CN115925563B - Lipid molecule for targeted pulmonary delivery of nucleic acid, and preparation method and application thereof - Google Patents
Lipid molecule for targeted pulmonary delivery of nucleic acid, and preparation method and application thereof Download PDFInfo
- Publication number
- CN115925563B CN115925563B CN202310174813.1A CN202310174813A CN115925563B CN 115925563 B CN115925563 B CN 115925563B CN 202310174813 A CN202310174813 A CN 202310174813A CN 115925563 B CN115925563 B CN 115925563B
- Authority
- CN
- China
- Prior art keywords
- lipid
- nucleic acid
- targeted
- lung
- proportion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
技术领域Technical Field
本发明属于医药生物领域,具体涉及一种可用于靶向肺部递送核酸的脂质分子及其制备方法与应用。The present invention belongs to the field of medicine and biology, and specifically relates to a lipid molecule that can be used for targeted lung delivery of nucleic acid, and a preparation method and application thereof.
背景技术Background Art
近年来,核酸(包括DNA和RNA)作为新型制药技术,短时间内在传染性疾病及肿瘤治疗领域取得了突破性进展。然而,如何将核酸分子安全、高效地递送到特定靶细胞并保护其免于降解是目前开发核酸药物及疫苗面临的主要挑战之一。In recent years, nucleic acids (including DNA and RNA) have made breakthrough progress in the treatment of infectious diseases and tumors as a new pharmaceutical technology in a short period of time. However, how to safely and efficiently deliver nucleic acid molecules to specific target cells and protect them from degradation is one of the main challenges currently faced in the development of nucleic acid drugs and vaccines.
理想的递送载体必须是安全的、稳定的和器官特异性的。脂质纳米颗粒(LNP) 是临床上最先进的核酸载体。截至2021年6月,所有批准临床使用的mRNA疫苗均采用LNP递送系统。LNP为mRNA递送提供了许多好处,包括制剂简单、模块化、生物相容性好和较大的mRNA有效载荷容量。The ideal delivery vehicle must be safe, stable, and organ-specific. Lipid nanoparticles (LNPs) are the most advanced nucleic acid carriers in the clinic. As of June 2021, all mRNA vaccines approved for clinical use use LNP delivery systems. LNPs offer many benefits for mRNA delivery, including simple formulation, modularity, good biocompatibility, and large mRNA payload capacity.
遗憾的是,目前已不断有相关报道,肌肉注射接种Pfizer/BioNTech和 Moderna的mRNA疫苗可能会诱导肝损伤及免疫性肝炎。部分人群接种mRNA疫苗后也出现了肝功能异常,肝移植病人接种疫苗后产生了极强的免疫反应。即现有的LNP递送系统会导致严重的肝脏蓄积,可能会导致肝损伤或免疫性肝炎,因此当前的LNP递送系统大多是肝脏靶向的,肝脏以外器官(如肺和肾)的有效递送问题亟待解决。Unfortunately, there have been reports that intramuscular injections of Pfizer/BioNTech and Moderna's mRNA vaccines may induce liver damage and immune hepatitis. Some people have also experienced abnormal liver function after receiving mRNA vaccines, and liver transplant patients have produced a very strong immune response after vaccination. That is, the existing LNP delivery system will cause severe liver accumulation, which may cause liver damage or immune hepatitis. Therefore, most of the current LNP delivery systems are liver-targeted, and the problem of effective delivery to organs other than the liver (such as the lungs and kidneys) needs to be solved urgently.
考虑到肺部首当其冲,因此开发出一种肺靶向mRNA递送系统,将编码刺突蛋白的mRNA直接递送至肺部,激活机体产生对应抗体抵御病毒攻击,或将编码广谱中和抗体或者治疗性蛋白的mRNA直接递送至患者的肺部进行治疗。此外,肺靶向mRNA递送系统还可以广泛应用于各类肺部疾病,如对肺癌、肺炎、肺结核、慢性阻塞性肺疾病、肺血栓栓塞症和肺血管炎等进行预防或治疗。Considering that the lungs are the first to be affected, a lung-targeted mRNA delivery system has been developed to deliver mRNA encoding the spike protein directly to the lungs, activating the body to produce corresponding antibodies to resist viral attacks, or to deliver mRNA encoding broad-spectrum neutralizing antibodies or therapeutic proteins directly to the patient's lungs for treatment. In addition, the lung-targeted mRNA delivery system can also be widely used in various lung diseases, such as prevention or treatment of lung cancer, pneumonia, tuberculosis, chronic obstructive pulmonary disease, pulmonary thromboembolism and pulmonary vasculitis.
LNP递送系统的理化性质和化学组成可以改变与体液中蛋白质的相互作用。具体而言,通过调控LNP递送系统的电荷属性、粒径分布以及疏水脂质的比例,可以改变LNP在体内的分布情况,从而实现器官靶向性递送。The physicochemical properties and chemical composition of LNP delivery systems can change the interaction with proteins in body fluids. Specifically, by regulating the charge properties, particle size distribution, and the proportion of hydrophobic lipids in the LNP delivery system, the distribution of LNP in the body can be changed, thereby achieving organ-targeted delivery.
发明内容Summary of the invention
本发明的目的是提供一种可实现靶向递送的脂质分子、其药学上可接受的盐及其立体异构体。The object of the present invention is to provide a lipid molecule capable of achieving targeted delivery, a pharmaceutically acceptable salt thereof and a stereoisomer thereof.
所述可实现靶向递送的脂质分子选自下述式(A)至式(F)中至少一种:The lipid molecule capable of achieving targeted delivery is selected from at least one of the following formulas (A) to (F):
; ;
利用上述脂质分子制备基础LNP体系后,可得到肝脏靶向的LNP递送系统。After preparing the basic LNP system using the above lipid molecules, a liver-targeted LNP delivery system can be obtained.
进一步的,将上述脂质分子形成季铵盐(脂质季铵盐分子)后,可得到能实现肺部靶向递送的脂质分子,具体选自下述式(I)至式(V)中至少一种。Furthermore, after the above-mentioned lipid molecules are formed into quaternary ammonium salts (lipid quaternary ammonium salt molecules), lipid molecules capable of achieving lung targeted delivery can be obtained, which are specifically selected from at least one of the following formulas (I) to (V).
将上述肺部靶向递送的脂质分子加入基础LNP体系后,可得到靶向肺部的LNP递送系统。After adding the above-mentioned lipid molecules for lung targeted delivery into the basic LNP system, a lung targeted LNP delivery system can be obtained.
上述式(I)至式(V)中:In the above formulae (I) to (V):
所述X选自卤素原子,X-选自卤素阴离子,包括氟离子、氯离子、溴离子和碘离子。The X is selected from halogen atoms, and X- is selected from halogen anions, including fluoride ion, chloride ion, bromide ion and iodide ion.
所述B1、B2和B3可以相同或者不同;所述B1、B2和B3分别与氧原子或氮原子各自独立地形成碳酸酯基、氨基甲酸酯基、酯基、醚键、脲基/酰胺基或胺基中任一种连接基或上述任意两种连接基的组合。 B1 , B2 and B3 may be the same or different; B1 , B2 and B3 may independently form any one of carbonate, carbamate, ester, ether, urea/amide or amine linking groups or a combination of any two of the above linking groups with oxygen or nitrogen atoms.
所述L1、L2、L3可以相同或不同,各自独立地选自C1-20脂肪烃基、氢或者各种甾族脂质、维生素A、维生素E和维生素K等疏水化合物,且所述式(I)和式(V)中的L1、L2至多一个为氢,所述式(Ⅱ)至式(Ⅳ)中的L1、L2、L3至多一个为氢;The L 1 , L 2 , and L 3 may be the same or different, and are independently selected from C 1-20 aliphatic hydrocarbon groups, hydrogen, or hydrophobic compounds such as various steroidal lipids, vitamin A, vitamin E, and vitamin K, and at most one of L 1 and L 2 in the formula (I) and formula (V) is hydrogen, and at most one of L 1 , L 2 , and L 3 in the formulas (II) to (IV) is hydrogen;
所述R1各自独立地选自C1-10脂肪烃基。The R 1 is independently selected from a C 1-10 aliphatic hydrocarbon group.
进一步的,所述O-B1-L1的结构为如以下任一通式所示:Furthermore, the structure of OB1 - L1 is as shown in any of the following general formulas:
所述O-B2-L2的结构为如以下任一通式所示:The structure of OB 2 -L 2 is shown in any of the following general formulas:
所述NH-B1-L1的结构为如以下任一通式所示:The structure of NH-B 1 -L 1 is shown in any of the following general formulas:
所述NH-B2-L2结构为如以下任一通式所示:The NH-B 2 -L 2 structure is shown in any of the following general formulas:
所述O-B3-N的结构为如以下任一通式所示:The structure of OB 3 -N is shown in any of the following general formulas:
其中,n表示亚甲基-CH2的个数,取值范围为0-20之内的整数。Wherein, n represents the number of methylene groups -CH 2 , and its value range is an integer within 0-20.
所述NH-B3-N的结构为如以下任一通式所示:The structure of NH-B 3 -N is shown in any of the following general formulas:
其中n表示亚甲基-CH2的个数,取值范围为0-20之内的整数。Wherein n represents the number of methylene groups -CH 2 , and its value range is an integer within 0-20.
本发明在脂质骨架的叔胺上通过季铵盐反应将其转化为季胺,使脂质分子由不带电荷的中性分子转化为季铵盐形式的分子,作为肺部靶向成分实现LNP的肺部递送效果。该类脂质季铵盐分子在被添加到LNP体系后,可通过调节LNP的表面电荷和粒径分布,使LNP经静脉注射后在一定时间内富集到肺部,完成对所载mRNA的肺部靶向递送,并实现对肺部细胞的转染。The present invention converts the tertiary amine of the lipid skeleton into a quaternary amine through a quaternary ammonium salt reaction, so that the lipid molecule is converted from a neutral molecule without charge into a molecule in the form of a quaternary ammonium salt, and the pulmonary delivery effect of LNP is achieved as a lung targeting component. After being added to the LNP system, the surface charge and particle size distribution of the LNP can be adjusted, so that the LNP is enriched in the lungs within a certain period of time after intravenous injection, and the lung-targeted delivery of the mRNA carried is completed, and the transfection of lung cells is achieved.
对于上述L1,L2,其可为分支或未分支、环状或非环状的、饱和或者不饱和的C1-20的脂肪烃基、各种甾族脂质、维生素A、维生素E和维生素K等疏水化合物。The above L 1 and L 2 may be branched or unbranched, cyclic or acyclic, saturated or unsaturated C 1-20 aliphatic hydrocarbon groups, various steroid lipids, vitamin A, vitamin E, vitamin K and other hydrophobic compounds.
优选地,L1,L2为分支或未分支、环状或非环状的、饱和或者不饱和的C10-20的脂肪烃基、胆固醇、维生素A、维生素E和维生素K等疏水化合物。Preferably, L 1 and L 2 are branched or unbranched, cyclic or non-cyclic, saturated or unsaturated C 10-20 aliphatic hydrocarbon groups, cholesterol, vitamin A, vitamin E, vitamin K and other hydrophobic compounds.
更优选地,L1,L2为分支或未分支、环状或非环状的、饱和或者不饱和的C12-18的脂肪烃基、胆固醇、维生素A和维生素E。More preferably, L 1 and L 2 are branched or unbranched, cyclic or acyclic, saturated or unsaturated C 12-18 aliphatic hydrocarbon groups, cholesterol, vitamin A and vitamin E.
进一步优选地,L1,L2为分支或未分支、环状或非环状的、不饱和的C12-18的脂肪烃基、胆固醇和维生素E。More preferably, L 1 and L 2 are branched or unbranched, cyclic or non-cyclic, unsaturated C 12-18 aliphatic hydrocarbon groups, cholesterol and vitamin E.
最优选地,L1,L2为分支或未分支、非环状的、不饱和的C12-18的脂肪烃基或维生素E。Most preferably, L 1 and L 2 are branched or unbranched, non-cyclic, unsaturated C 12-18 aliphatic hydrocarbon groups or vitamin E.
对于上述L3,优选为甲基、乙基,进一步优选为甲基。The above-mentioned L 3 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
对于上述R1,其可为分支或未分支、环状或非环状的、饱和或者不饱和的C1-10的脂肪烃基。The above R 1 may be a branched or unbranched, cyclic or acyclic, saturated or unsaturated C 1-10 aliphatic hydrocarbon group.
优选地,R1为分支或未分支、非环状的、饱和或者不饱和的C1-8的脂肪烃基。Preferably, R 1 is a branched or unbranched, acyclic, saturated or unsaturated C 1-8 aliphatic hydrocarbon group.
最优选地,R1为分支或未分支、非环状的、饱和的C1-5的脂肪烃基。Most preferably, R 1 is a branched or unbranched, non-cyclic, saturated C 1-5 aliphatic hydrocarbon group.
对于O-B3-N结构,其中,n=1-20之内的整数;优选地,n=1-10之内的整数;更优选地,n=1-5之内的整数。For the OB 3 -N structure, n=an integer within the range of 1-20; preferably, n=an integer within the range of 1-10; more preferably, n=an integer within the range of 1-5.
对于卤素阴离子X-,其可为氟离子、氯离子、溴离子和碘离子。As the halogen anion X − , there may be mentioned fluoride ion, chloride ion, bromide ion and iodide ion.
优选地,X-为氯离子、溴离子或碘离子。Preferably, X- is chloride, bromide or iodide.
更优选地,X-为溴离子和碘离子。More preferably, X- is bromide and iodide.
最优选地,X-为碘离子。Most preferably, X- is iodide ion.
根据本发明的实施例,所述式(I)所示的肺部靶向脂质分子为式(Y1-1)和式(Y1-2)所示脂质分子;所述式(II)所示的肺部靶向脂质分子为式(Y2)所示脂质分子;所述式(III)所示的肺部靶向脂质分子为式(Y3)所示脂质分子;所述式(IV)所示的肺部靶向脂质分子为式(Y4)所示脂质分子;所述式(V)所示的肺部靶向脂质分子为式(Y5)所示脂质分子:According to an embodiment of the present invention, the lung-targeted lipid molecule represented by formula (I) is a lipid molecule represented by formula (Y1-1) and formula (Y1-2); the lung-targeted lipid molecule represented by formula (II) is a lipid molecule represented by formula (Y2); the lung-targeted lipid molecule represented by formula (III) is a lipid molecule represented by formula (Y3); the lung-targeted lipid molecule represented by formula (IV) is a lipid molecule represented by formula (Y4); the lung-targeted lipid molecule represented by formula (V) is a lipid molecule represented by formula (Y5):
(Y1-1) (Y1-1)
(Y1-2) (Y1-2)
(Y2) (Y2)
(Y3) (Y3)
(Y4) (Y4)
(Y5) (Y5)
第二方面,本发明提供了一种上述式(I)至式(V)所示的脂质分子的制备方法。In a second aspect, the present invention provides a method for preparing the lipid molecules represented by the above formula (I) to (V).
本发明所提供的式(I)、式(II)和式(III)所示的脂质分子,其中式(I)和式(II)均以三乙醇胺骨架,式(III)骨架为2-羟甲基-1,3-丙二醇。式(I)、式(II)和式(III)的反应位点均为羟基,所涉及的合成方法相同,以下统一进行说明。当以B(B1、B2和/或B3)与氧原子形成酯键时的制备方法进行举例,包括下述步骤:The lipid molecules shown in formula (I), formula (II) and formula (III) provided by the present invention, wherein formula (I) and formula (II) are both based on triethanolamine skeletons, and the skeleton of formula (III) is 2-hydroxymethyl-1,3-propanediol. The reaction sites of formula (I), formula (II) and formula (III) are all hydroxyl groups, and the synthesis methods involved are the same, which are described uniformly below. When the preparation method is taken as an example when B (B 1 , B 2 and/or B 3 ) forms an ester bond with an oxygen atom, it includes the following steps:
(A1):首先通过脂肪酸与二氯亚砜在碱1的作用下在溶剂1中以一定温度反应一定时间,得到脂肪酰氯;本步骤中所述脂肪酸与式I中的L1,L2相对应;(A1): First, a fatty acid is reacted with thionyl chloride in a solvent 1 at a certain temperature for a certain time under the action of a
(A2):将步骤(A1)中所获得的脂肪酰氯与三乙醇胺或2-羟甲基-1,3-丙二醇在碱2的作用下在溶剂2中以一定温度反应一定时间,得到具有不同疏水链段的脂质分子。(A2): The fatty acid chloride obtained in step (A1) is reacted with triethanolamine or 2-hydroxymethyl-1,3-propanediol in solvent 2 at a certain temperature for a certain time under the action of
操作步骤以三乙醇胺举例,2-羟甲基-1,3-丙二醇也可发生类似反应,下文不再对反应式额外说明。The operation steps are taken as an example of triethanolamine. 2-Hydroxymethyl-1,3-propanediol can also undergo a similar reaction, and the reaction formula will not be further explained below.
通过控制投料比例和反应顺序,可获得取代基不同的脂质分子。如先获得L1取代的三乙醇胺或2-羟甲基-1,3-丙二醇衍生物,再逐步获得L1,L2双取代的三乙醇胺脂质分子或L1,L2双取代的2-羟甲基-1,3-丙二醇脂质分子。By controlling the feed ratio and reaction sequence, lipid molecules with different substituents can be obtained. For example, first obtain L 1 -substituted triethanolamine or 2-hydroxymethyl-1,3-propanediol derivatives, and then gradually obtain L 1 , L 2 disubstituted triethanolamine lipid molecules or L 1 , L 2 disubstituted 2-hydroxymethyl-1,3-propanediol lipid molecules.
本发明所提供的式(I)所示的脂质分子,当B(B1、B2和/或B3)与氧原子形成醚键时的制备方法,包括下述步骤(以下反应方程仅用于方法示意,不限于以下结构,可通过调节投料比例和顺序得到不同取代基种类和不同取代基数量的脂质分子):The preparation method of the lipid molecule represented by formula (I) provided by the present invention, when B ( B1 , B2 and/or B3 ) forms an ether bond with an oxygen atom, comprises the following steps (the following reaction equation is only used for illustration of the method, and is not limited to the following structure. Lipid molecules with different types of substituents and different numbers of substituents can be obtained by adjusting the feed ratio and sequence):
(A3):将三乙醇胺或2-羟甲基-1,3-丙二醇在氢化钠的作用下在溶剂1中以一定温度反应一定时间,再加入对应的卤代脂肪烃(X-L1,X代表卤素,如溴代烃)反应一定时间,得到以醚键作为连接基团的脂质分子。(A3): Triethanolamine or 2-hydroxymethyl-1,3-propanediol is reacted in solvent 1 under the action of sodium hydride at a certain temperature for a certain time, and then the corresponding halogenated aliphatic hydrocarbon (XL 1 , X represents a halogen, such as a bromohydrocarbon) is added and reacted for a certain time to obtain a lipid molecule with an ether bond as a connecting group.
本方法是采用氢化钠合成醚的方法,同类型的反应不再列举;This method is a method of synthesizing ether using sodium hydride, and similar reactions are not listed here;
本发明所提供的式(I)、式(II)、式(III)所示的脂质分子,当B(B1、B2和/或B3)与氧原子形成碳酸酯或氨基甲酸酯时的制备方法,包括下述步骤(以下反应方程仅用于方法示意,不限于以下结构,可通过调节投料比例和顺序得到不同取代基种类和不同取代基数量的脂质分子):The preparation method of the lipid molecules represented by formula (I), formula (II) and formula (III) provided by the present invention, when B ( B1 , B2 and/or B3 ) forms carbonate or carbamate with oxygen atom, comprises the following steps (the following reaction equation is only used for method illustration, and is not limited to the following structure. Lipid molecules with different types of substituents and different numbers of substituents can be obtained by adjusting the feeding ratio and sequence):
(A4):将骨架三乙醇胺或2-羟甲基-1,3-丙二醇,与活化试剂N,N'-羰基二咪唑或者对硝基苯基氯甲酸酯混合,在溶剂3中反应一段时间,得到羟基被活化的三乙醇胺或2-羟甲基-1,3-丙二醇衍生物;(A4): The backbone triethanolamine or 2-hydroxymethyl-1,3-propanediol is mixed with an activation reagent N,N'-carbonyldiimidazole or p-nitrophenyl chloroformate, and reacted in solvent 3 for a period of time to obtain a triethanolamine or 2-hydroxymethyl-1,3-propanediol derivative with an activated hydroxyl group;
(A5):将步骤(A4)得到的羟基被活化的三乙醇胺衍生物或2-羟甲基-1,3-丙二醇衍生物与含有氨基的脂肪烃(L1-NH2)反应一定时间,可以得到对应的连接基团为氨基甲酸酯的脂质分子;(A5): reacting the triethanolamine derivative or 2-hydroxymethyl-1,3-propanediol derivative with activated hydroxyl group obtained in step (A4) with an amino group-containing aliphatic hydrocarbon (L 1 -NH 2 ) for a certain period of time to obtain a lipid molecule with a corresponding connecting group being a carbamate;
或,将步骤(A4)得到的羟基被活化的三乙醇胺衍生物或2-羟甲基-1,3-丙二醇衍生物与含有羟基的脂肪烃(L1-OH)在碱性环境下加热反应一定时间,可以得到对应的连接基团为碳酸酯的脂质分子。Alternatively, the triethanolamine derivative or 2-hydroxymethyl-1,3-propanediol derivative with activated hydroxyl groups obtained in step (A4) is heated and reacted with a hydroxyl-containing aliphatic hydrocarbon (L 1 -OH) in an alkaline environment for a certain period of time to obtain a lipid molecule with a corresponding carbonate connecting group.
本发明所提供的式(II)所示的脂质分子的制备方法,包括下述步骤:The method for preparing the lipid molecule represented by formula (II) provided by the present invention comprises the following steps:
(A6):将式 (I)所示的脂质分子在催化剂1或活化试剂(活化试剂参考步骤(A4),N,N'-羰基二咪唑或者对硝基苯基氯甲酸酯)以及碱3的作用下,与胺类化合物在溶剂4中反应一段时间,将羟基转化为含有胺类基团的结构。(A6): The lipid molecule represented by formula (I) is reacted with an amine compound in a solvent 4 for a period of time in the presence of a
本发明所提供的式(II)所示的脂质分子的制备方法,包括下述步骤:The method for preparing the lipid molecule represented by formula (II) provided by the present invention comprises the following steps:
(A7):由步骤(A2)中所得到的双取代(L1, L2相同或不同)的2-羟甲基-1,3-丙二醇衍生物,在催化剂1或活化试剂(活化试剂参考步骤(A4),N,N'-羰基二咪唑或者对硝基苯基氯甲酸酯)以及碱3的作用下,与胺类化合物在溶剂4中反应一段时间,将羟基转化为含有胺类基团的结构。(A7): The disubstituted ( L1 and L2 are the same or different) 2-hydroxymethyl-1,3-propanediol derivative obtained in step (A2) is reacted with an amine compound in solvent 4 for a period of time in the presence of
(A8)当骨架为三(2-氨基乙基)胺时(对应式Ⅳ或式Ⅴ的脂质分子),即以B(B1、B2和/或B3)与氮原子形成酰胺基或胺基时,反应步骤与步骤(A1)-(A3)类似,将三乙醇胺换成三(2-氨基乙基)胺即可,对反应步骤不再重复说明。(A8) When the backbone is tris(2-aminoethyl)amine (corresponding to the lipid molecule of Formula IV or Formula V), that is, when B ( B1 , B2 and/or B3 ) forms an amide group or an amine group with the nitrogen atom, the reaction steps are similar to steps (A1) to (A3), except that triethanolamine is replaced by tris(2-aminoethyl)amine, and the reaction steps are not repeated.
(A9)经(A1)至(A8)步骤获得的具有叔胺结构的三乙醇胺脂质分子或2-羟甲基-1,3-丙二醇脂质分子或三(2-氨基乙基)胺脂质分子即为基础LNP递送体系的可电离脂质分子,由这些脂质分子制备得到的基础LNP递送体系可实现肝脏靶向递送核酸分子。(A9) The triethanolamine lipid molecule or 2-hydroxymethyl-1,3-propanediol lipid molecule or tri(2-aminoethyl)amine lipid molecule with a tertiary amine structure obtained through steps (A1) to (A8) is the ionizable lipid molecule of the basic LNP delivery system. The basic LNP delivery system prepared from these lipid molecules can achieve liver-targeted delivery of nucleic acid molecules.
(A10)经(A1)至(A8)步骤获得的具有叔胺结构的三乙醇胺脂质分子或2-羟甲基-1,3-丙二醇脂质分子或三(2-氨基乙基)胺脂质分子后,将所得叔胺分子与卤代烃溶解于溶剂3中,在一定温度下反应一定时间,反应后旋蒸除去溶剂和卤代烃,可获得季铵盐脂质分子,该分子即可作为肺部靶向成分。(A10) After obtaining triethanolamine lipid molecules or 2-hydroxymethyl-1,3-propanediol lipid molecules or tri(2-aminoethyl)amine lipid molecules with a tertiary amine structure through steps (A1) to (A8), the obtained tertiary amine molecules and halogenated hydrocarbons are dissolved in solvent 3, reacted at a certain temperature for a certain time, and after the reaction, the solvent and halogenated hydrocarbons are removed by rotary evaporation to obtain quaternary ammonium salt lipid molecules, which can be used as lung targeting components.
可以理解地,步骤(A1)为使用二氯亚砜与不同脂肪酸反应得到对应的酰氯,该反应是普适的,其反应活性及反应过程几乎不受脂肪烃基的影响,反应均可高效进行;It can be understood that step (A1) is to use thionyl chloride to react with different fatty acids to obtain the corresponding acyl chlorides. This reaction is universal, and its reaction activity and reaction process are almost not affected by the aliphatic hydrocarbon group, and the reaction can be carried out efficiently;
步骤(A2)为步骤(A1)得到的脂肪酰氯与三乙醇胺或2-羟甲基-1,3-丙二醇的反应,其发生在酰氯与羟基之间,同样几乎不受脂肪烃基的种类影响,可高效获得对应的三乙醇胺酯或2-羟甲基-1,3-丙二醇酯。Step (A2) is a reaction between the fatty acid chloride obtained in step (A1) and triethanolamine or 2-hydroxymethyl-1,3-propanediol. The reaction occurs between the acid chloride and the hydroxyl group and is also almost unaffected by the type of the fatty hydrocarbon group. The corresponding triethanolamine ester or 2-hydroxymethyl-1,3-propanediol ester can be efficiently obtained.
步骤(A6)及步骤(A7)为三乙醇胺酯或2-羟甲基-1,3-丙二醇酯上的羟基在催化剂的作用下,或通过活化试剂进行活化后,与含有反应位点的胺类化合物反应,反应几乎不受其他基团影响,可高效获得目标脂质分子。Step (A6) and step (A7) are steps in which the hydroxyl groups on triethanolamine ester or 2-hydroxymethyl-1,3-propanediol ester react with amine compounds containing reaction sites under the action of a catalyst or after being activated by an activation reagent. The reaction is hardly affected by other groups, and the target lipid molecules can be obtained efficiently.
步骤(A10)为卤代烃与叔胺形成季铵盐的反应,该反应高效,能以接近定量的转化率获得目标产物,且产物易于提纯。Step (A10) is a reaction of a halogenated hydrocarbon with a tertiary amine to form a quaternary ammonium salt. The reaction is highly efficient and can obtain the target product with a nearly quantitative conversion rate. The product is also easy to purify.
上述制备方法具有普适性,适合于不同的脂肪烃链(包括饱和脂肪烃链或者不饱和脂肪烃链),可以得到不同疏水性的季铵盐式脂质分子。The above preparation method is universal and suitable for different fatty hydrocarbon chains (including saturated fatty hydrocarbon chains or unsaturated fatty hydrocarbon chains), and can obtain quaternary ammonium salt lipid molecules with different hydrophobicity.
在一实施方式中,步骤(A1)所述包括如L1定义的基团的脂肪酸和如L2定义的基团的脂肪酸独立地选自上述对应的可选结构。In one embodiment, the fatty acid comprising the group defined as L1 and the fatty acid comprising the group defined as L2 in step (A1) are independently selected from the corresponding optional structures described above.
本发明所述溶剂1、溶剂2、溶剂3、溶剂4均独立地选自二氯甲烷、甲苯、N,N-二甲基甲酰胺、二甲基亚砜或四氢呋喃;The solvent 1, solvent 2, solvent 3 and solvent 4 of the present invention are independently selected from dichloromethane, toluene, N,N-dimethylformamide, dimethyl sulfoxide or tetrahydrofuran;
碱1、碱2、碱3均独立地选自吡啶、N,N-二甲基甲酰胺、4-二甲氨基吡啶、三乙胺、二乙胺、异丙胺、碳酸钾、碳酸钠、氢氧化钠或氢氧化钾。
上述方法,步骤(A1)的反应温度为25-120℃,反应时间为1-24h;步骤(A2)的反应温度为0-100℃,反应时间为1-24h;步骤(A3)的反应温度为0-100℃,反应时间为1-24h。In the above method, the reaction temperature of step (A1) is 25-120°C and the reaction time is 1-24h; the reaction temperature of step (A2) is 0-100°C and the reaction time is 1-24h; the reaction temperature of step (A3) is 0-100°C and the reaction time is 1-24h.
在一实施方式中,溶剂1选自二氯甲烷、甲苯、N,N-二甲基甲酰胺、二甲基亚砜或四氢呋喃;优选地,选自二氯甲烷、甲苯或N,N-二甲基甲酰胺;更优选地,选自二氯甲烷或甲苯。In one embodiment, solvent 1 is selected from dichloromethane, toluene, N,N-dimethylformamide, dimethyl sulfoxide or tetrahydrofuran; preferably, selected from dichloromethane, toluene or N,N-dimethylformamide; more preferably, selected from dichloromethane or toluene.
在一实施方式中,碱1选自吡啶、N,N-二甲基甲酰胺、4-二甲氨基吡啶、三乙胺、二乙胺、异丙胺、碳酸钾、碳酸钠、氢氧化钠或氢氧化钾;优选地,选自吡啶、N,N-二甲基甲酰胺、4-二甲氨基吡啶、三乙胺、二乙胺或异丙胺;更优选地,选自吡啶,N,N-二甲基甲酰胺、三乙胺或异丙胺。In one embodiment,
在一实施方式中,步骤(A1)的反应温度为25-120℃;优选地,为25-80℃;更优选地,为25-60℃。In one embodiment, the reaction temperature of step (A1) is 25-120°C; preferably, 25-80°C; more preferably, 25-60°C.
在一实施方式中,步骤(A1)的反应时间为1-24h;优选地,为2-12h;更优选地,为4-6h。In one embodiment, the reaction time of step (A1) is 1-24 h; preferably, 2-12 h; more preferably, 4-6 h.
在一实施方式中,溶剂2选自二氯甲烷、甲苯、N,N-二甲基甲酰胺、二甲基亚砜或四氢呋喃;优选地,选自二氯甲烷、四氢呋喃或N,N-二甲基甲酰胺;更优选地,选自二氯甲烷或N,N-二甲基甲酰胺。In one embodiment, solvent 2 is selected from dichloromethane, toluene, N,N-dimethylformamide, dimethyl sulfoxide or tetrahydrofuran; preferably, selected from dichloromethane, tetrahydrofuran or N,N-dimethylformamide; more preferably, selected from dichloromethane or N,N-dimethylformamide.
在一实施方式中,碱2选自吡啶、N,N-二甲基甲酰胺、4-二甲氨基吡啶、三乙胺、二乙胺、异丙胺、碳酸钾、碳酸钠、氢氧化钠或氢氧化钾;优选地,选自吡啶、N,N-二甲基甲酰胺、4-二甲氨基吡啶、三乙胺、二乙胺或异丙胺;更优选地,选自吡啶、N,N-二甲基甲酰胺、三乙胺或异丙胺。In one embodiment,
在一实施方式中,步骤(A2)中的反应温度为0-100℃;优选地,为25-80℃;更优选地,为25-60℃。In one embodiment, the reaction temperature in step (A2) is 0-100°C; preferably, 25-80°C; more preferably, 25-60°C.
在一实施方式中,步骤(A2)的反应时间为1-48h;优选地,为6-24h;更优选地,为6-12h。In one embodiment, the reaction time of step (A2) is 1-48 h; preferably, 6-24 h; more preferably, 6-12 h.
在一实施方式中,溶剂3选自二氯甲烷、甲苯、N,N-二甲基甲酰胺、二甲基亚砜或四氢呋喃;优选地,选自二氯甲烷、四氢呋喃或N,N-二甲基甲酰胺;更优选地,选自二氯甲烷或N,N-二甲基甲酰胺。In one embodiment, solvent 3 is selected from dichloromethane, toluene, N,N-dimethylformamide, dimethyl sulfoxide or tetrahydrofuran; preferably, selected from dichloromethane, tetrahydrofuran or N,N-dimethylformamide; more preferably, selected from dichloromethane or N,N-dimethylformamide.
在一实施方式中,步骤(A6)或步骤(A7)中催化剂1选自二环己基碳二亚胺(DCC)、二异丙基碳二亚胺(DIC)和1-(3-二甲胺基丙基)-3-乙基碳二亚胺(EDCI)、碳鎓六氟磷酸盐(HATU)、N'N-羰基二咪唑(CDI)、对硝基苯基氯甲酸酯、三乙胺、二甲氨基吡啶中的一种或两种;In one embodiment, in step (A6) or step (A7),
优选地,选自二环己基碳二亚胺(DCC)、和1-(3-二甲胺基丙基)-3-乙基碳二亚胺(EDCI)、碳鎓六氟磷酸盐(HATU)、N'N-羰基二咪唑(CDI)、对硝基苯基氯甲酸酯、三乙胺、二甲氨基吡啶中的一种或两种;Preferably, one or two selected from dicyclohexylcarbodiimide (DCC), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDCI), carbonium hexafluorophosphate (HATU), N'N-carbonyldiimidazole (CDI), p-nitrophenyl chloroformate, triethylamine, and dimethylaminopyridine;
更优选地,选自1-(3-二甲胺基丙基)-3-乙基碳二亚胺(EDCI)、N'N-羰基二咪唑(CDI)、对硝基苯基氯甲酸酯、三乙胺、二甲氨基吡啶中的一种或两种。More preferably, it is one or two selected from 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDCI), N'N-carbonyldiimidazole (CDI), p-nitrophenyl chloroformate, triethylamine, and dimethylaminopyridine.
在一实施方式中,步骤(A6)或步骤(A7)中的反应温度为0-100℃;优选地,为25-80℃;更优选地,为25-60℃。In one embodiment, the reaction temperature in step (A6) or step (A7) is 0-100°C; preferably, 25-80°C; more preferably, 25-60°C.
在一实施方式中,步骤(A6)或步骤(A7)中的反应时间为1-24h;优选地,为6-24h;更优选地,为6-12h。In one embodiment, the reaction time in step (A6) or step (A7) is 1-24 h; preferably, 6-24 h; more preferably, 6-12 h.
在一实施方式中,步骤(A8)中的反应温度为0-100℃;优选地,为25-80℃;更优选地,为50-80℃。In one embodiment, the reaction temperature in step (A8) is 0-100°C; preferably, 25-80°C; more preferably, 50-80°C.
在一实施方式中,步骤(A8)的反应时间为1-24h;优选地,为6-24h;更优选地,为12-24h。In one embodiment, the reaction time of step (A8) is 1-24 h; preferably, 6-24 h; more preferably, 12-24 h.
第三方面,本发明要求保护一种含有上述肺部靶向成分脂质分子的脂质体。In a third aspect, the present invention claims a liposome containing the above-mentioned lung targeting component lipid molecules.
本发明所提供的脂质体,其原料以质量百分含量计,包含10%-70%式(A)至式(F)所示的可离子化脂质分子、1%-20%聚乙二醇脂质分子、5%-60%甾族脂质、1%-30%辅助脂质分子以及5%-60%的所述肺部靶向递送的脂质分子。The liposomes provided by the present invention contain, in terms of mass percentage, 10%-70% of ionizable lipid molecules represented by formula (A) to formula (F), 1%-20% of polyethylene glycol lipid molecules, 5%-60% of steroid lipids, 1%-30% of auxiliary lipid molecules and 5%-60% of the lipid molecules for lung targeted delivery.
第四方面,本发明要求保护一种含有上述肝脏靶向成分脂质分子的脂质体。In a fourth aspect, the present invention claims protection for a liposome containing the above-mentioned liver targeting component lipid molecule.
本发明所提供的脂质体,其原料以质量百分含量计,包含10%-70%所述肝脏靶向递送的脂质分子(式(A)至式(F)所示的可离子化脂质分子)、1%-20%聚乙二醇脂质分子、5%-60%甾族脂质以及1%-30%辅助脂质分子。The liposomes provided by the present invention contain, in terms of mass percentage, 10%-70% of the lipid molecules for liver targeted delivery (ionizable lipid molecules represented by formula (A) to formula (F)), 1%-20% of polyethylene glycol lipid molecules, 5%-60% of steroid lipids and 1%-30% of auxiliary lipid molecules.
第五方面,本发明要求保护一种包载核酸药物的肺靶向脂质纳米粒(LNP)。In a fifth aspect, the present invention claims a lung-targeted lipid nanoparticle (LNP) encapsulating a nucleic acid drug.
所述包载核酸药物的肺靶向脂质纳米粒(LNP),包括本发明上述的肺部靶向递送的脂质分子成分、基础LNP体系和核酸药物。The lung-targeted lipid nanoparticle (LNP) encapsulating the nucleic acid drug comprises the above-mentioned lung-targeted delivery lipid molecule component of the present invention, a basic LNP system and the nucleic acid drug.
所述核酸药物包括但不限于DNA,mRNA、siRNA、microRNA,反义核酸,环状RNA等。The nucleic acid drugs include but are not limited to DNA, mRNA, siRNA, microRNA, antisense nucleic acid, circular RNA, etc.
所述基础LNP体系包括可离子化脂质分子、辅助脂质分子、聚乙二醇脂质以及甾族脂质。The basic LNP system includes ionizable lipid molecules, auxiliary lipid molecules, polyethylene glycol lipids and steroidal lipids.
在本发明的具体实施方式中,所述核酸药物可为mRNA,包括不同序列、不同长度的RNA,具体为Firefly Luciferase mRNA。In a specific embodiment of the present invention, the nucleic acid drug may be mRNA, including RNA of different sequences and lengths, specifically Firefly Luciferase mRNA.
第六方面,本发明要求保护一种包载核酸药物的肝脏靶向脂质纳米粒(LNP)。In a sixth aspect, the present invention claims protection for a liver-targeted lipid nanoparticle (LNP) encapsulating a nucleic acid drug.
所述包载核酸药物的肝脏靶向脂质纳米粒(LNP),包括本发明上述的含肝脏靶向脂质分子成分的脂质体和核酸药物。The liver-targeted lipid nanoparticle (LNP) encapsulating the nucleic acid drug comprises the liposome containing the liver-targeted lipid molecule component and the nucleic acid drug.
所述核酸药物包括但不限于DNA,mRNA、siRNA、microRNA,反义核酸,环状RNA等。The nucleic acid drugs include but are not limited to DNA, mRNA, siRNA, microRNA, antisense nucleic acid, circular RNA, etc.
在本发明的具体实施方式中,所述核酸药物可为mRNA,包括不同序列、不同长度的RNA,具体为Firefly Luciferase mRNA。In a specific embodiment of the present invention, the nucleic acid drug may be mRNA, including RNA of different sequences and lengths, specifically Firefly Luciferase mRNA.
第七方面,本发明要求保护上述包载核酸药物的肝脏靶向脂质纳米粒(LNP)的制备方法。In a seventh aspect, the present invention claims a method for preparing the liver-targeted lipid nanoparticles (LNPs) encapsulating nucleic acid drugs.
本发明提供的包载核酸药物的肝脏靶向脂质纳米粒(即肝脏靶向的基础LNP)的制备方法,具体包括下述步骤:The preparation method of liver-targeted lipid nanoparticles (i.e., liver-targeted basic LNPs) containing nucleic acid drugs provided by the present invention specifically comprises the following steps:
(A1)将所述肝脏靶向递送的脂质分子(可离子化脂质分子)、辅助脂质分子,聚乙二醇脂质、甾族脂质按比例混合,用溶剂溶解,得到有机相脂质体溶液;(A1) mixing the liver-targeted delivery lipid molecule (ionizable lipid molecule), auxiliary lipid molecule, polyethylene glycol lipid, and steroid lipid in proportion, dissolving them in a solvent, and obtaining an organic phase liposome solution;
(A2)将核酸药物用适当pH的缓冲溶液溶解,得到水相核酸药物溶液;(A2) dissolving the nucleic acid drug in a buffer solution of appropriate pH to obtain an aqueous nucleic acid drug solution;
(A3)将所述有机相脂质体溶液与所述水相核酸药物溶液按照一定的质量比和体积比,用微流控设备均匀混合,制备出包载核酸药物的肝脏靶向脂质纳米粒。(A3) The organic phase liposome solution and the aqueous phase nucleic acid drug solution are uniformly mixed according to a certain mass ratio and volume ratio using a microfluidic device to prepare liver-targeted lipid nanoparticles encapsulating nucleic acid drugs.
所述方法还包括:对步骤(A3)得到的包载核酸药物的肝脏靶向脂质纳米粒进行超滤或透析,得到可用于生物实验的包载核酸药物的肝脏靶向脂质纳米粒。The method further comprises: ultrafiltration or dialysis of the liver-targeted lipid nanoparticles encapsulating the nucleic acid drug obtained in step (A3) to obtain the liver-targeted lipid nanoparticles encapsulating the nucleic acid drug that can be used in biological experiments.
第八方面,本发明要求保护上述包载核酸药物的肺部靶向脂质纳米粒(LNP)的制备方法。In an eighth aspect, the present invention claims a method for preparing the above-mentioned lung-targeted lipid nanoparticles (LNPs) encapsulating nucleic acid drugs.
本发明提供的包载核酸药物的肺部靶向脂质纳米粒的制备方法,具体包括下述步骤:The method for preparing lung-targeted lipid nanoparticles encapsulating nucleic acid drugs provided by the present invention specifically comprises the following steps:
(B1)将所述可离子化脂质分子、辅助脂质分子,聚乙二醇脂质、甾族脂质以及肺部靶向成分按比例混合,用溶剂溶解,得到有机相脂质体溶液;(B1) mixing the ionizable lipid molecules, auxiliary lipid molecules, polyethylene glycol lipids, steroid lipids and lung targeting components in proportion, dissolving them with a solvent, and obtaining an organic phase liposome solution;
(B2)将核酸药物用适当pH的缓冲溶液溶解,得到水相核酸药物溶液;(B2) dissolving the nucleic acid drug in a buffer solution of appropriate pH to obtain an aqueous nucleic acid drug solution;
(B3)将所述有机相脂质体溶液与所述水相核酸药物溶液按照一定的质量比和体积比,用微流控设备均匀混合,制备出包载核酸药物的肺部靶向脂质纳米粒。(B3) The organic phase liposome solution and the aqueous phase nucleic acid drug solution are uniformly mixed according to a certain mass ratio and volume ratio using a microfluidic device to prepare lung-targeted lipid nanoparticles encapsulating nucleic acid drugs.
所述方法还包括:对步骤(B3)得到的包载核酸药物的肺部靶向脂质纳米粒进行超滤或透析,得到可用于生物实验的包载核酸药物的肺部靶向脂质纳米粒。The method further comprises: ultrafiltration or dialysis of the lung-targeted lipid nanoparticles encapsulating nucleic acid drugs obtained in step (B3) to obtain lung-targeted lipid nanoparticles encapsulating nucleic acid drugs that can be used in biological experiments.
优选地,步骤(A1)或步骤(B1)中用于溶解脂质分子的溶剂为甲醇、乙醇、四氢呋喃、丙酮、二甲基亚砜、N,N-二甲基甲酰胺。更优选地,步骤(A1)或步骤(B1)中用于溶解脂质分子的溶剂为乙醇、四氢呋喃、丙酮。最优选地,步骤(A1)或步骤(B1)中用于溶解脂质分子的溶剂为乙醇。Preferably, the solvent used to dissolve the lipid molecules in step (A1) or step (B1) is methanol, ethanol, tetrahydrofuran, acetone, dimethyl sulfoxide, N,N-dimethylformamide. More preferably, the solvent used to dissolve the lipid molecules in step (A1) or step (B1) is ethanol, tetrahydrofuran, acetone. Most preferably, the solvent used to dissolve the lipid molecules in step (A1) or step (B1) is ethanol.
优选地,步骤(A1)中肝脏靶向递送的脂质分子(可离子化脂质分子)的比例为10%-70%。更优选地,步骤(A1)中可离子化脂质分子的比例为20%-60%。最优选地,步骤(A1)中可离子化脂质分子的比例为50%。Preferably, the proportion of lipid molecules (ionizable lipid molecules) for liver-targeted delivery in step (A1) is 10%-70%. More preferably, the proportion of ionizable lipid molecules in step (A1) is 20%-60%. Most preferably, the proportion of ionizable lipid molecules in step (A1) is 50%.
优选地,步骤(A1)中聚乙二醇脂质的比例为1%-20%。更优选地,步骤(A1)中聚乙二醇脂质体的比例为5%-15%。最优选地,步骤(A1)中聚乙二醇脂质体的比例为10%。Preferably, the proportion of polyethylene glycol lipids in step (A1) is 1%-20%. More preferably, the proportion of polyethylene glycol liposomes in step (A1) is 5%-15%. Most preferably, the proportion of polyethylene glycol liposomes in step (A1) is 10%.
优选地,步骤(A1)中甾族脂质的比例为5%-60%。更优选地,步骤(A1)中胆固醇的比例为10%-40%。最优选地,步骤(A1)中胆固醇的比例为30%。Preferably, the proportion of steroidal lipids in step (A1) is 5%-60%. More preferably, the proportion of cholesterol in step (A1) is 10%-40%. Most preferably, the proportion of cholesterol in step (A1) is 30%.
优选地,步骤(A1)中辅助脂质分子的比例为1%-30%。更优选地,步骤(A1)中DSPC的比例为5%-15%。最优选地,步骤(A1)中辅助脂质分子的比例为10%。Preferably, the proportion of the helper lipid molecule in step (A1) is 1%-30%. More preferably, the proportion of DSPC in step (A1) is 5%-15%. Most preferably, the proportion of the helper lipid molecule in step (A1) is 10%.
优选地,步骤(B1)中可离子化脂质分子的比例为10%-70%。更优选地,步骤(B1)中可离子化脂质分子的比例为20%-40%。最优选地,步骤(B1)中可离子化脂质分子的比例为30%。Preferably, the proportion of ionizable lipid molecules in step (B1) is 10%-70%. More preferably, the proportion of ionizable lipid molecules in step (B1) is 20%-40%. Most preferably, the proportion of ionizable lipid molecules in step (B1) is 30%.
优选地,步骤(B1)中聚乙二醇脂质的比例为1%-20%。更优选地,步骤(B1)中聚乙二醇脂质体的比例为1%-10%。最优选地,步骤(B1)中聚乙二醇脂质的比例为5%。Preferably, the proportion of polyethylene glycol lipid in step (B1) is 1%-20%. More preferably, the proportion of polyethylene glycol liposome in step (B1) is 1%-10%. Most preferably, the proportion of polyethylene glycol lipid in step (B1) is 5%.
优选地,步骤(B1)中甾族脂质的比例为5%-60%。更优选地,步骤(B1)中胆固醇的比例为10%-40%。最优选地,步骤(B1)中胆固醇的比例为15%。Preferably, the proportion of steroidal lipids in step (B1) is 5%-60%. More preferably, the proportion of cholesterol in step (B1) is 10%-40%. Most preferably, the proportion of cholesterol in step (B1) is 15%.
优选地,步骤(B1)中辅助脂质分子的比例为1%-30%。更优选地,步骤(B1)中DSPC的比例为5%-15%。最优选地,步骤(B1)中辅助脂质分子的比例为8%。Preferably, the proportion of the helper lipid molecule in step (B1) is 1%-30%. More preferably, the proportion of DSPC in step (B1) is 5%-15%. Most preferably, the proportion of the helper lipid molecule in step (B1) is 8%.
优选地,步骤(B1)中肺部靶向脂质的比例为5%-60%。更优选地,步骤(B1)中肺部靶向脂质的比例为10%-50%。最优选地,步骤(B1)中肺部靶向脂质的比例为42%。Preferably, the proportion of lung targeting lipids in step (B1) is 5%-60%. More preferably, the proportion of lung targeting lipids in step (B1) is 10%-50%. Most preferably, the proportion of lung targeting lipids in step (B1) is 42%.
优选地,步骤(A2)或步骤(B2)中缓冲溶液为醋酸/醋酸钠溶液或柠檬酸/柠檬酸钠溶液;最优选地,步骤(A2)或步骤(B2)中缓冲溶液为柠檬酸/柠檬酸钠溶液。Preferably, the buffer solution in step (A2) or step (B2) is acetic acid/sodium acetate solution or citric acid/sodium citrate solution; most preferably, the buffer solution in step (A2) or step (B2) is citric acid/sodium citrate solution.
优选地,步骤(A2)或步骤(B2)中缓冲溶液的pH为3-9;更优选地,步骤(A2)或步骤(B2)中缓冲溶液的pH为4-6;最优选地,步骤(A2)或步骤(B2)中缓冲溶液的pH为5。Preferably, the pH of the buffer solution in step (A2) or step (B2) is 3-9; more preferably, the pH of the buffer solution in step (A2) or step (B2) is 4-6; most preferably, the pH of the buffer solution in step (A2) or step (B2) is 5.
优选地,步骤(A2)或步骤(B2)中缓冲溶液的浓度为1 mM-1 M;更优选地,步骤(A2)或步骤(B2)中缓冲溶液的浓度为20 mM-500 mM;最优选地,步骤(A2)或步骤(B2)中缓冲溶液的浓度为100 mM。Preferably, the concentration of the buffer solution in step (A2) or step (B2) is 1 mM-1 M; more preferably, the concentration of the buffer solution in step (A2) or step (B2) is 20 mM-500 mM; most preferably, the concentration of the buffer solution in step (A2) or step (B2) is 100 mM.
优选地,步骤(A3)或步骤(B3)中脂质分子与核酸药物的质量比为5:1-50:1;更优选地,步骤(A3)或步骤(B3)中脂质分子与核酸药物的质量比为10:1-30:1。Preferably, the mass ratio of lipid molecules to nucleic acid drugs in step (A3) or step (B3) is 5:1-50:1; more preferably, the mass ratio of lipid molecules to nucleic acid drugs in step (A3) or step (B3) is 10:1-30:1.
所述核酸药物为mRNA,优选的,所述脂质分子与mRNA的质量比为25:1。The nucleic acid drug is mRNA, and preferably, the mass ratio of the lipid molecule to the mRNA is 25:1.
优选地,步骤(A3)或步骤(B3)中有机相脂质体溶液与水相核酸药物溶液的体积比为1:1-1:10。更优选地,步骤(A3)或步骤(B3)中有机相脂质体溶液与水相核酸药物溶液的体积比为1:1-1:5。最优选地,步骤(A2)或步骤(B2)中有机相脂质体溶液与水相核酸药物溶液的体积比为1:3。Preferably, the volume ratio of the organic phase liposome solution to the aqueous phase nucleic acid drug solution in step (A3) or step (B3) is 1:1-1:10. More preferably, the volume ratio of the organic phase liposome solution to the aqueous phase nucleic acid drug solution in step (A3) or step (B3) is 1:1-1:5. Most preferably, the volume ratio of the organic phase liposome solution to the aqueous phase nucleic acid drug solution in step (A2) or step (B2) is 1:3.
本发明中,所述肺部靶向脂质纳米粒中可离子化脂质分子可与所述肝脏靶向脂质纳米粒中的可离子化脂质分子相同也可不同,选自:In the present invention, the ionizable lipid molecules in the lung-targeted lipid nanoparticles may be the same as or different from the ionizable lipid molecules in the liver-targeted lipid nanoparticles, and are selected from:
本发明中,所述聚乙二醇脂质选自下述至少一种:2-[(聚乙二醇)-2000]-N ,N-二十四烷基乙酰胺(ALC-0159)、1 ,2-二肉豆蔻酰基-sn-甘油甲氧基聚乙二醇(PEG-DMG)、1 ,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)](PEG-DSPE)、PEG-二甾醇基甘油(PEG-DSG)、PEG-二棕榈油基、PEG-二油基、PEG-二硬脂基、PEG-二酰基甘油酰胺(PEG-DAG)、PEG-二棕榈酰基磷脂酰乙醇胺(PEG-DPPE)或PEG-1 ,2-二肉豆蔻酰基氧基丙基-3-胺(PEG-c-DMA)。In the present invention, the polyethylene glycol lipid is selected from at least one of the following: 2-[(polyethylene glycol)-2000]-N,N-tetracosyl acetamide (ALC-0159), 1,2-dimyristoyl-sn-glyceromethoxy polyethylene glycol (PEG-DMG), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)] (PEG-DSPE), PEG-disterol glycerol (PEG-DSG), PEG-dipalmitoyl, PEG-dioleyl, PEG-distearyl, PEG-diacylglyceramide (PEG-DAG), PEG-dipalmitoyl phosphatidylethanolamine (PEG-DPPE) or PEG-1,2-dimyristoyloxypropyl-3-amine (PEG-c-DMA).
本发明中,所述甾族脂质选自下述至少一种:燕麦甾醇、β-谷甾醇、菜子甾醇、麦角骨化醇、菜油甾醇、胆甾烷醇、胆固醇、粪甾醇、脱氢胆固醇、链甾醇、二氢麦角骨化醇、二氢胆固醇、二氢麦角甾醇、黑海甾醇、表胆甾醇、麦角甾醇、岩藻甾醇、六氢光甾醇、羟基胆固醇;羊毛甾醇、光甾醇、海藻甾醇、谷甾烷醇、谷甾醇、豆甾烷醇、豆甾醇、胆酸、甘氨胆酸、牛磺胆酸、脱氧胆酸和石胆酸。In the present invention, the steroidal lipid is selected from at least one of the following: avenasterol, β-sitosterol, brassicasterol, ergocalciferol, campesterol, cholestanol, cholesterol, coprosterol, dehydrocholesterol, streptosterol, dihydroergocalciferol, dihydrocholesterol, dihydroergosterol, black sea sterol, epicholesterol, ergosterol, fuccasterol, hexahydroluminosterol, hydroxycholesterol; lanosterol, luminosterol, alginasterol, sitostanol, sitosterol, stigmasterol, stigmasterol, bile acid, glycocholic acid, taurocholic acid, deoxycholic acid and lithocholic acid.
本发明中,所述辅助脂质分子选自:1 ,2-二硬脂酰-sn-甘油-3-磷酸胆碱(DSPC)、1 ,2-二棕榈酰-sn-甘油-3-磷酸胆碱 (DPPC)、1 ,2-二油酰-sn-甘油-3-磷酸乙醇胺(DOPE)、1 ,2-二棕榈酰-sn-甘油-3-磷酸乙醇胺 (DPPE)、1 ,2-二肉豆蔻酰-sn-甘油-3-磷酸乙醇胺 (DMPE)、2-二油酰基-sn-甘油-3-磷酸-(1 '-rac-甘油) (DOPG)、油酰磷脂酰胆碱(POPC)、1-棕榈酰基-2-油酰基磷脂酰乙醇胺(POPE)。In the present invention, the auxiliary lipid molecule is selected from: 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), 2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), oleoylphosphatidylcholine (POPC), 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE).
第九方面,本发明要求保护上述可离子化的脂质分子(肝脏靶向的脂质分子)、脂质季铵盐分子(肺部靶向的脂质分子)以及含肝脏靶向脂质分子的脂质体、含肺部靶向脂质分子的脂质体在制备药物递送系统中的应用。Ninthly, the present invention claims protection for the use of the above-mentioned ionizable lipid molecules (liver-targeted lipid molecules), lipid quaternary ammonium salt molecules (lung-targeted lipid molecules), and liposomes containing liver-targeted lipid molecules and liposomes containing lung-targeted lipid molecules in the preparation of drug delivery systems.
所述药物为核酸药物,包括但不限于DNA、mRNA、siRNA、microRNA,反义核酸、环状RNA等。The drug is a nucleic acid drug, including but not limited to DNA, mRNA, siRNA, microRNA, antisense nucleic acid, circular RNA, etc.
第十方面,本发明要求保护上述可离子化的脂质分子(肝脏靶向的脂质分子)、脂质季铵盐分子(肺部靶向的脂质分子)以及含肝脏靶向脂质分子的脂质体、含肺部靶向脂质分子的脂质体用于RNA递送的方法及其应用。In the tenth aspect, the present invention claims protection for the above-mentioned ionizable lipid molecules (liver-targeted lipid molecules), lipid quaternary ammonium salt molecules (lung-targeted lipid molecules), and liposomes containing liver-targeted lipid molecules, and methods and applications of liposomes containing lung-targeted lipid molecules for RNA delivery.
其中,RNA种类包括但不限于mRNA、siRNA、microRNA,反义核酸等,具体应用包括但不限于诊断性应用和治疗性应用。Among them, RNA types include but are not limited to mRNA, siRNA, microRNA, antisense nucleic acid, etc., and specific applications include but are not limited to diagnostic applications and therapeutic applications.
本发明的肺部靶向成分可通过改变季铵盐种类以及疏水链段的种类和数量对其电荷大小和疏水性进行极大范围的调控,能够充分满足靶向肺部递送mRNA的需要。The lung-targeted component of the present invention can regulate its charge size and hydrophobicity over a wide range by changing the type of quaternary ammonium salt and the type and quantity of hydrophobic segments, which can fully meet the needs of targeted lung delivery of mRNA.
本发明通过季铵盐反应获得肺部靶向脂质分子,将该靶向成分按照一定比例添加到基础LNP体系内后可实现对LNP的电荷和粒径分布,由此可以实现对肺部的靶向递送mRNA。The present invention obtains lung-targeted lipid molecules through a quaternary ammonium salt reaction. After the targeting component is added into a basic LNP system in a certain proportion, the charge and particle size distribution of the LNP can be achieved, thereby achieving targeted delivery of mRNA to the lungs.
现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、与mRNA结合紧密,能够实现对mRNA的高包载率和稳定保护。1. It binds tightly to mRNA and can achieve high encapsulation rate and stable protection of mRNA.
2、形成的LNP生物相容性好,更加稳定。2. The formed LNP has good biocompatibility and is more stable.
3、静脉注射后,能够实现专一性地富集在肺部,而在其他器官中没有分布。3. After intravenous injection, it can be specifically enriched in the lungs without being distributed in other organs.
4、该脂质体适合于不同核酸分子量长度,不同核酸序列的mRNA递送,具有普适性。4. The liposome is suitable for the delivery of mRNA with different nucleic acid molecular weights and lengths and different nucleic acid sequences, and has universal applicability.
5、本发明技术合成简单,原料价格低廉,适合大规模生产。5. The technology of the present invention is simple to synthesize, the raw materials are cheap, and it is suitable for large-scale production.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1示出了实施例1制备的阳离子脂质分子(L1-1)结构式。FIG1 shows the structural formula of the cationic lipid molecule (L1-1) prepared in Example 1.
图2示出了实施例1制备的阳离子脂质分子(L1-1)的1H NMR谱图。FIG. 2 shows the 1 H NMR spectrum of the cationic lipid molecule (L1-1) prepared in Example 1.
图3示出了实施例1制备的阳离子脂质分子(L1-1)的13C NMR谱图。FIG. 3 shows the 13 C NMR spectrum of the cationic lipid molecule (L1-1) prepared in Example 1.
图4示出了实施例1制备的阳离子脂质分子(L1-1)的ESI-TOF MS谱图。FIG. 4 shows the ESI-TOF MS spectrum of the cationic lipid molecule (L1-1) prepared in Example 1.
图5示出了实施例1制备的肺靶向脂质分子(Y1-1)结构式。FIG5 shows the structural formula of the lung-targeting lipid molecule (Y1-1) prepared in Example 1.
图6示出了实施例1制备的肺靶向脂质分子(Y1-1)的1H NMR谱图。FIG. 6 shows the 1 H NMR spectrum of the lung-targeting lipid molecule (Y1-1) prepared in Example 1.
图7示出了实施例1制备的肺靶向脂质分子(Y1-1)的13C NMR谱图。FIG. 7 shows the 13 C NMR spectrum of the lung-targeting lipid molecule (Y1-1) prepared in Example 1.
图8示出阳离子脂质分子肺靶向脂质分子(Y1-1)的ESI-TOF MS谱图。FIG. 8 shows the ESI-TOF MS spectrum of the cationic lipid molecule lung-targeting lipid molecule (Y1-1).
图9示出了实施例2制备的阳离子脂质分子(L1-2)结构式。FIG. 9 shows the structural formula of the cationic lipid molecule (L1-2) prepared in Example 2.
图10示出了实施例2制备的阳离子脂质分子(L1-2)的1H NMR谱图。FIG. 10 shows the 1 H NMR spectrum of the cationic lipid molecule (L1-2) prepared in Example 2.
图11示出了实施例2制备的肺靶向脂质分子(Y1-2)结构式。FIG. 11 shows the structural formula of the lung-targeting lipid molecule (Y1-2) prepared in Example 2.
图12示出了实施例2制备的肺靶向脂质分子(Y1-2)的1H NMR谱图。FIG. 12 shows the 1 H NMR spectrum of the lung-targeting lipid molecule (Y1-2) prepared in Example 2.
图13示出了实施例3制备的以(Y1-1)为肺靶向成分的Y1-1-LNP@mRNA的粒径分布(a)和以(Y1-2)为肺靶向成分的Y1-2-LNP@mRNA的粒径分布(b)。FIG. 13 shows the particle size distribution of Y1-1-LNP@mRNA prepared in Example 3 with (Y1-1) as the lung targeting component (a) and the particle size distribution of Y1-2-LNP@mRNA with (Y1-2) as the lung targeting component (b).
图14示出了实施例3制备的以(Y1-1)为肺靶向成分的Y1-1-LNP@mRNATEM照片(a)和以(Y1-2)为肺靶向成分的Y1-2-LNP@mRNA的TEM照片(b)。FIG. 14 shows a TEM image (a) of Y1-1-LNP@mRNA prepared in Example 3 with (Y1-1) as the lung targeting component and a TEM image (b) of Y1-2-LNP@mRNA with (Y1-2) as the lung targeting component.
图15示出了实施例3制备的以L1-1制备的基础LNP递送系统L1-1-LNP,和以(Y1-1)为肺靶向成分的Y1-1-LNP@mRNA递送系统的器官靶向效果对比图;数字表示发光强度。Figure 15 shows a comparison of the organ targeting effects of the basic LNP delivery system L1-1-LNP prepared with L1-1 prepared in Example 3, and the Y1-1-LNP@mRNA delivery system with (Y1-1) as the lung targeting component; the numbers represent the luminescence intensity.
图16示出了实施例3制备的以(Y1-2)为肺靶向成分的Y1-2-LNP@mRNA的肺部靶向效果生物发光成像图,数字表示发光强度。FIG. 16 shows the bioluminescent imaging of the lung targeting effect of Y1-2-LNP@mRNA prepared in Example 3 with (Y1-2) as the lung targeting component, and the numbers represent the luminescent intensity.
图17示出了实施例3制备的以(Y1-1)为肺靶向成分的Y1-1-LNP@mRNA的细胞毒性实验。FIG. 17 shows the cytotoxicity experiment of Y1-1-LNP@mRNA prepared in Example 3 with (Y1-1) as the lung targeting component.
图18示出了实施例3制备的以(Y1-1)为肺靶向成分的Y1-1-LNP@mRNA的小鼠血液生化指标。FIG. 18 shows the blood biochemical indices of mice of Y1-1-LNP@mRNA prepared in Example 3 with (Y1-1) as the lung targeting component.
图19示出了实施例3制备的以(Y1-1和Y1-2)为肺靶向成分的LNP@mRNA处理后的小鼠的主要器官H&E染色结果,其中,a为正常小鼠的主要器官H&E染色结果,b为小鼠注射Y1-1为基础制备的肺靶向LNP@mRNA后主要器官H&E染色结果,c为小鼠注射Y1-2为基础制备的肺靶向LNP@mRNA后主要器官H&E染色结果。Figure 19 shows the H&E staining results of the main organs of mice treated with LNP@mRNA with (Y1-1 and Y1-2) as lung-targeted components prepared in Example 3, wherein a is the H&E staining result of the main organs of normal mice, b is the H&E staining result of the main organs of mice injected with lung-targeted LNP@mRNA prepared based on Y1-1, and c is the H&E staining result of the main organs of mice injected with lung-targeted LNP@mRNA prepared based on Y1-2.
图20示出了实施例7制备的以(Y2)前体制备的基础LNP递送系统,和以(Y2)为肺靶向成分的Y2-LNP@mRNA递送系统的器官靶向效果对比图;以及(Y2)和(Y2)前体的结构式;数字表示发光强度。Figure 20 shows a comparison of the organ targeting effects of the basic LNP delivery system prepared with the (Y2) precursor prepared in Example 7, and the Y2-LNP@mRNA delivery system with (Y2) as the lung targeting component; as well as the structural formulas of (Y2) and the (Y2) precursor; the numbers represent the luminescence intensity.
图21示出了实施例7制备的以(Y3)前体制备的基础LNP递送系统,和以(Y3)为肺靶向成分的Y3-LNP@mRNA递送系统的器官靶向效果对比图;以及(Y3)和(Y3)前体的结构式;数字表示发光强度。Figure 21 shows a comparison of the organ targeting effects of the basic LNP delivery system prepared with the (Y3) precursor prepared in Example 7, and the Y3-LNP@mRNA delivery system with (Y3) as the lung targeting component; as well as the structural formulas of (Y3) and the (Y3) precursor; the numbers represent the luminescence intensity.
图22示出了实施例7制备的以(Y4)前体制备的基础LNP递送系统,和以(Y4)为肺靶向成分的Y4-LNP@mRNA递送系统的器官靶向效果对比图;以及(Y4)和(Y4)前体的结构式;数字表示发光强度。Figure 22 shows a comparison of the organ targeting effects of the basic LNP delivery system prepared with the (Y4) precursor prepared in Example 7, and the Y4-LNP@mRNA delivery system with (Y4) as the lung targeting component; as well as the structural formulas of (Y4) and the (Y4) precursor; the numbers represent the luminescence intensity.
图23示出了实施例7制备的以(Y5)前体制备的基础LNP递送系统,和以(Y5)为肺靶向成分的Y5-LNP@mRNA递送系统的器官靶向效果对比图;以及(Y5)和(Y5)前体的结构式;数字表示发光强度。Figure 23 shows a comparison of the organ targeting effects of the basic LNP delivery system prepared with the (Y5) precursor prepared in Example 7, and the Y5-LNP@mRNA delivery system with (Y5) as the lung targeting component; as well as the structural formulas of (Y5) and (Y5) precursors; the numbers represent the luminescence intensity.
图24示出了实施例7制备的以(Y1-1前体,Y1-2前体,Y2前体,Y3前体,Y4前体,Y5前体)为组分的基础LNP@mRNA的mRNA包载效率。FIG. 24 shows the mRNA encapsulation efficiency of the basic LNP@mRNA prepared in Example 7 with (Y1-1 precursor, Y1-2 precursor, Y2 precursor, Y3 precursor, Y4 precursor, Y5 precursor) as components.
图25示出了实施例7制备的以(Y1-1,Y1-2,Y2,Y3,Y4,Y5)为成分的肺靶向LNP@mRNA的mRNA包载效率。FIG. 25 shows the mRNA encapsulation efficiency of the lung-targeted LNP@mRNA prepared in Example 7 with (Y1-1, Y1-2, Y2, Y3, Y4, Y5) as components.
图26示出了实施例7制备的以(Y2前体,Y3前体,Y4前体,Y5前体)为组分的基础LNP@mRNA的平均粒径。FIG. 26 shows the average particle size of the basic LNP@mRNA prepared in Example 7 with (Y2 precursor, Y3 precursor, Y4 precursor, Y5 precursor) as components.
图27示出了实施例7制备的以(Y1-1,Y1-2,Y2,Y3,Y4,Y5)为成分的肺靶向LNP@mRNA的平均粒径。Figure 27 shows the average particle size of the lung-targeted LNP@mRNA prepared in Example 7 with (Y1-1, Y1-2, Y2, Y3, Y4, Y5) as components.
图28示出了实施例7制备的以(Y2前体,Y3前体,Y4前体,Y5前体)为组分的基础LNP@mRNA的Zeta电位。FIG. 28 shows the Zeta potential of the basic LNP@mRNA prepared in Example 7 with (Y2 precursor, Y3 precursor, Y4 precursor, Y5 precursor) as components.
图29示出了实施例7制备的以(Y1-1,Y1-2,Y2,Y3,Y4,Y5)为成分的肺靶向LNP@mRNA的Zeta电位。FIG. 29 shows the Zeta potential of the lung-targeted LNP@mRNA prepared in Example 7 with (Y1-1, Y1-2, Y2, Y3, Y4, Y5) as components.
具体实施方式DETAILED DESCRIPTION
I.定义I. Definition
在本公开中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所用的相关术语和实验室操作步骤均为相应领域内广泛使用的术语和常规步骤。同时,为了更好地理解本公开,下面提供相关术语的定义和解释。In the present disclosure, unless otherwise specified, the scientific and technical terms used herein have the meanings commonly understood by those skilled in the art. In addition, the relevant terms and laboratory procedures used herein are terms and conventional procedures widely used in the corresponding fields. At the same time, in order to better understand the present disclosure, the definitions and explanations of the relevant terms are provided below.
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。Unless explicitly stated otherwise, throughout the specification and claims, the term “comprise” or variations such as “include” or “comprising”, etc., will be understood to include the stated elements or components but not to exclude other elements or components.
本公开化合物可以是不对称的,例如,具有一个或多个立体异构体。除非另有说明,所有立体异构体都包括,如对映异构体和非对映异构体。本公开的含有不对称碳原子的化合物可以以光学活性纯的形式或外消旋形式被分离出来。光学活性纯的形式可以从外消旋混合物拆分,或通过使用手性原料或手性试剂合成。外消旋体、非对映异构体、对映异构体都包括在本公开的范围之内。The compounds of the present disclosure may be asymmetric, for example, having one or more stereoisomers. Unless otherwise indicated, all stereoisomers are included, such as enantiomers and diastereomers. The compounds of the present disclosure containing asymmetric carbon atoms can be isolated in optically pure form or racemic form. Optically pure forms can be resolved from racemic mixtures or synthesized by using chiral raw materials or chiral reagents. Racemates, diastereomers, and enantiomers are all included within the scope of the present disclosure.
在本公开中,“”以及“”是指取代基键合的位置。In this disclosure, “ "as well as" ” refers to the position to which a substituent is bonded.
术语“任选”或“任选地”是指随后描述的事件或情况可能发生或可能不发生,该描述包括发生所述事件或情况和不发生所述事件或情况。The term "optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, and that the description includes both the occurrence of said event or circumstance and the non-occurrence of said event or circumstance.
本文中的数字范围,是指给定范围中的各个整数。例如,“C1-C6”是指该基团可具有1个碳原子、2个碳原子、3个碳原子、4个碳原子、5个碳原子或6个碳原子;“C3-C6”是指该基团可具有3个碳原子、4个碳原子、5个碳原子或6个碳原子。Numeric ranges herein refer to each integer in the given range. For example, "C 1 -C 6 " means that the group can have 1 carbon atom, 2 carbon atoms, 3 carbon atoms, 4 carbon atoms, 5 carbon atoms or 6 carbon atoms; "C 3 -C 6 " means that the group can have 3 carbon atoms, 4 carbon atoms, 5 carbon atoms or 6 carbon atoms.
术语“疏水性脂肪烃基”是指不含羟基、醛基、羧基、和含氮的氨基等亲水性基团的脂肪烃基。The term "hydrophobic aliphatic hydrocarbon group" refers to an aliphatic hydrocarbon group that does not contain a hydrophilic group such as a hydroxyl group, an aldehyde group, a carboxyl group, and a nitrogen-containing amino group.
术语“被取代的”是指特定原子或基团上的任意一个或多个氢原子被取代基取代,只要特定原子或基团的价态是正常的并且取代后的化合物是稳定的。当取代基为酮基(即=O)时,意味着两个氢原子被取代。除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。The term "substituted" means that any one or more hydrogen atoms on a particular atom or group are replaced by a substituent, as long as the valence state of the particular atom or group is normal and the substituted compound is stable. When the substituent is a keto group (i.e., =0), it means that two hydrogen atoms are replaced. Unless otherwise specified, the type and number of substituents can be any on the basis of chemical achievable.
当任何变量(例如Rn)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被1-5个R所取代,则所述基团可以任选地至多被5个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。When any variable (e.g., R n ) occurs more than once in a compound's composition or structure, its definition at each occurrence is independent. Thus, for example, if a group is substituted with 1-5 R, the group may be optionally substituted with up to 5 R, and each occurrence of R is an independent choice. In addition, combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
术语“脂肪烃基”包括饱和或不饱和,直链或支链的链状或环状烃基,不含杂原子的和含有杂原子的脂肪烃基;所述杂原子指的是氮原子、氧原子、氟原子、磷原子、硫原子、和硒原子。所述脂肪烃基的类型可选自烷基、烯基、炔基等。如术语“C1-6脂肪烃基”包括:甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基、乙烯基、1-丙烯基、2-丙烯基、1-甲基乙烯基、1-丁烯基、1-乙基乙烯基、1-甲基-2-丙烯基、2-丁烯基、3-丁烯基、2-甲基-1-丙烯基、2-甲基-2-丙烯基、1-戊烯基、1-己烯基、乙炔基,1-丙炔基,2-丙炔基,1-丁炔基,1-甲基-2-丙炔基,3-丁炔基,1-戊炔基、1-己炔基、环丙基、环丁基、环戊基和环己基等。The term "aliphatic group" includes saturated or unsaturated, linear or branched chain or cyclic hydrocarbon groups, heteroatom-free and heteroatom-containing aliphatic groups; the heteroatom refers to nitrogen atoms, oxygen atoms, fluorine atoms, phosphorus atoms, sulfur atoms, and selenium atoms. The type of the aliphatic group can be selected from alkyl, alkenyl, alkynyl, etc. For example, the term "C 1-6 aliphatic hydrocarbon group" includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, vinyl, 1-propenyl, 2-propenyl, 1-methylvinyl, 1-butenyl, 1-ethylvinyl, 1-methyl-2-propenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 1-hexenyl, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 1-methyl-2-propynyl, 3-butynyl, 1-pentynyl, 1-hexynyl, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, etc.
术语“烷基”指饱和脂肪族烃基团,包括直链的或支链的饱和烃基,所述烃基具有所示出的碳原子数。如术语“C1-6烷基”包括C1烷基、C2烷基、C3烷基、C4烷基、C5烷基、C6烷基,实例包括,但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、2-戊基、3-戊基、正己基、2-己基、3-己基等。其可以是二价的,例如亚甲基、亚乙基。The term "alkyl" refers to a saturated aliphatic hydrocarbon group, including a linear or branched saturated hydrocarbon group having the indicated number of carbon atoms. For example, the term "C 1-6 alkyl" includes C 1 alkyl, C 2 alkyl, C 3 alkyl, C 4 alkyl, C 5 alkyl, C 6 alkyl, examples include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, n-hexyl, 2-hexyl, 3-hexyl, etc. It may be divalent, such as methylene, ethylene.
术语“取代的”或“取代”是指特定原子或基团上的任意一个或多个氢原子被取代基取代,只要特定原子或基团的价态是正常的并且取代后的化合物是稳定的。当取代基为酮基(即=O)时,意味着两个氢原子被取代。除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。取代基可以选自以下的一个、两个或更多个取代基取代:氘、卤素基团、氰基、硝基、-C(=O)R、-C(=O)OR’、-OC(=O)R”、酰亚胺基、酰胺基、羟基、经取代或未经取代的胺基、经取代或未经取代的烷基、经取代或未经取代的环烷基、经取代或未经取代的卤代烷基、经取代或未经取代的烷氧基、经取代或未经取代的烯基、经取代或未经取代的炔基、经取代或未经取代的芳基、经取代或未经取代的芳氧基、经取代或未经取代的杂芳基等,但不限于此。The term "substituted" or "substituted" means that any one or more hydrogen atoms on a specific atom or group are replaced by a substituent, as long as the valence state of the specific atom or group is normal and the substituted compound is stable. When the substituent is a keto group (i.e., =O), it means that two hydrogen atoms are replaced. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis of chemical achievable. The substituent can be selected from one, two or more of the following substituents: deuterium, halogen group, cyano group, nitro group, -C(=O)R, -C(=O)OR', -OC(=O)R", imide group, amide group, hydroxyl group, substituted or unsubstituted amine group, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted haloalkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkenyl group, substituted or unsubstituted alkynyl group, substituted or unsubstituted aryl group, substituted or unsubstituted aryloxy group, substituted or unsubstituted heteroaryl group, etc., but not limited thereto.
术语“药物组合物”意指包含本公开所述化合物或其药学上可接受的盐,以及依施用方式和剂型的性质而定的至少一种选自以下药学上可接受的成分的组合物,包括但不限于:载体、稀释剂、佐剂、赋形剂、防腐剂、填充剂、崩解剂、润湿剂、乳化剂、悬浮剂、甜味剂、矫味剂、香味剂、抗菌剂、抗真菌剂、润滑剂、分散剂、温敏材料、温度调节剂、黏附剂、稳定剂、助悬剂等。The term "pharmaceutical composition" means a composition comprising the compound described in the present disclosure or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable ingredient selected from the following depending on the mode of administration and the nature of the dosage form, including but not limited to: carriers, diluents, adjuvants, excipients, preservatives, fillers, disintegrants, wetting agents, emulsifiers, suspending agents, sweeteners, flavoring agents, fragrances, antibacterial agents, antifungal agents, lubricants, dispersants, temperature-sensitive materials, temperature regulators, adhesives, stabilizers, suspending agents, etc.
本公开的药物或药物组合物可以经肠胃外递送,即,通过静脉内(i.v.)、脑室内(i.c.v.)、皮下(s.c.)、腹膜内(i.p.)、肌内(i.m.)、皮下(s.d.)或皮内(i.d.)施用,通过直接注射,经例如快速浓注或连续输液。用于注射的配制剂可以单位剂型呈现,例如在具有添加的保藏剂的安瓿瓶或多-剂量容器中。所述组合物可以采用赋形剂(excipient)的形状,在油或水性载体中的混悬液、溶液或乳液的形式,并可以包含配制试剂如防沉降剂、稳定剂和/或分散剂。备选地,所述活性成分可以以粉末形式在使用前用适宜的载体(例如无菌无热原水)重构。The drugs or pharmaceutical compositions of the present disclosure can be delivered parenterally, i.e., administered intravenously (i.v.), intracerebroventricularly (i.c.v.), subcutaneously (s.c.), intraperitoneally (i.p.), intramuscularly (i.m.), subcutaneously (s.d.), or intradermally (i.d.), by direct injection, for example, by bolus injection or continuous infusion. Formulations for injection can be presented in unit dosage form, for example in ampoules or multi-dose containers with added preservatives. The composition can be in the form of an excipient, a suspension, solution, or emulsion in an oil or aqueous vehicle, and can include formulation agents such as anti-settling agents, stabilizers, and/or dispersants. Alternatively, the active ingredient can be reconstituted in powder form with a suitable carrier (e.g., sterile pyrogen-free water) before use.
术语“炎性疾病”包括所述自身免疫、过敏性病症和炎性病症,例如选自关节炎,强直性脊柱炎,炎性肠病,溃疡性结肠炎,胃炎,胰腺炎,克罗恩氏病,乳糜泻,多发性硬化,全身性红斑狼疮,类风湿性关节炎,风湿热,痛风,器官或移植排斥,急性或慢性移植物抗宿主病,慢性同种异体移植物排斥,贝切特氏病,葡萄膜炎,牛皮癣,皮炎,特异性皮炎,皮肌炎,重症肌无力,格雷夫氏病,桥本甲状腺炎,斯耶格伦综合征,和起泡病症(例如寻常天疱疮),抗体介导的脉管炎综合征,包括ANCA-相关的血管炎,紫癜,和免疫复合血管炎(癌症或感染一期或二期)。所述过敏性病症可尤其选自接触性皮炎,乳糜泻,哮喘,对屋尘螨的超敏性,花粉和相关的过敏原,铍中毒。所述呼吸病症可尤其选自哮喘,支气管炎,慢性阻塞性肺病(COPD),囊性纤维化,肺水肿,肺栓塞,肺炎,肺肉瘤病,硅肺病,肺纤维化,呼吸衰竭,急性呼吸窘迫综合征,原发性肺动脉高压和肺气肿等。The term "inflammatory disease" includes such autoimmune, allergic and inflammatory disorders, for example selected from arthritis, ankylosing spondylitis, inflammatory bowel disease, ulcerative colitis, gastritis, pancreatitis, Crohn's disease, celiac disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, rheumatic fever, gout, organ or transplant rejection, acute or chronic graft-versus-host disease, chronic allograft rejection, Behcet's disease, uveitis, psoriasis, dermatitis, atopic dermatitis, dermatomyositis, myasthenia gravis, Grave's disease, Hashimoto's thyroiditis, Sjogren's syndrome, and blistering disorders (e.g. pemphigus vulgaris), antibody-mediated vasculitis syndromes, including ANCA-associated vasculitis, purpura, and immune complex vasculitis (cancer or infection primary or secondary). The allergic disorder may be selected in particular from contact dermatitis, celiac disease, asthma, hypersensitivity to house dust mites, pollens and related allergens, berylliosis. The respiratory disorder may be selected from, inter alia, asthma, bronchitis, chronic obstructive pulmonary disease (COPD), cystic fibrosis, pulmonary edema, pulmonary embolism, pneumonia, pulmonary sarcoidosis, silicosis, pulmonary fibrosis, respiratory failure, acute respiratory distress syndrome, primary pulmonary hypertension and emphysema, among others.
术语“病毒感染”包括但不限于逆转录病毒感染、肝炎病毒感染、寨卡病毒感染,登革病毒感染等。The term "viral infection" includes, but is not limited to, retroviral infection, hepatitis virus infection, Zika virus infection, dengue virus infection, etc.
II.具体实施例II. Specific Examples
下面通过实施例对本发明进行具体描述,本实施例只用于对本发明作进一步的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据上述发明的内容做出的一些非本质的改进和调整,均属本发明保护范围。The present invention is specifically described below through examples. The examples are only used to further illustrate the present invention and cannot be understood as limiting the scope of protection of the present invention. Some non-essential improvements and adjustments made by technicians in this field based on the contents of the above invention all belong to the scope of protection of the present invention.
实施例1:肺部靶向脂质分子(Y1-1)的制备Example 1: Preparation of lung-targeted lipid molecule (Y1-1)
将油酸溶在甲苯中与二氯亚砜在60℃反应6h,随后真空除去溶剂和二氯亚砜,得到油酰氯。将油酰氯和三乙醇胺溶解在二氯甲烷中,加入三乙胺,过夜反应。得到的反应液经洗涤、干燥和浓缩后用色谱柱分离纯化。通过控制油酰氯与三乙醇胺的比例,获得双取代油酸三乙醇胺酯(L1-1)(图1)。相关表征包括1H NMR(图2,测试条件:CDCl3, 400 M, 298.15K)、13C NMR(图3,测试条件:CDCl3, 400 M, 298.15 K)以及ESI-TOF MS(图4),其[M+H]+理论值为m/z = 678.6031,测得m/z = 678.6013。Oleic acid was dissolved in toluene and reacted with thionyl chloride at 60°C for 6h, and then the solvent and thionyl chloride were removed in vacuo to obtain oleoyl chloride. Oleoyl chloride and triethanolamine were dissolved in dichloromethane, triethylamine was added, and the reaction was allowed to proceed overnight. The obtained reaction solution was washed, dried, and concentrated, and then separated and purified by a chromatographic column. By controlling the ratio of oleoyl chloride to triethanolamine, disubstituted oleic acid triethanolamine ester (L1-1) was obtained (Figure 1). The relevant characterizations included 1 H NMR (Figure 2, test conditions: CDCl 3 , 400 M, 298.15K), 13 C NMR (Figure 3, test conditions: CDCl 3 , 400 M, 298.15 K) and ESI-TOF MS (Figure 4), and the theoretical value of [M+H] + was m/z = 678.6031, and the measured m/z = 678.6013.
随后将所得到的双取代油酸三乙醇胺酯(L1-1)与碘甲烷在乙腈中于80摄氏度下反应72小时,反应结束后真空除去溶剂和碘甲烷。得到肺部靶向脂质分子(Y1)(图5)。相关表征包括1H NMR(图6,测试条件:CDCl3, 400 M, 298.15 K)、13C NMR(图7,测试条件:CDCl3,400 M, 298.15 K)以及ESI-TOF MS(图8),其[M+H]+理论值为m/z = 678.6031,测得m/z =678.6013。The obtained disubstituted oleic acid triethanolamine ester (L1-1) was then reacted with iodomethane in acetonitrile at 80 degrees Celsius for 72 hours. After the reaction, the solvent and iodomethane were removed in vacuo. The lung-targeted lipid molecule (Y1) was obtained (Figure 5). The relevant characterizations included 1 H NMR (Figure 6, test conditions: CDCl 3 , 400 M, 298.15 K), 13 C NMR (Figure 7, test conditions: CDCl 3 ,400 M, 298.15 K) and ESI-TOF MS (Figure 8). The theoretical value of [M+H] + was m/z = 678.6031, and the measured m/z = 678.6013.
实施例2:肺部靶向脂质分子(Y1-2)的制备Example 2: Preparation of lung-targeted lipid molecules (Y1-2)
将2-正己基癸酸溶在甲苯中与二氯亚砜在60℃反应6h,随后真空除去溶剂和二氯亚砜,得到2-正己基癸酸酰氯。将2-正己基癸酸酰氯和三乙醇胺溶解在二氯甲烷中,加入三乙胺,过夜反应。得到的反应液经洗涤、干燥和浓缩后用色谱柱分离纯化。通过控制2-正己基癸酸酰氯与三乙醇胺的比例,获得双取代2-正己基癸酸三乙醇胺酯(L1-2)(图9)。相关表征包括1H NMR(图10,测试条件:CDCl3, 400 M, 298.15 K),其[M-I+H]+理论值为m/z =626.6,测得m/z = 626.2。2-n-Hexyldecanoic acid was dissolved in toluene and reacted with thionyl chloride at 60°C for 6h, and then the solvent and thionyl chloride were removed in vacuo to obtain 2-n-hexyldecanoic acid chloride. 2-n-Hexyldecanoic acid chloride and triethanolamine were dissolved in dichloromethane, triethylamine was added, and the reaction was allowed to proceed overnight. The obtained reaction solution was washed, dried, and concentrated, and then separated and purified by a chromatographic column. By controlling the ratio of 2-n-hexyldecanoic acid chloride to triethanolamine, disubstituted 2-n-hexyldecanoic acid triethanolamine ester (L1-2) was obtained (Figure 9). Related characterizations include 1 H NMR (Figure 10, test conditions: CDCl 3 , 400 M, 298.15 K), whose [M-I+H] + theoretical value is m/z = 626.6, and the measured m/z = 626.2.
随后将所得到的双取代2-正己基癸酸三乙醇胺酯与碘甲烷在乙腈中于80摄氏度下反应72小时,反应结束后真空除去溶剂和碘甲烷。得到肺部靶向脂质分子(Y1-2)(图11)。相关表征包括1H NMR(图12,测试条件:CDCl3, 400 M, 298.15 K)。The obtained disubstituted 2-n-hexyldecanoic acid triethanolamine ester was then reacted with iodomethane in acetonitrile at 80 degrees Celsius for 72 hours, and the solvent and iodomethane were removed in vacuo after the reaction. The lung-targeted lipid molecule (Y1-2) was obtained (Figure 11). Related characterizations include 1 H NMR (Figure 12, test conditions: CDCl 3 , 400 M, 298.15 K).
实施例3:基础LNP@mRNA及肺靶向LNP@mRNA的制备Example 3: Preparation of basic LNP@mRNA and lung-targeted LNP@mRNA
将L1-1(或L1-2)、DSPE-PEG2000、胆固醇以及DOPE按照30%:5%:15%:8%:42%的质量比混合,溶解在乙醇溶液中。mRNA为Firefly luciferase mRNA,用pH为5.0的柠檬酸钠(100mM)缓冲溶液溶解。有机相溶液和水相溶液体积比为1:3,所含脂质与mRNA质量按25:1的比例混合,得到微白色溶液。随后超滤除去乙醇。得到包载mRNA的肝靶向基础LNP@mRNA。L1-1 (or L1-2), DSPE-PEG2000, cholesterol and DOPE were mixed in a mass ratio of 30%:5%:15%:8%:42% and dissolved in an ethanol solution. The mRNA was Firefly luciferase mRNA, which was dissolved in a sodium citrate (100mM) buffer solution at pH 5.0. The volume ratio of the organic phase solution to the aqueous phase solution was 1:3, and the lipids and mRNA were mixed in a mass ratio of 25:1 to obtain a slightly white solution. The ethanol was then removed by ultrafiltration. The liver-targeted basic LNP@mRNA encapsulating mRNA was obtained.
将L1-1、DSPE-PEG2000、胆固醇、DOPE以及Y1-1(或L1-2、DSPE-PEG2000、胆固醇、DOPE以及Y1-2)按照30%:5%:15%:8%:42%的质量比混合,溶解在乙醇溶液中。mRNA为Fireflyluciferase mRNA,用pH为5.0的柠檬酸钠(100 mM)缓冲溶液溶解。有机相溶液和水相溶液体积比为1:3,所含脂质与mRNA质量按25:1的比例混合,得到微白色溶液。随后超滤除去乙醇。得到包载mRNA的肺靶向LNP@mRNA。L1-1, DSPE-PEG2000, cholesterol, DOPE and Y1-1 (or L1-2, DSPE-PEG2000, cholesterol, DOPE and Y1-2) were mixed in a mass ratio of 30%:5%:15%:8%:42% and dissolved in an ethanol solution. The mRNA was Fireflyluciferase mRNA, which was dissolved in a sodium citrate (100 mM) buffer solution at pH 5.0. The volume ratio of the organic phase solution to the aqueous phase solution was 1:3, and the lipids and mRNA were mixed in a mass ratio of 25:1 to obtain a slightly white solution. The ethanol was then removed by ultrafiltration. The lung-targeted LNP@mRNA encapsulated with mRNA was obtained.
使用动态光散射(DLS)和透射电镜(TEM)对所获得的LNP进行粒径分布表征以及形貌表征。DLS结果显示(图13),基于L1-1和Y1-1制备的肺靶向Y1-1-LNP@mRNA的水合粒径为63.8 nm,基于L1-2和Y1-2制备的肺靶向Y1-2-LNP@mRNA的水合粒径为66.5 nm。TEM结果显示(图14),Y1-1-LNP@mRNA(a)和Y1-2-LNP@mRNA(b)均呈球形,粒径为60-100 nm。Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to characterize the particle size distribution and morphology of the obtained LNPs. DLS results showed (Figure 13) that the hydrated particle size of the lung-targeted Y1-1-LNP@mRNA prepared based on L1-1 and Y1-1 was 63.8 nm, and the hydrated particle size of the lung-targeted Y1-2-LNP@mRNA prepared based on L1-2 and Y1-2 was 66.5 nm. TEM results showed (Figure 14) that both Y1-1-LNP@mRNA (a) and Y1-2-LNP@mRNA (b) were spherical with a particle size of 60-100 nm.
实施例4:LNP@mRNA的器官靶向实验Example 4: Organ targeting experiment of LNP@mRNA
将由实施例3获得的两种肺靶向LNP@mRNA,Y1-1-LNP@mRNA和Y1-2-LNP@mRNA以及基础LNP@mRNA(以Y1-1前体分子为可离子化脂质体),按照每只小鼠5 ug mRNA的剂量对C57BL/6G小鼠经尾静脉给药。6小时后向小鼠腹腔注射底物,随后使用小动物活体荧光成像系统进行生物发光成像(图15,16)。结果显示,基础LNP体系(以Y1-1前体分子为可离子化脂质体)可实现对肝脏的富集,而其他脏器,包括肺部、肾脏、心脏、脾、肠道、胃、肌肉以及骨骼中均未发现富集或表达,肝脏靶向效果显著。The two lung-targeted LNP@mRNAs obtained in Example 3, Y1-1-LNP@mRNA and Y1-2-LNP@mRNA, and the basic LNP@mRNA (with the Y1-1 precursor molecule as an ionizable liposome) were administered to C57BL/6G mice via the tail vein at a dose of 5 ug mRNA per mouse. Six hours later, the substrate was injected into the mouse intraperitoneally, and then bioluminescence imaging was performed using a small animal in vivo fluorescence imaging system (Figures 15, 16). The results showed that the basic LNP system (with the Y1-1 precursor molecule as an ionizable liposome) can achieve enrichment in the liver, while no enrichment or expression was found in other organs, including the lungs, kidneys, heart, spleen, intestines, stomach, muscles, and bones, and the liver targeting effect was significant.
肺靶向递送体系Y1-1-LNP@mRNA和Y1-2-LNP@mRNA均可实现对肺部的靶向递送、富集和表达,且表达效果优异。而其他脏器,包括肝脏、肾脏、心脏、脾、肠道、胃、肌肉以及骨骼中均为发现富集或表达,肺部靶向效果显著。The lung-targeted delivery systems Y1-1-LNP@mRNA and Y1-2-LNP@mRNA can achieve targeted delivery, enrichment and expression in the lungs, and the expression effect is excellent. Other organs, including liver, kidney, heart, spleen, intestine, stomach, muscle and bone, were not found to be enriched or expressed, and the lung-targeted effect was significant.
实施例5:Y1-1-LNP@mRNA的细胞毒性实验Example 5: Cytotoxicity experiment of Y1-1-LNP@mRNA
将HEK293细胞接种在96孔板的DMEM培养基(10%胎牛血清和1%青霉素)中。将细胞在37℃下在含有5%CO2的气氛中孵育。细胞孵育24小时后更换新鲜培养基。加入不同浓度的肺靶向Y1-1-LNP@mRNA(0-200 μg/mL,实施例3制备),将细胞孵育24小时后,用含有0.5mg/mL的3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑(MTT)培养基替换原培养基。继续孵育4小时后,除去含有MTT的培养基,用PBS小心洗涤3次。然后,加入DMSO(100μL),在BioTekSynergy H4读数器中测量在570 nm的波长下吸光度,计算得到24 h的细胞存活率,验证本发明得到的递送体系的细胞毒性。HEK293 cells were seeded in DMEM medium (10% fetal bovine serum and 1% penicillin) in 96-well plates. The cells were incubated at 37°C in an atmosphere containing 5% CO 2. Fresh medium was replaced after 24 hours of cell incubation. Different concentrations of lung-targeted Y1-1-LNP@mRNA (0-200 μg/mL, prepared in Example 3) were added, and the cells were incubated for 24 hours, and then the original medium was replaced with 0.5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) medium. After further incubation for 4 hours, the medium containing MTT was removed and carefully washed 3 times with PBS. Then, DMSO (100 μL) was added, and the absorbance at a wavelength of 570 nm was measured in a BioTekSynergy H4 reader, and the cell survival rate for 24 h was calculated to verify the cytotoxicity of the delivery system obtained by the present invention.
由图17可见,孵育24 h 后的细胞存活率均在90%以上,表明本发明的肺靶向核酸递送系统具有较低的细胞毒性,展现出了良好的生物安全性能。As can be seen from FIG. 17 , the cell survival rate after 24 h of incubation was above 90%, indicating that the lung-targeted nucleic acid delivery system of the present invention has low cytotoxicity and exhibits good biosafety performance.
实施例6: LNP@mRNA的生物安全性分析Example 6: Biosafety Analysis of LNP@mRNA
将BALB/c小鼠分为2组,每组5只,BALB/c小鼠(4-6周龄,雌性,体重约18-20 g),分别经尾静脉注射PBS和LNP@mRNA(10 μg mRNA,Y1-1-LNP@mRNA或Y1-2-LNP@mRNA),注射5天后取小鼠静脉血,离心取上清液,测定肝肾功能各项指标。对注射5天后的PBS和LNP@mRNA组的小鼠的心脏、肝脏、脾脏、肺和肾脏进行H&E染色,观察其是否出现病变。BALB/c mice were divided into 2 groups, 5 mice in each group. BALB/c mice (4-6 weeks old, female, weighing about 18-20 g) were injected with PBS and LNP@mRNA (10 μg mRNA, Y1-1-LNP@mRNA or Y1-2-LNP@mRNA) through the tail vein, respectively. Five days after the injection, venous blood was collected from the mice, and the supernatant was centrifuged to measure various indicators of liver and kidney function. H&E staining was performed on the heart, liver, spleen, lung and kidney of the mice in the PBS and
肝肾功能指标检测结果显示(图18),Y1-1或Y1-2组小鼠的各项肝肾功能均未出现明显变化,其指标均与PBS相当。组织切片实验结果显示(图19),经LNP@mRNA处理的小鼠的各主要器官均未出现明显的病变,说明LNP@mRNA纳米粒子具有良好的生物安全性。The results of liver and kidney function test showed (Figure 18) that there were no significant changes in liver and kidney functions of mice in the Y1-1 or Y1-2 groups, and their indicators were comparable to those of PBS. The results of tissue section experiments showed (Figure 19) that no obvious lesions were found in the major organs of mice treated with LNP@mRNA, indicating that LNP@mRNA nanoparticles have good biosafety.
实施例7: LNP@mRNA的器官靶向实验Example 7: Organ targeting experiment of LNP@mRNA
使用合成得到的如式(Y2)至式(Y5)所示的季铵盐脂质分子,及其对应的可电离脂质分子前体,分别制备包载mRNA的肺靶向LNP和基础LNP。按照每只小鼠5 ug mRNA的剂量对C57BL/6G小鼠经尾静脉给药。6小时后向小鼠腹腔注射底物,随后使用小动物活体荧光成像系统进行生物发光成像(图20,21,22,,23)。结果显示,基于可电离脂质分子前体的基础LNP体系均可实现对肝脏的富集和表达,而其他脏器,包括肺部、肾脏、心脏、脾、肠道、胃、肌肉以及骨骼中均未发现富集或表达,肝脏靶向效果显著。The synthesized quaternary ammonium lipid molecules shown in formula (Y2) to formula (Y5) and their corresponding ionizable lipid molecule precursors were used to prepare lung-targeted LNPs and basic LNPs encapsulating mRNA, respectively. C57BL/6G mice were administered via the tail vein at a dose of 5 ug mRNA per mouse. Six hours later, the substrate was injected intraperitoneally into the mice, and then bioluminescence imaging was performed using a small animal in vivo fluorescence imaging system (Figures 20, 21, 22, 23). The results showed that the basic LNP system based on ionizable lipid molecule precursors could achieve enrichment and expression in the liver, while no enrichment or expression was found in other organs, including the lungs, kidneys, heart, spleen, intestines, stomach, muscles, and bones, and the liver targeting effect was significant.
在向基础LNP递送体系中添加肺靶向成分后,Y2-LNP@mRNA、Y3-LNP@mRNA、Y4-LNP@mRNA和Y5-LNP@mRNA均可实现对肺部的靶向递送、富集和表达,且表达效果优异。而其他脏器,包括肝脏、肾脏、心脏、脾、肠道、胃、肌肉以及骨骼中均为发现富集或表达,肺部靶向效果显著。After adding lung targeting components to the basic LNP delivery system, Y2-LNP@mRNA, Y3-LNP@mRNA, Y4-LNP@mRNA and Y5-LNP@mRNA can achieve targeted delivery, enrichment and expression in the lungs, and the expression effect is excellent. No enrichment or expression was found in other organs, including liver, kidney, heart, spleen, intestine, stomach, muscle and bone, and the lung targeting effect is significant.
基础LNP递送体系和肺靶向LNP递送体系都实现了对mRNA的高效包载,包载效率军超过93%(图24,25),证明了这些载体优异的包载能力。动态光散射实验(图26,27)证明了基础LNP@mRNA(以Y1-1前体,Y1-2前体,Y2前体,Y3前体,Y4前体,Y5前体为可离子化脂质体)及肺靶向LNP@mRNA(Y1-1,Y1-2,Y2,Y3,Y4,Y5)具有均一的粒径,且平均粒径小于100 nm。Zeta电位实验(图28,29)证明了基础LNP@mRNA(以Y1-1前体,Y1-2前体,Y2前体,Y3前体,Y4前体,Y5前体为可离子化脂质体)的电位小于0 mV,肺靶向LNP@mRNA(Y1-1,Y1-2,Y2,Y3,Y4,Y5)的电位大于0 mV。Both the basic LNP delivery system and the lung-targeted LNP delivery system achieved efficient mRNA encapsulation, with an encapsulation efficiency of more than 93% (Figures 24 and 25), demonstrating the excellent encapsulation capacity of these carriers. Dynamic light scattering experiments (Figures 26 and 27) demonstrated that the basic LNP@mRNA (with Y1-1 precursor, Y1-2 precursor, Y2 precursor, Y3 precursor, Y4 precursor, and Y5 precursor as ionizable liposomes) and lung-targeted LNP@mRNA (Y1-1, Y1-2, Y2, Y3, Y4, and Y5) had uniform particle sizes, with an average particle size of less than 100 nm. Zeta potential experiments (Figures 28 and 29) demonstrated that the potential of basic LNP@mRNA (with Y1-1 precursor, Y1-2 precursor, Y2 precursor, Y3 precursor, Y4 precursor, and Y5 precursor as ionizable liposomes) was less than 0 mV, and the potential of lung-targeted LNP@mRNA (Y1-1, Y1-2, Y2, Y3, Y4, and Y5) was greater than 0 mV.
前述对本公开的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本公开限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本公开的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本公开的各种不同的示例性实施方案以及各种不同的选择。The foregoing description of specific exemplary embodiments of the present disclosure is for the purpose of illustration and demonstration. These descriptions are not intended to limit the present disclosure to the precise form disclosed, and it is clear that many changes and variations can be made based on the above teachings. The purpose of selecting and describing the exemplary embodiments is to explain the specific principles of the present disclosure and its practical application, so that those skilled in the art can realize and utilize various different exemplary embodiments and various different options of the present disclosure.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310174813.1A CN115925563B (en) | 2023-02-28 | 2023-02-28 | Lipid molecule for targeted pulmonary delivery of nucleic acid, and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310174813.1A CN115925563B (en) | 2023-02-28 | 2023-02-28 | Lipid molecule for targeted pulmonary delivery of nucleic acid, and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115925563A CN115925563A (en) | 2023-04-07 |
CN115925563B true CN115925563B (en) | 2023-05-16 |
Family
ID=85829060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310174813.1A Active CN115925563B (en) | 2023-02-28 | 2023-02-28 | Lipid molecule for targeted pulmonary delivery of nucleic acid, and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115925563B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024212958A1 (en) * | 2023-04-12 | 2024-10-17 | 北京因诺惟康医药科技有限公司 | Ionizable lipid compound, lipid carrier comprising same, and application |
WO2024250133A1 (en) * | 2023-06-05 | 2024-12-12 | 安徽医科大学第一附属医院 | Lung-targeted nano-micelle, and preparation method therefor and use thereof |
CN117185942A (en) * | 2023-07-04 | 2023-12-08 | 清华大学 | Lipid nanoparticle for targeted pulmonary delivery of broad-spectrum neutralizing antibody, and preparation method and application thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201534578A (en) * | 2013-07-08 | 2015-09-16 | Daiichi Sankyo Co Ltd | Novel lipid |
JP7600208B2 (en) * | 2019-07-29 | 2024-12-16 | ジョージア テック リサーチ コーポレイション | Nanomaterials containing constrained lipids and uses thereof - Patents.com |
EP4031524A1 (en) * | 2019-09-19 | 2022-07-27 | ModernaTX, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
CN115197079A (en) * | 2021-04-08 | 2022-10-18 | 厦门赛诺邦格生物科技股份有限公司 | Polyethylene glycol lipid and liposome modified by same, pharmaceutical composition containing liposome, preparation and application of pharmaceutical composition |
CN114149337B (en) * | 2021-07-07 | 2022-04-29 | 天津键凯科技有限公司 | Novel ionizable lipid for nucleic acid delivery and LNP composition thereof |
WO2023023055A1 (en) * | 2021-08-16 | 2023-02-23 | Renagade Therapeutics Management Inc. | Compositions and methods for optimizing tropism of delivery systems for rna |
CN115710192B (en) * | 2021-08-23 | 2025-06-10 | 广州谷森制药有限公司 | Cationic lipid compounds |
CN114191561B (en) * | 2021-12-15 | 2022-08-02 | 武汉滨会生物科技股份有限公司 | Application of ionizable lipid compound in nucleic acid drug delivery system |
CN115304756B (en) * | 2022-01-30 | 2023-05-09 | 上海科技大学 | A five-membered lipid nanoparticle and its preparation method and application |
CN115197431B (en) * | 2022-09-15 | 2022-11-29 | 清华大学 | Synthesis and Application of Lipid-Coupled Fully Degradable Water-Soluble Polymer |
-
2023
- 2023-02-28 CN CN202310174813.1A patent/CN115925563B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN115925563A (en) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115925563B (en) | Lipid molecule for targeted pulmonary delivery of nucleic acid, and preparation method and application thereof | |
JP7164547B2 (en) | cationic lipid | |
EP3476832B1 (en) | Cationic lipid | |
EP4216933B1 (en) | Piperazine-based cationic lipids | |
WO2012135025A2 (en) | Conjugated lipomers and uses thereof | |
CA2969664A1 (en) | Cationic lipid | |
TW201132365A (en) | Lipids, lipid compositions, and methods of using them | |
WO2023142167A1 (en) | Cationic lipid analog, and composition and use thereof | |
WO2024198497A1 (en) | Amino lipid, and lipid nanoparticles and use thereof | |
EP4267147A1 (en) | Zwitterionic lipid nanoparticle compositions, and methods of use | |
WO2024055681A1 (en) | Synthesis and use of lipid-coupled completely-degradable water-soluble polymer | |
CN115745788B (en) | An ionizable lipid compound and its preparation method and application | |
CN118922409A (en) | Asymmetric piperazine-based cationic lipids | |
CN116023303B (en) | A lipid molecule and liposome for delivering mRNA and preparation method and application thereof | |
CN118146276A (en) | Glycosylated ionizable lipid molecules useful for nucleic acid delivery and having antigen presenting cell targeting function, preparation method and application thereof | |
CN117185942A (en) | Lipid nanoparticle for targeted pulmonary delivery of broad-spectrum neutralizing antibody, and preparation method and application thereof | |
JP2024527541A (en) | Compositions for delivery of mRNA | |
JP2023514951A (en) | Lipid compounds and compositions thereof | |
CN116270543B (en) | Use of lipid nanoparticles for the preparation of a medicament for the delivery of nucleic acids by aerosol or nasal drop administration | |
CN118063774A (en) | A lipoic acid polymer for assisting delivery of nucleic acids and its preparation method and application | |
CN119431205B (en) | Triglyceride-derived ionizable lipid compound, preparation method thereof, drug delivery carrier and application thereof | |
CN115850135B (en) | Sulfur-containing Janus-type ionizable liposome and application thereof | |
CN118324951A (en) | A supramolecular lipid nanoparticle for nucleic acid delivery and its preparation method and application | |
CN117486832A (en) | A cationic lipid molecule capable of early lysosomal escape for RNA delivery | |
JP4276439B2 (en) | Lipid derivatives of polythiourea |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |