scientifically propose a method for testing A reasonable way to evaluate the intelligent performance of autonomous driving.
在上述实施例技术方案的基础上,本发明实施例还提供了获取所述驾驶员模型的方案,目的是获取能够准确模拟不同环境场景下不同驾驶风格的驾驶员的驾驶行为。On the basis of the technical solutions of the above embodiments, the embodiments of the present invention also provide a solution for obtaining the driver model, with the purpose of obtaining the driving behavior of drivers who can accurately simulate different driving styles in different environmental scenarios.
具体的,获取P组驾驶员模型训练数据组;每一组所述驾驶员模型训练数据组包括驾驶环境感知训练数据、驾驶员控制训练数据以及驾驶风格评价信息;至少部分所述驾驶员模型训练数据组中的驾驶风格评价信息不同;Specifically, obtain P groups of driver model training data sets; each set of driver model training data sets includes driving environment perception training data, driver control training data, and driving style evaluation information; at least part of the driver model training The driving style evaluation information in the data set is different;
基于所述P组驾驶员模型训练数据组,对广义回归神经网络(Generalizedregressionneural network, GRNN)进行训练,获得所述驾驶员模型。Based on the P group of driver model training data sets, a generalized regression neural network (Generalized regression neural network, GRNN) is trained to obtain the driver model.
所述获取P组驾驶员模型训练数据组之后,基于所述P组驾驶员模型训练数据组,对广义回归神经网络(Generalized regressionneural network, GRNN)进行训练之前,还包括:After the acquisition of the P group of driver model training data sets, before training the generalized regression neural network (Generalized regression neural network, GRNN) based on the P group of driver model training data sets, it also includes:
基于每一组所述驾驶员模型训练数据中的驾驶环境感知训练数据和/或驾驶员控制训练数据,确定与每一组驾驶员模型训练数据对应的N个特征参数的取值;Based on the driving environment perception training data and/or driver control training data in each set of driver model training data, determine the values of N characteristic parameters corresponding to each set of driver model training data;
构建N维空间,以所述N个特征参数的取值为坐标值,确定每一组驾驶员模型训练初始数据在N维空间的对应点;Construct N-dimensional space, take the values of the N characteristic parameters as coordinate values, and determine the corresponding points of each group of driver model training initial data in N-dimensional space;
利用K均值聚类分析算法对N维空间中的P个对应点进行聚类,得到M个聚类结果;Use the K-means clustering analysis algorithm to cluster P corresponding points in the N-dimensional space, and obtain M clustering results;
为每一个聚类结果确定代表点,所述代表点为其所属聚类结果中的对应点,每个所述代表点距其所属的所述聚类结果的聚类中心的距离大于第一设定阈值,且每个所述代表点距其他聚类结果的聚类中心的距离大于第二设定阈值;Determining a representative point for each clustering result, the representative point is a corresponding point in the clustering result to which it belongs, and the distance between each representative point and the cluster center of the clustering result to which it belongs is greater than the first set Set a threshold, and the distance between each representative point and the cluster center of other clustering results is greater than the second set threshold;
对每一组所述驾驶员模型训练数据中的所述驾驶风格评价信息进行修正,以使修正后每一组驾驶员模型训练数据中的所述驾驶风格评价信息与属于同一聚类结果的代表点的驾驶风格评价信息一致。Correcting the driving style evaluation information in each set of driver model training data, so that the driving style evaluation information in each set of driver model training data after correction is the same as that of representatives belonging to the same clustering result. The driving style evaluation information of the points is consistent.
所述基于每一组所述驾驶员模型训练数据中的驾驶环境感知训练数据和/或驾驶员控制训练数据,确定与每一组驾驶员模型训练数据对应的N个特征参数的取值之前,还包括:Before determining the values of N characteristic parameters corresponding to each set of driver model training data based on the driving environment awareness training data and/or driver control training data in each set of driver model training data, Also includes:
在备选参数中,进行主成分分析,确定N个特征参数;所述备选参数包括车速平均值、车速标准差、车速最大值、纵向加速度平均值、纵向加速度标准差、纵向加速度最大值、横向加速度平均值、横向加速度标准差、横向加速度最大值、方向盘转角平均值、方向盘转角标准差以及方向盘转角最大值。In the alternative parameters, principal component analysis is carried out to determine N characteristic parameters; the alternative parameters include average vehicle speed, standard deviation of vehicle speed, maximum value of vehicle speed, average value of longitudinal acceleration, standard deviation of longitudinal acceleration, maximum value of longitudinal acceleration, Average value of lateral acceleration, standard deviation of lateral acceleration, maximum value of lateral acceleration, average value of steering wheel angle, standard deviation of steering wheel angle, and maximum value of steering wheel angle.
进一步的,参考如图2所示的一种自动驾驶系统实际道路测试系统的结构示意图,包括前向测试摄像头210、GPS/INS组合导航系统220、毫米波雷达传感器230、车载CAN总线数据读取模块240、自动驾驶测试场景片段化处理模块250、成熟驾驶员模型260、车辆动力学模型270、车辆动力学参数相似性对比模块280、自动驾驶系统智能化性能测试结果显示模块290、驾驶风格分类判别模块300以及成熟驾驶员自然驾驶行为数据库310。Further, refer to the schematic structural diagram of an actual road test system for an automatic driving system as shown in FIG.
其中,前向测试摄像头210用于实时感知车辆前方障碍物信息、前方车辆信息、红绿灯信息、限速标志信息和道路曲率信息。GPS/INS组合导航系统220用来实时获取车辆的位置信息以及横纵向动力学参数信息。毫米波雷达传感器230用来获取前方车辆相较于被测自动驾驶车辆的相对速度、相对距离信息。车载CAN总线数据读取模块240用于读取自动驾驶系统的第二车辆动力学参数数据。Wherein, the forward-facing
自动驾驶测试场景片段化处理模块250用于将本次实际道路测试所经历过的测试场景进行片段化分割,即基于所述驾驶环境感知数据,按照不同的环境场景类型对所述被测车辆的行驶时段进行切分,得到多个时段,其中,不同时段对应的环境场景类型不同,根据所述多个时段对所述驾驶环境感知数据进行分割,以确定与每个时段分别对应的子驾驶环境感知数据。The automatic driving test scene segmentation processing module 250 is used to segment the test scene experienced in this actual road test, that is, based on the driving environment perception data, according to different environmental scene types, the Segment the driving time period to obtain multiple time periods, wherein different types of environmental scenes correspond to different time periods, and divide the driving environment perception data according to the multiple time periods to determine the sub-driving environment corresponding to each time period sense data.
成熟驾驶员模型260用于基于每个时段分别对应的子驾驶环境感知数据获得与每个时段分别对应的拟人化的驾驶员控制数据。The
车辆动力学模型270用于基于每个时段分别对应的拟人化的驾驶员控制数据获得与每个时段分别对应的第一车辆动力学参数数据。The
车辆动力学参数相似性对比模块280用于将同一时段对应的第一车辆动力学参数数据与第二车辆动力学参数数据进行比较,确定自动驾驶系统的测试结果。The vehicle dynamics parameter similarity comparison module 280 is used to compare the first vehicle dynamics parameter data corresponding to the same period of time with the second vehicle dynamics parameter data to determine the test result of the automatic driving system.
自动驾驶系统智能化性能测试结果显示模块290用于显示所述测试结果。The automatic driving system intelligent performance test
驾驶风格分类判别模块300用于将大量成熟驾驶员的驾驶行为数据进行聚类分析,并形成面向不同场景的驾驶风格分类,即保守型、普通型和激进型三类,同时做好标签化处理。具体的,采用主成分分析(Principal ComponentAnalysis,PCA)对高维数据特征进行降维处理,由于各个特征参数量纲不同,数据量级差异很大,数量级大的数据会掩盖数量级小的数据所反映的信息,因此首先采用Z-score标准化方法对数据进行处理,让各维度数据按比例伸缩到同一个区域范围内,以消除量纲影响,之后在标准化数据集上进行PCA处理。当主成分累计方差贡献率接近于1时(通常取85%),这时用前m个特征变量代替原p 个变量进行综合分析,既简化了计算步骤,又保留了原特征的信息。随后,采用K均值聚类分析算法来识别成熟驾驶员的具体驾驶风格.K均值聚类分析算法选取输入量k后根据相似性原则,将n个数据对象划分为k个类簇,聚类后满足:同一类簇中数据对象相似度较高,而不同类簇中的数据对象相似度较低。The driving style classification and
成熟驾驶员自然驾驶行为数据库310存储有大量成熟驾驶员自然驾驶行为数据。具体的,驾驶员的年龄在20~50岁之间,数据的采集频率为10Hz。男性驾驶员170人,女性驾驶员30人。为满足道路条件的多样性,选择的路线涉及高速公路、城市快速路、国道以及乡村道路等路段,包括弯道、直道和匝道。此外,数据中还包括3位专业的驾驶评估师对每位驾驶员总体驾驶风格的评估结果。驾驶评估师均为驾龄20年以上的职业驾驶员,评估过程中,每位驾驶员按照平时的驾驶习惯在给定路线上驾驶车辆,3位专业驾驶评估师同时坐在车上,通过密集观察驾驶员的操作(如节气门踏板、制动踏板的使用)以及驾驶评估师的主观感受(驾驶员情绪、乘车舒适度)来评估驾驶风格。评估结果分为保守、普通和激进三种。驾驶评估师对驾驶员的驾驶风格评估分类标签。The mature driver's natural driving behavior database 310 stores a large amount of mature driver's natural driving behavior data. Specifically, the age of the driver is between 20 and 50 years old, and the data collection frequency is 10 Hz. There are 170 male drivers and 30 female drivers. In order to meet the diversity of road conditions, the selected routes involve highways, urban expressways, national highways and country roads, including bends, straights and ramps. In addition, the data also includes the evaluation results of each driver's overall driving style by 3 professional driving evaluators. The driving evaluators are all professional drivers with more than 20 years of driving experience. During the evaluation process, each driver drives the vehicle on a given route according to his usual driving habits. Three professional driving evaluators sit in the car at the same time and through intensive observation The driving style is evaluated by the driver's operation (such as the use of the throttle pedal and the brake pedal) and the subjective feelings of the driving evaluator (driver emotion, ride comfort). The evaluation results are divided into three categories: conservative, ordinary and aggressive. The driving evaluator evaluates the classification labels on the driver's driving style.
目前,表征驾驶风格属性的特征参数还没有统一标准,国内外许多学者选取了速度、加速度、节气门踏板位置、节气门踏板压力作为具有代表性的特征参数来评价驾驶风格,效果良好。本专利在前人研究基础上选取200位成熟驾驶员的车速、纵向加速度、横向加速度、方向盘转角,本文使用频率为10Hz的原始数据计算了4个汽车参数在每秒内的平均值(Mean)、标准差(Std)、最大值(Max)3类统计量,共形成了12维特征参数,为后续的驾驶风格分类判别模块提供数据样本。At present, there is no uniform standard for the characteristic parameters that represent driving style attributes. Many scholars at home and abroad have selected speed, acceleration, throttle pedal position, and throttle pedal pressure as representative characteristic parameters to evaluate driving style, and the effect is good. This patent selects the vehicle speed, longitudinal acceleration, lateral acceleration and steering wheel angle of 200 mature drivers on the basis of previous research. This paper uses the original data with a frequency of 10Hz to calculate the average value (Mean) of 4 vehicle parameters per second. , standard deviation (Std), and maximum value (Max) are three types of statistics, forming a total of 12-dimensional feature parameters, which provide data samples for the subsequent driving style classification and discrimination module.
图3为本发明实施例提供的一种电子设备的结构示意图。如图3所示,电子设备400包括一个或多个处理器401和存储器402。FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention. As shown in FIG. 3 , an
处理器401可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备400中的其他组件以执行期望的功能。The
存储器402可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器401可以运行所述程序指令,以实现上文所说明的本发明任意实施例的自动驾驶系统实际道路测试方法以及/或者其他期望的功能。在所述计算机可读存储介质中还可以存储诸如初始外参、阈值等各种内容。
在一个示例中,电子设备400还可以包括:输入装置403和输出装置404,这些组件通过总线系统和/或其他形式的连接机构(未示出)互连。该输入装置403可以包括例如键盘、鼠标等等。该输出装置404可以向外部输出各种信息,包括预警提示信息、制动力度等。该输出装置404可以包括例如显示器、扬声器、打印机、以及通信网络及其所连接的远程输出设备等等。In an example, the
当然,为了简化,图3中仅示出了该电子设备400中与本发明有关的组件中的一些,省略了诸如总线、输入/输出接口等等的组件。除此之外,根据具体应用情况,电子设备400还可以包括任何其他适当的组件。Of course, for simplicity, only some components related to the present invention in the
除了上述方法和设备以外,本发明的实施例还可以是计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本发明任意实施例所提供的自动驾驶系统实际道路测试方法的步骤。In addition to the above-mentioned methods and devices, embodiments of the present invention may also be computer program products, which include computer program instructions that, when executed by a processor, cause the processor to perform the functions provided by any of the embodiments of the present invention. Steps in the method of practical road testing of automated driving systems.
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本发明实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。The computer program product can be written in any combination of one or more programming languages for executing the program codes for the operations of the embodiments of the present invention, and the programming languages include object-oriented programming languages, such as Java, C++, etc. , also includes conventional procedural programming languages, such as the "C" language or similar programming languages. The program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute.
此外,本发明的实施例还可以是计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本发明任意实施例所提供的自动驾驶系统实际道路测试方法的步骤。In addition, the embodiments of the present invention may also be a computer-readable storage medium, on which computer program instructions are stored, and the computer program instructions, when executed by a processor, cause the processor to perform the automatic operation provided by any embodiment of the present invention. Steps in the actual road test method of the driving system.
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。The computer readable storage medium may employ any combination of one or more readable media. The readable medium may be a readable signal medium or a readable storage medium. The readable storage medium may include, but not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above.
需要说明的是,本发明所用术语仅为了描述特定实施例,而非限制本申请范围。如本发明说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。It should be noted that the terms used in the present invention are only used to describe specific embodiments, but not to limit the scope of the application. As shown in the specification and claims of the present invention, words such as "a", "an", "an" and/or "the" do not specifically refer to the singular, and may also include the plural, unless the context clearly indicates an exception. The term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method or apparatus comprising a set of elements includes not only those elements but also other elements not expressly listed, Alternatively, elements inherent in such a process, method, or apparatus are also included. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
还需说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”等应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。It should also be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. indicate the orientation or positional relationship Based on the orientation or positional relationship shown in the drawings, it is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation of the invention. Unless otherwise clearly specified and limited, the terms "mounted", "connected", "connected" and so on should be interpreted in a broad sense, for example, it can be fixed connection, detachable connection, or integral connection; it can be mechanical connection , can also be an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or an internal connection between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310280259.5A CN115979679B (en) | 2023-03-22 | 2023-03-22 | Actual road test method, device and storage medium for automatic driving system |
DE102023130154.3A DE102023130154B4 (en) | 2023-03-22 | 2023-10-31 | Test procedures for automated driving systems when driving on real roads, device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310280259.5A CN115979679B (en) | 2023-03-22 | 2023-03-22 | Actual road test method, device and storage medium for automatic driving system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115979679A true CN115979679A (en) | 2023-04-18 |
CN115979679B CN115979679B (en) | 2023-06-23 |
Family
ID=85961134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310280259.5A Active CN115979679B (en) | 2023-03-22 | 2023-03-22 | Actual road test method, device and storage medium for automatic driving system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115979679B (en) |
DE (1) | DE102023130154B4 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118035691A (en) * | 2024-04-12 | 2024-05-14 | 中国汽车技术研究中心有限公司 | Quantitative evaluation method, equipment and storage medium for intelligent driving perception quality |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016216023A (en) * | 2015-04-21 | 2016-12-22 | パナソニックIpマネジメント株式会社 | Driving support method, driving support device, driving control device, vehicle, and driving support program using the same |
US20180354512A1 (en) * | 2017-06-09 | 2018-12-13 | Baidu Online Network Technology (Beijing) Co., Ltd. | Driverless Vehicle Testing Method and Apparatus, Device and Storage Medium |
US20200226467A1 (en) * | 2019-01-11 | 2020-07-16 | Arizona Board Of Regents On Behalf Of Arizona State University | Systems and methods for evaluating perception systems for autonomous vehicles using quality temporal logic |
CN111856969A (en) * | 2020-08-06 | 2020-10-30 | 北京赛目科技有限公司 | Automatic driving simulation test method and device |
CN111947938A (en) * | 2020-08-03 | 2020-11-17 | 中国第一汽车股份有限公司 | In-loop test system, method, server and storage medium for automatic driving vehicle |
CN112130472A (en) * | 2020-10-14 | 2020-12-25 | 广州小鹏自动驾驶科技有限公司 | Automatic driving simulation test system and method |
CN112506170A (en) * | 2020-11-20 | 2021-03-16 | 北京赛目科技有限公司 | Driver model based test method and device |
CN112526968A (en) * | 2020-11-25 | 2021-03-19 | 东南大学 | Method for building automatic driving virtual test platform for mapping real world road conditions |
CN112721949A (en) * | 2021-01-12 | 2021-04-30 | 重庆大学 | Method for evaluating longitudinal driving personification degree of automatic driving vehicle |
US20210316753A1 (en) * | 2020-12-10 | 2021-10-14 | Apollo Intelligent Connectivity (Beijing) Technology Co., Ltd. | Road test method and apparatus for autonomous driving vehicle, device and storage medium |
CN114354219A (en) * | 2022-01-07 | 2022-04-15 | 苏州挚途科技有限公司 | Test method and device for automatic driving vehicle |
CN115048972A (en) * | 2022-03-11 | 2022-09-13 | 北京智能车联产业创新中心有限公司 | Traffic scene deconstruction classification method and virtual-real combined automatic driving test method |
WO2022246852A1 (en) * | 2021-05-28 | 2022-12-01 | 吉林大学 | Automatic driving system testing method based on aerial survey data, testing system, and storage medium |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103823929A (en) | 2014-02-18 | 2014-05-28 | 北京理工大学 | Method for testing performance of steering system of vehicle on basis of driver model |
US11814059B1 (en) | 2019-04-05 | 2023-11-14 | Zoox, Inc. | Simulating autonomous driving using map data and driving data |
US11175669B2 (en) | 2019-08-01 | 2021-11-16 | Toyota Motor Engineering & Manufacturing North America, Inc. | Increasing consumer confidence in autonomous vehicles |
CN114896869A (en) | 2022-04-22 | 2022-08-12 | 同济大学 | Automatic driving test scene generation method based on personalized driver model |
-
2023
- 2023-03-22 CN CN202310280259.5A patent/CN115979679B/en active Active
- 2023-10-31 DE DE102023130154.3A patent/DE102023130154B4/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016216023A (en) * | 2015-04-21 | 2016-12-22 | パナソニックIpマネジメント株式会社 | Driving support method, driving support device, driving control device, vehicle, and driving support program using the same |
US20180354512A1 (en) * | 2017-06-09 | 2018-12-13 | Baidu Online Network Technology (Beijing) Co., Ltd. | Driverless Vehicle Testing Method and Apparatus, Device and Storage Medium |
US20200226467A1 (en) * | 2019-01-11 | 2020-07-16 | Arizona Board Of Regents On Behalf Of Arizona State University | Systems and methods for evaluating perception systems for autonomous vehicles using quality temporal logic |
CN111947938A (en) * | 2020-08-03 | 2020-11-17 | 中国第一汽车股份有限公司 | In-loop test system, method, server and storage medium for automatic driving vehicle |
CN111856969A (en) * | 2020-08-06 | 2020-10-30 | 北京赛目科技有限公司 | Automatic driving simulation test method and device |
CN112130472A (en) * | 2020-10-14 | 2020-12-25 | 广州小鹏自动驾驶科技有限公司 | Automatic driving simulation test system and method |
CN112506170A (en) * | 2020-11-20 | 2021-03-16 | 北京赛目科技有限公司 | Driver model based test method and device |
CN112526968A (en) * | 2020-11-25 | 2021-03-19 | 东南大学 | Method for building automatic driving virtual test platform for mapping real world road conditions |
US20210316753A1 (en) * | 2020-12-10 | 2021-10-14 | Apollo Intelligent Connectivity (Beijing) Technology Co., Ltd. | Road test method and apparatus for autonomous driving vehicle, device and storage medium |
CN112721949A (en) * | 2021-01-12 | 2021-04-30 | 重庆大学 | Method for evaluating longitudinal driving personification degree of automatic driving vehicle |
WO2022246852A1 (en) * | 2021-05-28 | 2022-12-01 | 吉林大学 | Automatic driving system testing method based on aerial survey data, testing system, and storage medium |
CN114354219A (en) * | 2022-01-07 | 2022-04-15 | 苏州挚途科技有限公司 | Test method and device for automatic driving vehicle |
CN115048972A (en) * | 2022-03-11 | 2022-09-13 | 北京智能车联产业创新中心有限公司 | Traffic scene deconstruction classification method and virtual-real combined automatic driving test method |
Non-Patent Citations (3)
Title |
---|
VAIBHAV SWAMINATHAN 等: "Autonomous Driving System with Road Sign Recognition using Convolutional Neural Networks", 《 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS-2019)》, pages 1 - 12 * |
刘法旺等: "搭载自动驾驶功能的智能网联汽车安全测试与评估方法研究", 《汽车工程学报 》, vol. 12, no. 3, pages 221 - 227 * |
端帅等: "自动驾驶汽车实际道路测试系统设计与实现", 《制造业自动化》, vol. 44, no. 11, pages 208 - 214 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118035691A (en) * | 2024-04-12 | 2024-05-14 | 中国汽车技术研究中心有限公司 | Quantitative evaluation method, equipment and storage medium for intelligent driving perception quality |
Also Published As
Publication number | Publication date |
---|---|
DE102023130154B4 (en) | 2025-04-24 |
CN115979679B (en) | 2023-06-23 |
DE102023130154A1 (en) | 2024-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110386145B (en) | Real-time prediction system for driving behavior of target driver | |
US11155273B2 (en) | Method and apparatus for assessing comfort level of driving system | |
CN109084992B (en) | A method for testing the intelligence of unmanned vehicles based on bench | |
CN110321954A (en) | The driving style classification and recognition methods of suitable domestic people and system | |
CN110949398A (en) | Method for detecting abnormal driving behavior of first-vehicle drivers in vehicle formation driving | |
CN110858312A (en) | Driver driving style classification method based on fuzzy C-means clustering algorithm | |
Chu et al. | A review of driving style recognition methods from short-term and long-term perspectives | |
WO2024027027A1 (en) | Method and system for recognizing lane changing intention of manually-driven vehicle | |
CN114987495B (en) | A human-machine hybrid decision-making method for highly automated driving | |
CN115077936B (en) | A method for evaluating driving performance of vehicle adaptive cruise system | |
Cai et al. | CNN-LSTM driving style classification model based on driver operation time series data | |
CN116331221A (en) | Assisted driving method, device, electronic device and storage medium | |
CN114692713A (en) | A method and device for evaluating driving behavior of an autonomous vehicle | |
CN115979679B (en) | Actual road test method, device and storage medium for automatic driving system | |
CN112308136B (en) | Driving distraction detection method based on SVM-Adaboost | |
CN117516956A (en) | Methods, systems and computer program products for objectively evaluating the performance of ADAS/ADS systems | |
Li et al. | Research on lane change prediction model based on GBDT | |
WO2023125849A1 (en) | Display interaction method and system for acc vehicle-following distance adjustment, braking distance calculation method and apparatus, and vehicle and medium | |
Li et al. | Research on personalized AEB strategies based on self-supervised contrastive learning | |
CN118439034B (en) | Driving style recognition method, driving style recognition device, computer equipment and storage medium | |
CN115169477A (en) | Method, device and equipment for evaluating safety sense of assistant driving system and storage medium | |
CN116946183A (en) | Commercial vehicle driving behavior prediction method considering driving capability and vehicle equipment | |
CN119417671B (en) | Intelligent driving scene self-adaptive teaching method and system based on reinforcement learning | |
CN119975535B (en) | Man-machine cooperative steering control method, device and storage medium | |
CN116946150A (en) | An optimization method for automobile anti-collision warning model based on driver characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |