CN115900787A - Implementation method and system of spectral domain reflectometer - Google Patents
Implementation method and system of spectral domain reflectometer Download PDFInfo
- Publication number
- CN115900787A CN115900787A CN202211606823.XA CN202211606823A CN115900787A CN 115900787 A CN115900787 A CN 115900787A CN 202211606823 A CN202211606823 A CN 202211606823A CN 115900787 A CN115900787 A CN 115900787A
- Authority
- CN
- China
- Prior art keywords
- signal
- optical
- coupler
- light
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Optical Transform (AREA)
Abstract
Description
技术领域technical field
本发明涉及光纤传感技术领域,具体地,涉及光谱域反射仪的实现方法及系统,更为具体地,涉及一种检测光纤中的后向散射并确定其强度与相位的光反射仪方法及系统。The present invention relates to the technical field of optical fiber sensing, in particular, to a method and system for implementing a spectral domain reflectometer, and more specifically, to an optical reflectometer method for detecting backscattering in an optical fiber and determining its intensity and phase. system.
背景技术Background technique
光反射仪是一种能够检测和定位光纤中的后向散射光(如瑞利散射)信号的技术。通过分析光纤不同位置处后向散射光信号的强度或相位的信息,实现对光纤链路损耗的检测、环境应变与温度等物理量的测量。Optical reflectometry is a technology that can detect and locate backscattered light (such as Rayleigh scattering) signals in optical fibers. By analyzing the intensity or phase information of the backscattered optical signal at different positions of the optical fiber, the detection of optical fiber link loss, the measurement of environmental strain and temperature and other physical quantities are realized.
根据后向散射光信号的定位原理,现有的光反射仪主要有光时域反射仪、光频域反射仪和光相干域反射仪三种类型。According to the positioning principle of backscattered optical signals, the existing optical reflectometers mainly include three types: optical time domain reflectometer, optical frequency domain reflectometer and optical coherent domain reflectometer.
光时域反射仪发射探测脉冲,接收探测脉冲产生的后向散射光,根据后向散射光返回的时间确定散射发生的位置,探测脉冲的持续时间越短,空间分辨率越高,但是后向散射光的信噪比就越差,空间分辨率与检测信噪比之间的矛盾使得这种反射仪的空间分辨率不高,一般大于1米;The optical time domain reflectometer transmits the detection pulse, receives the backscattered light generated by the detection pulse, and determines the location of the scattering according to the return time of the backscattered light. The shorter the duration of the detection pulse, the higher the spatial resolution, but the backward The worse the signal-to-noise ratio of scattered light, the contradiction between the spatial resolution and the detection signal-to-noise ratio makes the spatial resolution of this reflectometer not high, generally greater than 1 meter;
光频域反射仪采用线性调谐光源和相干接收的方式,将散射光信号与本地光拍频,将散射光信号的时间延迟映射为拍频信号的频率,该方案的空间分辨率取决于光源的频率调谐范围,不再受探测光持续时间的限制,但是该方案需要高线性度、低相位噪声的扫频光源,这种光源非常昂贵。The optical frequency domain reflectometer uses a linearly tuned light source and coherent reception to beat the scattered light signal with the local light, and maps the time delay of the scattered light signal to the frequency of the beat signal. The spatial resolution of this scheme depends on the light source The frequency tuning range is no longer limited by the duration of the probe light, but this solution requires a high linearity, low phase noise swept source, which is very expensive.
光相干域反射仪采用低相干光作为光源,只有当散射光的光程与本地光的光程相同时,才能观测到干涉信号,可以实现很高的空间分辨率,但是测量距离普遍很短。Optical coherence domain reflectometers use low-coherence light as the light source. Interference signals can only be observed when the optical path of scattered light is the same as that of local light. High spatial resolution can be achieved, but the measurement distance is generally very short.
专利文献CN113014313A(申请号:201911328434.3)公开了一种光时域反射仪,光时域反射仪包括:激光器,用于发射探测光源;调制器,用于将探测光源转化为第一脉冲信号和第二脉冲信号并用于向待测光纤发送第一脉冲信号,使得待测光纤产生反射信号;耦合器,用于将第二脉冲信号和待测光纤的反射信号耦合为光信号;光电转换模块,用于将光信号转化为电信号;可编程模块,用于根据电信号调整激光器发射的探测光源。Patent document CN113014313A (application number: 201911328434.3) discloses an optical time domain reflectometer. The optical time domain reflectometer includes: a laser for emitting a detection light source; a modulator for converting the detection light source into a first pulse signal and a second pulse signal. The second pulse signal is used to send the first pulse signal to the optical fiber to be tested, so that the optical fiber to be tested generates a reflection signal; the coupler is used to couple the second pulse signal and the reflected signal of the optical fiber to be tested into an optical signal; the photoelectric conversion module uses It is used to convert the optical signal into an electrical signal; the programmable module is used to adjust the detection light source emitted by the laser according to the electrical signal.
专利文献CN114964329A(申请号:202210559130.3)公开了一种双边带光频域反射仪,包括:调制信号产生单元、传感信号接收单元和信号处理单元,调制信号产生单元通过外调制的方式产生双边带探测光波,并将探测光波分为两路,一路作为探测光输入待测光纤,另一路作为本地光输入传感信号接收单元,待测光纤将外界物理量的变化耦合到探测光波上,并将其产生的后向瑞利散射信号作为信号光传回至传感信号接收单元,传感信号接收单元使用频移法或IQ接收法从双边带信号光中分来自两个边带扫频产生的两种不同的拍频信号,信号处理单元对两种不同的拍频信号按照扫频范围在时域对齐后进行傅里叶变换,得到光纤上的瑞利散射的强度和相位信息。Patent document CN114964329A (application number: 202210559130.3) discloses a double sideband optical frequency domain reflectometer, including: a modulation signal generating unit, a sensing signal receiving unit and a signal processing unit, the modulation signal generating unit generates double sideband through external modulation Detect the light wave, and divide the detection light wave into two paths, one path is used as the detection light input to the optical fiber to be tested, and the other path is used as the local light input to the sensing signal receiving unit, the optical fiber to be tested couples the change of the external physical quantity to the detection light wave, and transmits it The generated back Rayleigh scattering signal is sent back to the sensing signal receiving unit as signal light, and the sensing signal receiving unit uses the frequency shift method or IQ receiving method to divide the two sideband signal light from the two sideband frequency sweeps into two signals. Two different beat frequency signals, the signal processing unit performs Fourier transform on the two different beat frequency signals according to the frequency sweep range after aligning in the time domain, and obtains the intensity and phase information of Rayleigh scattering on the optical fiber.
专利文献CN203617996U(申请号:201320800522.0)公开了一种相干光时域反射仪装置,其特征在于:包括激光器、光分束器、一对脉冲发生装置、光循环器、光电检测器。一种相干光时域反射测量方法,其特征在于:采用测试脉冲光获取被测器件的散射/反射信息,采用本地脉冲光与散射/反射回来的光信号进行干涉,通过调整测试脉冲光和本地脉冲光各自的重复频率,完整的构造出反射/散射光信号,再经光电转换和模数转换,获取散射/反射光位置信息;所述测试脉冲光和本地脉冲光的脉宽与所需空间分辨率相适应,相邻脉冲距离远大于脉宽。Patent document CN203617996U (application number: 201320800522.0) discloses a coherent optical time domain reflectometer device, which is characterized in that it includes a laser, an optical beam splitter, a pair of pulse generators, an optical circulator, and a photoelectric detector. A coherent optical time-domain reflectometry method, characterized in that: the test pulse light is used to obtain the scattering/reflection information of the device under test, the local pulse light is used to interfere with the scattered/reflected optical signal, and the test pulse light and the local The respective repetition frequency of the pulsed light can completely construct the reflected/scattered light signal, and then obtain the position information of the scattered/reflected light through photoelectric conversion and analog-to-digital conversion; the pulse width and the required space of the test pulsed light and local pulsed light The resolution is suitable, and the distance between adjacent pulses is much larger than the pulse width.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种光谱域反射仪系统及实现方法。Aiming at the defects in the prior art, the object of the present invention is to provide a spectral domain reflectometer system and its implementation method.
根据本发明提供的一种光谱域反射仪系统,包括:光源模块产生本地光信号和具有梳状光谱的探测光信号,本地光信号直接与相干检测模块相连,探测光信号经无源光路模块后一部分进入待测光纤,从待测光纤返回的后向散射信号经无源光路模块进入相干检测模块,与本地光拍频后输出传感电信号;另一部分直接进入相干检测模块,与本地光拍频后输出参考电信号;传感电信号与参考电信号均输入信号处理模块进行数据解调,得到光纤链路上后向散射信号的强度和相位分布信号。A spectral domain reflectometer system provided according to the present invention includes: a light source module generates a local optical signal and a detection optical signal with a comb spectrum, the local optical signal is directly connected to the coherent detection module, and the detection optical signal passes through the passive optical path module Part of it enters the optical fiber to be tested, and the backscattering signal returned from the optical fiber to be tested enters the coherent detection module through the passive optical circuit module, and outputs the sensing electrical signal after beating with the local light; the other part directly enters the coherent detection module, and beats with the local light The reference electrical signal is output after the frequency; the sensing electrical signal and the reference electrical signal are input to the signal processing module for data demodulation, and the intensity and phase distribution signal of the backscattering signal on the optical fiber link are obtained.
优选地,光源模块为单光梳光源模块,所述光源模块包括:窄线宽激光光源或光频率梳光源、信号发生器、相位或强度调制器、声光调制器、第一耦合器与光滤波器;Preferably, the light source module is a single optical comb light source module, and the light source module includes: a narrow linewidth laser light source or an optical frequency comb light source, a signal generator, a phase or intensity modulator, an acousto-optic modulator, a first coupler and an optical filter;
所述窄线宽激光光源经所述第一耦合器分为本地光路与探测光路;所述本地光路输入所述声光调制器使得窄带激光产生频移,得到本地光信号;所述探测光路对应的窄带激光在所述相位或调制器中受由所述信号发生器产生的周期性信号调制产生具有梳状光谱的探测光信号。The narrow-linewidth laser light source is divided into a local optical path and a detection optical path through the first coupler; the local optical path is input into the acousto-optic modulator to cause a frequency shift of the narrow-band laser to obtain a local optical signal; the detection optical path corresponds to The narrow-band laser light in the phase or modulator is modulated by the periodic signal generated by the signal generator to generate a probe light signal with a comb spectrum.
所述光频率梳光源经所述第一耦合器分为本地光路与探测光路;所述本地光路输入所述光滤波器过滤得到一个单频梳齿,得到本地光信号;所述探测光路即为所述的光频率梳光源产生具有梳状光谱的光信号。The optical frequency comb light source is divided into a local optical path and a detection optical path through the first coupler; the local optical path is input into the optical filter to filter to obtain a single-frequency comb, and a local optical signal is obtained; the detection optical path is The optical frequency comb light source generates an optical signal with a comb spectrum.
优选地,光源模块为双光梳光源模块,同时产生两个重频具有微小差别的光频率梳,分别作为本地光和探测光。Preferably, the light source module is a dual-comb light source module, which simultaneously generates two optical frequency combs with slightly different repetition frequencies as local light and probe light respectively.
优选地,所述无源光路模块包括第一耦合器、第三耦合器以及光环形器;Preferably, the passive optical circuit module includes a first coupler, a third coupler and an optical circulator;
所述具有梳状光谱的探测光信号进入所述第一耦合器分为两路,具有较大能量的一路光信号进入光环形器连接待测光纤,具有较小能量的光信号进入第四耦合器;从待测光纤返回后向散射信号进入第二耦合器;本地光信号进入所述第三耦合器,分束比较高的一路光信号进入第二耦合器,分束比较小的的光信号进入第四耦合器。The detection optical signal with a comb-like spectrum enters the first coupler and is divided into two paths, one path of optical signal with greater energy enters the optical circulator to connect to the optical fiber to be tested, and the optical signal with smaller energy enters the fourth coupling The backscattered signal from the optical fiber to be tested enters the second coupler; the local optical signal enters the third coupler, the optical signal with a relatively high beam split enters the second coupler, and the optical signal with a relatively small beam split into the fourth coupler.
优选地,所述相干检测模块包括:第二耦合器、第四耦合器、第一平衡光电探测器以及第二平衡光电探测器;Preferably, the coherent detection module includes: a second coupler, a fourth coupler, a first balanced photodetector, and a second balanced photodetector;
所述无源光路模块输出的本地光与探测光信号分别在所述第二耦合器和所述第四耦合器处拍频,产生的拍频光信号分别输入所述第一平衡光电探测器与所述第二平衡光电探测器;所述第一平衡光电探测器与所述第二平衡光电探测器将拍频光信号转换为电信号,分别输出传感电信号与参考电信号。The local light and detection light signals output by the passive optical path module are respectively beat at the second coupler and the fourth coupler, and the generated beat frequency signals are input to the first balanced photodetector and the first balanced photodetector respectively. The second balanced photodetector; the first balanced photodetector and the second balanced photodetector convert the beat-frequency optical signal into an electrical signal, and output a sensing electrical signal and a reference electrical signal respectively.
优选地,所述信号处理模块包括:数据采集卡和数字信号处理器;Preferably, the signal processing module includes: a data acquisition card and a digital signal processor;
通过数据采集卡对输入的传感电信号和参考电信号进行采集与存储,并将采集到的传感电信号和参考电信号输入数字信号处理器进行信号解调。The input sensing electrical signal and reference electrical signal are collected and stored through the data acquisition card, and the collected sensing electrical signal and reference electrical signal are input into a digital signal processor for signal demodulation.
优选地,在所述信号处理模块中,利用模数转换器将传感电信号和参考电信号数字化,再利用傅里叶变换分别得到传感电信号和参考电信号的频谱,对参考电信号的频谱进行相位取共轭,模值取倒数,然后与传感电信号的频谱相乘,对结果进行傅里叶逆变换,得到待测光纤上后向散射信号的强度与相位信息。Preferably, in the signal processing module, an analog-to-digital converter is used to digitize the sensing electrical signal and the reference electrical signal, and then Fourier transform is used to obtain the spectrum of the sensing electrical signal and the reference electrical signal respectively, and the reference electrical signal The phase of the frequency spectrum is conjugated, the modulus value is reciprocal, and then multiplied by the spectrum of the sensing electrical signal, and the result is inversely Fourier transformed to obtain the intensity and phase information of the backscattered signal on the optical fiber to be tested.
根据本发明提供的一种光谱域反射仪的实现方法,包括:光源模块产生本地光信号和具有梳状光谱的探测光信号,本地光信号直接与相干检测模块相连,探测光信号经无源光路模块后一部分进入待测光纤,从待测光纤返回的后向散射信号经无源光路模块进入相干检测模块,与本地光拍频后输出传感电信号;另一部分直接进入相干检测模块,与本地光拍频后输出参考电信号;传感电信号与参考电信号均输入信号处理模块进行数据解调,得到光纤链路上后向散射信号的强度和相位分布信号。A method for implementing a spectral domain reflectometer according to the present invention includes: the light source module generates a local optical signal and a detection optical signal with a comb spectrum, the local optical signal is directly connected to the coherent detection module, and the detection optical signal passes through a passive optical path The latter part of the module enters the optical fiber to be tested, and the backscattering signal returned from the optical fiber to be tested enters the coherent detection module through the passive optical circuit module, and outputs the sensing electrical signal after beating with the local light; the other part directly enters the coherent detection module, and the local The reference electrical signal is output after the optical beat frequency; the sensing electrical signal and the reference electrical signal are both input to the signal processing module for data demodulation, and the intensity and phase distribution signal of the backscattering signal on the optical fiber link are obtained.
优选地,当光源模块为单光梳光源模块时,则所述光源模块包括:窄线宽激光光源、脉冲发生器、相位调制器、声光调制器与第一耦合器;Preferably, when the light source module is a single optical comb light source module, the light source module includes: a narrow linewidth laser light source, a pulse generator, a phase modulator, an acousto-optic modulator, and a first coupler;
所述窄线宽激光光源经所述第一耦合器分为本地光路与探测光路;所述本地光路输入所述声光调制器使得窄带激光产生频移,得到本地光信号;所述探测光路对应的窄带激光在所述相位调制器中受由所述脉冲发生器产生的脉冲调制产生具有梳状光谱的探测光信号;The narrow-linewidth laser light source is divided into a local optical path and a detection optical path through the first coupler; the local optical path is input into the acousto-optic modulator to cause a frequency shift of the narrow-band laser to obtain a local optical signal; the detection optical path corresponds to The narrow-band laser is modulated by the pulse generated by the pulse generator in the phase modulator to generate a detection optical signal with a comb spectrum;
当光源模块为双光梳光源模块时,则所述光源模块包括:窄线宽激光光源、脉冲发生器、第一相位调制器、第二相位调制器、第一耦合器、第一光滤波器以及第二光滤波器;When the light source module is a dual optical comb light source module, the light source module includes: a narrow linewidth laser light source, a pulse generator, a first phase modulator, a second phase modulator, a first coupler, and a first optical filter and a second optical filter;
所述窄线宽激光光源通过所述第一耦合器均分为本地光路与探测光路;所述本地光路和所述探测光路分别输入所述第一相位调制器和所述第二相位调制器,并且所述第一相位调制器和所述第二相位调制器分别被所述脉冲发生器产生不同序列调制;所述第一相位调制器的输出光信号进入所述第一光滤波器进行滤波处理,得到所需要频率范围内的光梳信号,并作为探测光信号输出;所述第二相位调制器的输出光进入所述第二光滤波器进行滤波处理,得到所需要频率范围内的光梳信号,并作为本地光信号输出。The narrow linewidth laser light source is equally divided into a local optical path and a detection optical path through the first coupler; the local optical path and the detection optical path are respectively input into the first phase modulator and the second phase modulator, And the first phase modulator and the second phase modulator are respectively modulated in different sequences by the pulse generator; the output optical signal of the first phase modulator enters the first optical filter for filtering processing , to obtain the optical comb signal in the required frequency range, and output it as a detection optical signal; the output light of the second phase modulator enters the second optical filter for filtering processing, and obtain the optical comb signal in the required frequency range signal and output it as a local optical signal.
优选地,所述无源光路模块包括第二耦合器、第四耦合器以及光环形器;Preferably, the passive optical circuit module includes a second coupler, a fourth coupler and an optical circulator;
所述具有梳状光谱的探测光信号进入所述第二耦合器分别得到能量90%的光信号与能量10%的光信号;具有90%能量的光信号进入光环形器连接待测光纤,具有10%能量的光信号进入第五耦合器;从待测光纤返回后向散射信号进入第三耦合器;所述具有梳状光谱的本地光信号进入所述第四耦合器分别得到能量90%的光信号与能量10%的光信号;具有90%能量的光信号进入第三耦合器,具有10%能量的光信号进入第五耦合器;The detection optical signal with a comb-like spectrum enters the second coupler to obtain an optical signal with 90% energy and an optical signal with 10% energy; the optical signal with 90% energy enters the optical circulator and connects to the optical fiber to be tested, with The optical signal with 10% energy enters the fifth coupler; the backscattered signal from the optical fiber to be tested enters the third coupler; the local optical signal with a comb spectrum enters the fourth coupler to obtain 90% energy respectively The optical signal and the optical signal with 10% energy; the optical signal with 90% energy enters the third coupler, and the optical signal with 10% energy enters the fifth coupler;
所述相干检测模块包括:第三耦合器、第五耦合器、第一平衡光电探测器以及第二平衡光电探测器;The coherent detection module includes: a third coupler, a fifth coupler, a first balanced photodetector, and a second balanced photodetector;
所述无源光路模块输出的本地光与探测光信号分别在所述第三耦合器和所述第五耦合器处拍频,产生的拍频光信号分别输入所述第一平衡光电探测器与所述第二平衡光电探测器;所述第一平衡光电探测器与所述第二平衡光电探测器将拍频光信号转换为电信号,分别输出传感电信号与参考电信号;The local light and detection light signals output by the passive optical path module are respectively beat at the third coupler and the fifth coupler, and the generated beat frequency signals are input to the first balanced photodetector and the first balanced photodetector respectively. The second balanced photodetector; the first balanced photodetector and the second balanced photodetector convert the beat frequency optical signal into an electrical signal, and respectively output a sensing electrical signal and a reference electrical signal;
所述信号处理模块包括:数据采集卡和数字信号处理器;The signal processing module includes: a data acquisition card and a digital signal processor;
通过数据采集卡对输入的传感电信号和参考电信号进行采集与存储,并将采集到的传感电信号和参考电信号输入数字信号处理器进行信号解调;Collect and store the input sensing electrical signal and reference electrical signal through the data acquisition card, and input the collected sensing electrical signal and reference electrical signal into the digital signal processor for signal demodulation;
在所述信号处理模块中,利用模数转换器将传感电信号和参考电信号数字化,再利用傅里叶变换分别得到传感电信号和参考电信号的频谱,对参考电信号的频谱进行相位取共轭,模值取倒数,然后与传感电信号的频谱相乘,对结果进行傅里叶逆变换,得到待测光纤上后向散射信号的强度与相位信息。In the signal processing module, an analog-to-digital converter is used to digitize the sensing electrical signal and the reference electrical signal, and then Fourier transform is used to respectively obtain the spectrum of the sensing electrical signal and the reference electrical signal, and the spectrum of the reference electrical signal is The phase is conjugated, the modulus is reciprocal, and then multiplied by the spectrum of the sensing electrical signal, and the result is inversely Fourier transformed to obtain the intensity and phase information of the backscattered signal on the optical fiber to be tested.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明利用连续光以及频谱采样的技术特征,突破了空间分辨率与检测信噪比之间的矛盾,实现了更高的空间分辨率与动态范围的技术效果;1. The present invention uses the technical features of continuous light and spectrum sampling to break through the contradiction between spatial resolution and detection signal-to-noise ratio, and realize the technical effect of higher spatial resolution and dynamic range;
2、本发明通过非扫频光源(即光梳)的技术特征,实现了避免扫频非线性,极大简化系统复杂度保证系统性能的稳定与精确的技术效果;2. Through the technical characteristics of the non-sweeping light source (that is, the optical comb), the present invention realizes the technical effect of avoiding the nonlinearity of frequency sweeping, greatly simplifying the system complexity and ensuring the stability and accuracy of the system performance;
3、本发明通过使用相干光源的技术特征,实现在不进行相位噪声补偿的情况下,只要探测路与参考路的光程差不超过光源相干长度时,无需调整相干长度可观测到信号的技术效果。3. By using the technical features of coherent light sources, the present invention realizes the technology that signals can be observed without adjusting the coherence length as long as the optical path difference between the detection path and the reference path does not exceed the coherence length of the light source without phase noise compensation Effect.
4、本发明规避了扫频光源的扫频非线性带来的一系列问题,降低了光频域反射的成本和系统复杂度;相比于光时域反射仪与光相干域反射仪,具有高的定位精度和信噪比以及较长的可测量距离。4. The present invention avoids a series of problems caused by the sweeping nonlinearity of the sweeping light source, and reduces the cost and system complexity of optical frequency domain reflection; compared with optical time domain reflectometer and optical coherence domain reflectometer, it has High positioning accuracy and signal-to-noise ratio and long measurable distance.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为光谱域反射仪方案的系统框图。Figure 1 is a system block diagram of the spectral domain reflectometer solution.
图2为单频激光源作为单光梳光源模块图。Figure 2 is a block diagram of a single-frequency laser source as a single-comb light source.
图3为光频率梳作为单光梳光源模块图。Fig. 3 is a block diagram of an optical frequency comb as a single optical comb light source.
图4为双光梳光源模块。Figure 4 is a dual-comb light source module.
图1中:1-光源模块,2-光耦合器,3-光环形器,4-第二耦合器,5-第三耦合器,6-第四耦合器,7-第一平衡探测器,8-第二平衡探测器,9-数据采集卡,10-信号处理单元。In Figure 1: 1-light source module, 2-optical coupler, 3-optical circulator, 4-second coupler, 5-third coupler, 6-fourth coupler, 7-first balance detector, 8-second balance detector, 9-data acquisition card, 10-signal processing unit.
图2中:1-窄线宽激光源,2-光耦合器,3-信号发生器,4-调制器,5-调制器。In Fig. 2: 1-narrow linewidth laser source, 2-optical coupler, 3-signal generator, 4-modulator, 5-modulator.
图3中:1-光频梳激光源,2-光耦合器,3-光滤波器。In Fig. 3: 1-optical frequency comb laser source, 2-optical coupler, 3-optical filter.
图4中:1-双光梳激光源。In Fig. 4: 1-dual optical comb laser source.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several changes and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1Example 1
本发明针对现有的反射仪在性能指标和器件成本上的不足,提出了光谱域反射仪方法和系统,利用具有梳状光谱的探测光信号,不需扫频,即可实现对待测传感元件的分布式测量,可实现很高的空间分辨率,避免了扫频非线性带来的不良影响,简化了系统结构。Aiming at the deficiencies of existing reflectometers in terms of performance index and device cost, the present invention proposes a spectral domain reflectometer method and system, which can realize the detection of the sensor to be tested by using the detection optical signal with a comb-like spectrum without frequency sweeping. The distributed measurement of the components can achieve high spatial resolution, avoid the adverse effects caused by the nonlinearity of the frequency sweep, and simplify the system structure.
如图1所示,本发明公开了一种利用单光梳实现光谱域反射仪系统,包括:光源模块,无源光路模块,相干检测模块以及信号处理模块,其中:光源模块输出分为探测光路与本地光路,并且分别输入至第一耦合器2与第三耦合器5;第一耦合器2将入射的探测光路分为两部分,具有较大能量的一部分进入光环形器3的1号端口并通过2端口输出至待测光纤,待测光纤产生的瑞利背向散射光经光环形器3的2端口输入光环形器3并通过3端口输入第二耦合器4;能量较低的一部分输入第四耦合器6。本地光经过第三耦合器5分为能量相等的两部分,并且分别输入第二耦合器4与第四耦合器6。本地光与探测光信号在第二耦合器4与第四耦合器6处拍频,产生的拍频光信号分别输入第一平衡光电探测器7与第二平衡光电探测器8;平衡光电探测器将拍频光信号转换为电信号,并输入至数据采集卡9,进行后续信号处理与数据解调,获得后向散光的强度与相位。As shown in Figure 1, the present invention discloses a spectral domain reflectometer system using a single optical comb, including: a light source module, a passive optical path module, a coherent detection module and a signal processing module, wherein: the output of the light source module is divided into a detection optical path and the local light path, and input to the
所述的无源光路模块包括:第一耦合器2,第三耦合器5以及光环形器3,其中,第一耦合器2为90:10光纤耦合器,90%的输出端口为1端口,10%的输出端口为2端口,第三耦合器5为50:50耦合器。The passive optical module includes: a
所述的相干检测模块包括第二耦合器4,第四耦合器6,第一平衡探测器7,第二平衡探测器8。所述的第二耦合器4与第四耦合器6均为50:50耦合器。The coherent detection module includes a
所述的第一平衡探测器7与第二平衡探测器8带宽均为1.6GHz。The bandwidths of the first
所述的信号处理模块包括数据采集卡9与信号处理单元10。The signal processing module includes a
所述的数据采集卡9对输入的电信号进行采样,将原始数据输入信号处理单元10进行数据解调。The
所述的数据采集卡9的采样率fc=1GHz,分辨率为8bit。The sampling rate of the
本实施例的具体步骤如下:The concrete steps of this embodiment are as follows:
步骤1:开启激光器,使光源模块处于工作状态,记录两个平衡探测器检测到的光功率信号,由第一平衡探测器的输出电信号可以得到得到探测光接收信号I1(t),对其进行傅里叶变换,可以得到探测路电信号的频域信息I1(f)。Step 1: Turn on the laser, make the light source module in working state, record the optical power signals detected by the two balanced detectors, and obtain the detected light receiving signal I 1 (t) from the output electrical signal of the first balanced detector. It performs Fourier transform to obtain the frequency domain information I 1 (f) of the detection circuit signal.
步骤2:得到第一与第二平衡平衡探测器接收的信号后,将第二平衡平衡探测器的输出信号I2(t)进行傅里叶变换,得到频域信息I2(f),将I1(f)乘以再除以I1(f)与I2(f)幅值的乘积,即其中*表示共轭。Step 2: After obtaining the signals received by the first and second balanced detectors, perform Fourier transform on the output signal I 2 (t) of the second balanced detector to obtain frequency domain information I 2 (f), and convert I 1 (f) multiplied by Then divide by the product of the magnitudes of I 1 (f) and I 2 (f), that is where * indicates conjugation.
步骤3:再将R(f)进行逆傅里叶变换,即可得到瑞利反射率曲线,即{R(t)=IFFT(R(f))}。待测光纤上某点的位置为其中:c为真空中的光速,n为光纤的有效折射率,fc为系统采样率,单位为赫兹(Hz),k为该点对应的索引值。Step 3: Then perform inverse Fourier transform on R(f) to obtain the Rayleigh reflectivity curve, ie {R(t)=IFFT(R(f))}. The position of a certain point on the fiber to be tested is Where: c is the speed of light in vacuum, n is the effective refractive index of the fiber, f c is the system sampling rate in Hertz (Hz), and k is the index value corresponding to this point.
步骤4:在反射峰位置处放大获取空间分辨率。本实施例的空间分辨率由探测光频梳的频率覆盖范围决定,即其中B为光梳频率覆盖带宽,实际空间分辨率由反射峰的半高全宽定义。Step 4: Zoom in to obtain spatial resolution at the reflection peak position. The spatial resolution of this embodiment is determined by the frequency coverage of the detection optical frequency comb, namely where B is the frequency coverage bandwidth of the optical comb, and the actual spatial resolution is defined by the full width at half maximum of the reflection peak.
实施例2Example 2
实施例2是单光梳系统光源模块的一种实现方式。如图2所示,本实施例包括:窄线宽激光源1,第一耦合器2,信号发生器3,调制器4,声光调制器5。
优选地,所述的窄线宽激光源线宽小于1kHz;Preferably, the linewidth of the narrow linewidth laser source is less than 1kHz;
所述的耦合器为50:50光纤耦合器;Described coupler is a 50:50 fiber optic coupler;
所述的调制器为相位或强度调制器,The modulator is a phase or intensity modulator,
本实施例的具体步骤如下:The concrete steps of this embodiment are as follows:
步骤1:首先将预先编写好的数据加载入信号发生器3,将输出信号接入相位或强度调制器4,开启激光器1,输出光信号经过第一耦合器2分为能量相等的两部分,一部分进入相位或强度调制器4,另一部分进入声光调制器5。相位或强度调制器4与声光调制器5的输出分别作为探测路与本地路光信号,接入后续光系统。Step 1: First load the pre-written data into the
实施例3Example 3
实施例3是单光梳系统光源模块的一种实现方式。如图3所示,本实施例包括:光频梳激光源1,第一耦合器2,光滤波器3。
所述的光滤波器为可调光滤波器。The optical filter is an adjustable optical filter.
本实施例的具体步骤如下:The concrete steps of this embodiment are as follows:
开启激光器1,输出光信号经过第一耦合器2分为能量相等的两部分,一部分直接作为探测路信号输出接入后续光路,另一部分进入光滤波器3,调整光滤波器3的中心频率,选择一个频率处的梳齿作为本地路光信号,接入后续光系统。Turn on the
实施例4Example 4
实施例4是双光梳系统光源模块的一种实现方式。如图4所示,本实施例包括:双光梳光源1。
所述的双光梳光源可以由电光调制或锁模激光器产生;The dual-comb light source can be generated by electro-optic modulation or mode-locked lasers;
本实施例的具体步骤如下:The concrete steps of this embodiment are as follows:
使双光梳光源处于工作状态,接入后续光系统。Make the dual-comb light source in working condition and connect it to the follow-up optical system.
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统、装置及其各个模块以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统、装置及其各个模块以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同程序。所以,本发明提供的系统、装置及其各个模块可以被认为是一种硬件部件,而对其内包括的用于实现各种程序的模块也可以视为硬件部件内的结构;也可以将用于实现各种功能的模块视为既可以是实现方法的软件程序又可以是硬件部件内的结构。Those skilled in the art know that, in addition to realizing the system, device and each module thereof provided by the present invention in a purely computer-readable program code mode, the system, device and each module thereof provided by the present invention can be completely programmed by logically programming the method steps. The same program is implemented in the form of logic gates, switches, application specific integrated circuits, programmable logic controllers, and embedded microcontrollers, among others. Therefore, the system, device and each module provided by the present invention can be regarded as a hardware component, and the modules included in it for realizing various programs can also be regarded as the structure in the hardware component; A module for realizing various functions can be regarded as either a software program realizing a method or a structure within a hardware component.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211606823.XA CN115900787A (en) | 2022-12-14 | 2022-12-14 | Implementation method and system of spectral domain reflectometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211606823.XA CN115900787A (en) | 2022-12-14 | 2022-12-14 | Implementation method and system of spectral domain reflectometer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115900787A true CN115900787A (en) | 2023-04-04 |
Family
ID=86477946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211606823.XA Pending CN115900787A (en) | 2022-12-14 | 2022-12-14 | Implementation method and system of spectral domain reflectometer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115900787A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116337777A (en) * | 2023-05-29 | 2023-06-27 | 之江实验室 | A wide-band photoacoustic spectroscopy measurement system and method based on a single optical comb |
CN119470345A (en) * | 2024-11-28 | 2025-02-18 | 国网山西省电力公司电力科学研究院 | Device and method for monitoring gas concentration in transformer based on optical interference demodulation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104180833A (en) * | 2014-07-18 | 2014-12-03 | 中国科学院上海光学精密机械研究所 | Optical time domain reflectometer simultaneously sensing temperature and stress |
CN105092014A (en) * | 2015-05-12 | 2015-11-25 | 天津大学 | Distributed fiber sound wave detection apparatus and method based on wave beam formation |
CN106768277A (en) * | 2016-12-29 | 2017-05-31 | 华中科技大学 | A kind of distributed optical fiber vibration sensing device based on coherent phase detection |
CN207036249U (en) * | 2016-12-05 | 2018-02-23 | 华南理工大学 | A kind of highly sensitive distributed optical fiber vibration sensing system |
CN111609918A (en) * | 2020-06-09 | 2020-09-01 | 重庆大学 | Optical Fiber Distributed Vibration Sensing System Based on Envelope Detection Circuit |
CN113390446A (en) * | 2021-06-11 | 2021-09-14 | 南京大学 | Phase-locked phi-OTDR system with high operation efficiency |
-
2022
- 2022-12-14 CN CN202211606823.XA patent/CN115900787A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104180833A (en) * | 2014-07-18 | 2014-12-03 | 中国科学院上海光学精密机械研究所 | Optical time domain reflectometer simultaneously sensing temperature and stress |
CN105092014A (en) * | 2015-05-12 | 2015-11-25 | 天津大学 | Distributed fiber sound wave detection apparatus and method based on wave beam formation |
CN207036249U (en) * | 2016-12-05 | 2018-02-23 | 华南理工大学 | A kind of highly sensitive distributed optical fiber vibration sensing system |
CN106768277A (en) * | 2016-12-29 | 2017-05-31 | 华中科技大学 | A kind of distributed optical fiber vibration sensing device based on coherent phase detection |
CN111609918A (en) * | 2020-06-09 | 2020-09-01 | 重庆大学 | Optical Fiber Distributed Vibration Sensing System Based on Envelope Detection Circuit |
CN113390446A (en) * | 2021-06-11 | 2021-09-14 | 南京大学 | Phase-locked phi-OTDR system with high operation efficiency |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116337777A (en) * | 2023-05-29 | 2023-06-27 | 之江实验室 | A wide-band photoacoustic spectroscopy measurement system and method based on a single optical comb |
CN116337777B (en) * | 2023-05-29 | 2023-08-29 | 之江实验室 | A wide-band photoacoustic spectroscopy measurement system and method based on a single optical comb |
CN119470345A (en) * | 2024-11-28 | 2025-02-18 | 国网山西省电力公司电力科学研究院 | Device and method for monitoring gas concentration in transformer based on optical interference demodulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6698164B2 (en) | Optical frequency domain reflection method and system based on frequency synthesis | |
US8134696B2 (en) | Measuring Brillouin backscatter from an optical fibre using a tracking signal | |
CN100504309C (en) | Brillouin Optical Time Domain Reflectometry Method Based on Fast Fourier Transform | |
CN110646805B (en) | Frequency modulation continuous wave laser ranging system based on virtual sweep frequency light source | |
CN111397851B (en) | OFDR multi-channel optical fiber sensing system and method based on optical frequency comb technology | |
CN103148878B (en) | Based on the Brillouin optical time-domain reflectometer method and apparatus of Synchronous data dispose technology | |
CN112129491B (en) | Optical fiber time delay measurement method and device based on single optical frequency comb interference | |
JP2019525181A (en) | Distributed optical fiber sensing system and vibration detection positioning method thereof | |
JP6893137B2 (en) | Optical fiber vibration detection sensor and its method | |
CN106768277B (en) | A demodulation method for a distributed optical fiber vibration sensing device | |
CN115900787A (en) | Implementation method and system of spectral domain reflectometer | |
CN102047092A (en) | Beam path monitoring device, and beam path monitoring system | |
CN103984184A (en) | Light pulse compression reflecting device | |
CN112683495A (en) | Optical device frequency response measuring method and device with time domain analysis capability | |
CN218120898U (en) | A Phase Distance Measuring Device Based on Dual Electro-optical Heterodyne Modulation | |
CN104776923B (en) | External clock signal frequency oscillation measurement method based on frequency scanning interference | |
CN112798025B (en) | Method for improving OFDR measurement spatial resolution and OFDR system | |
CN211927235U (en) | A OFDR multi-channel optical fiber sensing system based on optical frequency comb technology | |
CN119043388A (en) | Light intensity stepping frequency modulated full-weak grating array demodulation device and method | |
CN106772415B (en) | A phase distance measuring device and a distance measuring method thereof | |
CN112082498A (en) | Noise suppression sensing method for OFDR strain and temperature based on phase measurement method | |
CN117419751A (en) | Time delay interference laser phase noise compensation method and device for optical frequency domain reflection | |
Zhou et al. | Development of a variable and broad speed range all-fiber laser vibration measurement technology | |
JP5207252B2 (en) | Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus | |
CN113607277B (en) | Demodulation method of narrow linewidth laser linewidth measurement system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |