CN115537584B - Method for reinforcing tannin germanium precipitation through ultrasonic and tannic acid modification - Google Patents
Method for reinforcing tannin germanium precipitation through ultrasonic and tannic acid modification Download PDFInfo
- Publication number
- CN115537584B CN115537584B CN202211503839.8A CN202211503839A CN115537584B CN 115537584 B CN115537584 B CN 115537584B CN 202211503839 A CN202211503839 A CN 202211503839A CN 115537584 B CN115537584 B CN 115537584B
- Authority
- CN
- China
- Prior art keywords
- tannin
- germanium
- content
- tannic acid
- precipitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052732 germanium Inorganic materials 0.000 title claims abstract description 138
- 229920001864 tannin Polymers 0.000 title claims abstract description 137
- 239000001648 tannin Substances 0.000 title claims abstract description 137
- 235000018553 tannin Nutrition 0.000 title claims abstract description 137
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 title claims abstract description 131
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 239000001263 FEMA 3042 Substances 0.000 title claims abstract description 62
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 title claims abstract description 62
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 title claims abstract description 62
- 229940033123 tannic acid Drugs 0.000 title claims abstract description 62
- 235000015523 tannic acid Nutrition 0.000 title claims abstract description 62
- 229920002258 tannic acid Polymers 0.000 title claims abstract description 62
- 238000001556 precipitation Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000004048 modification Effects 0.000 title claims abstract description 17
- 238000012986 modification Methods 0.000 title claims abstract description 17
- 230000003014 reinforcing effect Effects 0.000 title 1
- 239000007788 liquid Substances 0.000 claims abstract description 51
- 238000005728 strengthening Methods 0.000 claims abstract description 13
- 239000012141 concentrate Substances 0.000 claims abstract description 11
- 238000004090 dissolution Methods 0.000 claims abstract description 8
- 239000002893 slag Substances 0.000 claims description 48
- 239000011701 zinc Substances 0.000 claims description 31
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 26
- 229910052725 zinc Inorganic materials 0.000 claims description 26
- 239000008235 industrial water Substances 0.000 claims description 23
- 239000007787 solid Substances 0.000 claims description 21
- 238000000746 purification Methods 0.000 claims description 20
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 10
- 239000011268 mixed slurry Substances 0.000 claims description 10
- 239000002002 slurry Substances 0.000 claims description 8
- 238000002386 leaching Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- -1 germanium ions Chemical class 0.000 claims 4
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims 3
- 239000000701 coagulant Substances 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 230000003472 neutralizing effect Effects 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 238000004537 pulping Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 8
- 230000002195 synergetic effect Effects 0.000 abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 6
- 239000001257 hydrogen Substances 0.000 abstract description 6
- 239000000693 micelle Substances 0.000 abstract description 6
- 239000000084 colloidal system Substances 0.000 abstract description 4
- 239000012535 impurity Substances 0.000 abstract description 4
- 238000001179 sorption measurement Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- 238000000605 extraction Methods 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 238000010008 shearing Methods 0.000 abstract 1
- 238000005363 electrowinning Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B41/00—Obtaining germanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Medicines Containing Plant Substances (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种超声协同单宁酸改性强化单宁沉锗的方法,属于稀散金属富集提取技术领域。The invention relates to a method for ultrasonically synergistic tannic acid modification and enhanced tannin precipitation of germanium, which belongs to the technical field of enrichment and extraction of scattered metals.
背景技术Background technique
锗是一种稀缺的、有限的重要战略资源。锗及其化合物因具有较高的红外折射系数、较高的光电转化效率和较低的传输损耗等优点,在国防工业、航空航天和现代通信领域等的价值无可取代。我国主要从含锗氧化锌烟尘中提取锗,主要采用单宁沉锗工艺,由于单宁溶液具有半胶体溶液性质,且单宁溶液中单宁分子间存在氢键或偶极作用,这使单宁半胶体溶液具有缔合作用,影响单宁酸的沉锗作用,单宁酸用量高达锗含量的30倍以上,生产成本高,单宁酸用量高时,会吸附大量杂质,造成制备锗精矿品位低,仅为25%左右。Germanium is a scarce and limited important strategic resource. Germanium and its compounds have irreplaceable value in the defense industry, aerospace and modern communication fields due to their high infrared refraction index, high photoelectric conversion efficiency and low transmission loss. my country mainly extracts germanium from germanium-containing zinc oxide dust, and mainly adopts the tannin sinking germanium process. Because the tannin solution has the property of a semi-colloidal solution, and there are hydrogen bonds or dipole interactions between the tannin molecules in the tannin solution, this makes the single Ning semi-colloidal solution has an association effect, which affects the germanium precipitation of tannic acid. The amount of tannic acid is more than 30 times that of germanium, and the production cost is high. When the amount of tannic acid is high, it will absorb a large amount of impurities, resulting in the preparation of germanium concentrate The ore grade is low, only about 25%.
为了降低单宁酸用量,在梯级超声强化单宁络合沉锗的方法中,通过加入掩蔽剂来降低单宁与杂质离子的反应,通过引入晶种及梯级超声来强化单宁沉锗;单宁酸循环沉锗的方法中,将已沉淀的单宁锗返回用作沉锗晶核,利用两段沉锗实现单宁锗晶核形成及颗粒长大,实现单宁酸高效沉锗。In order to reduce the amount of tannic acid, in the stepwise ultrasonic strengthening method of tannin complexation germanium deposition, the reaction between tannin and impurity ions is reduced by adding a masking agent, and the tannin deposition is strengthened by introducing crystal seeds and stepwise ultrasonic; In the method of cyclic germanium precipitation with nictine acid, the precipitated germanium tannin is returned as a germanium precipitation nucleus, and two-stage germanium precipitation is used to realize the formation of germanium tannin crystal nucleus and particle growth, so as to realize the efficient precipitation of germanium with tannic acid.
目前降低单宁酸主要通过加入晶种方式,对单宁酸胶体性质及改性尚无研究。At present, the reduction of tannic acid is mainly through the addition of seed crystals, and there is no research on the properties and modification of tannic acid colloids.
发明内容Contents of the invention
本发明针对现有技术中存在的单宁酸用量高、沉锗效率低等问题,提出了一种超声协同单宁酸改性强化单宁沉锗的方法,利用超声与解凝剂协同强化大幅度降低单宁酸用量,声化学产生的剪切力足够强,能破坏氢键或偶极作用,降低单宁酸溶解时的胶体吸附作用,同时解凝剂能使单宁酸胶束分散,此外超声波空化气泡破裂后产生的液体微射流,足以使分散胶束发生键断裂,产生活性化学物质,强化单宁沉锗效率。Aiming at the problems of high dosage of tannic acid and low efficiency of germanium precipitation existing in the prior art, the present invention proposes a method for strengthening tannin precipitation of germanium by ultrasonic synergistic tannic acid modification. The amount of tannic acid is greatly reduced, and the shear force generated by sonochemistry is strong enough to destroy hydrogen bonds or dipole interactions, and reduce the colloidal adsorption when tannic acid is dissolved. At the same time, the decoagulant can disperse the tannic acid micelles. In addition, the liquid microjet generated after the ultrasonic cavitation bubbles are broken is enough to break the bonds of the dispersed micelles, generate active chemical substances, and enhance the efficiency of tannin sinking germanium.
一种超声协同单宁酸改性强化单宁沉锗的方法,具体步骤如下:A method for ultrasonically synergistic tannic acid modification and strengthening tannin precipitation of germanium, the specific steps are as follows:
(1)超声条件下,将单宁酸和解凝剂加入到水中溶解形成单宁酸液;(1) Under ultrasonic conditions, add tannic acid and decoagulant to water to dissolve to form tannic acid liquid;
(2)将单宁酸液加入含锗浸出液中进行单宁沉锗,液固分离得到沉锗后液I和单宁渣I;(2) adding the tannin acid solution into the germanium-containing leaching solution to carry out tannin germanium precipitation, liquid-solid separation to obtain germanium-precipitated liquid I and tannin slag I;
(3)单宁渣I加入到工业水进行超声浆化得到混合浆,混合浆与沉锗后液I混合后进行单宁沉锗,液固分离得到沉锗后液II和单宁渣II;(3) Tannin slag I is added to industrial water for ultrasonic slurrying to obtain a mixed slurry, the mixed slurry is mixed with the germanium-precipitated liquid I, and then tannin-precipitated germanium is carried out, and liquid-solid separation is obtained to obtain germanium-precipitated liquid II and tannin slag II;
(4)沉锗后液II直接中和后进行净化电积,单宁渣II经工业水净化,液固分离得到单宁渣III和净化后液;单宁渣III氧化焙烧得到锗精矿,净化后液返回步骤(1)溶解单宁酸和解凝剂。(4) After germanium precipitation, the liquid II is directly neutralized and then purified and electrowinning. The tannin slag II is purified by industrial water, and the liquid and solid are separated to obtain the tannin slag III and the purified liquid; the tannin slag III is oxidized and roasted to obtain the germanium concentrate. After purification, the liquid returns to step (1) to dissolve tannic acid and decoagulant.
所述步骤(1)溶解温度为50~70℃,溶解pH为1~3,超声波强度为0.3~0.6W/cm2,超声频率为16-20kHz,单宁酸浓度为10~20wt.%,解凝剂浓度为0~5wt.%,解凝剂为乙醇、乙酸、甘油或葡萄糖。In the step (1), the dissolution temperature is 50-70°C, the dissolution pH is 1-3, the ultrasonic intensity is 0.3-0.6W/cm 2 , the ultrasonic frequency is 16-20kHz, and the tannic acid concentration is 10-20wt.%. The concentration of the decoagulant is 0~5wt.%, and the decoagulant is ethanol, acetic acid, glycerin or glucose.
所述步骤(2)含锗浸出液中锗含量为50~200mg/L,Fe3+含量为10~50mg/L,锌含量为100~150g/L。In the step (2), the germanium content in the germanium-containing leach solution is 50-200 mg/L, the Fe 3+ content is 10-50 mg/L, and the zinc content is 100-150 g/L.
进一步的,所述步骤(2)含锗浸出液的pH为1~3,单宁酸液中单宁酸为含锗浸出液中锗质量的10~15倍,单宁沉锗的温度为60~70℃,沉锗时间为10~30min。Further, the pH of the germanium-containing leaching solution in the step (2) is 1-3, the tannic acid in the tannic acid solution is 10-15 times the mass of germanium in the germanium-containing leaching solution, and the germanium-depositing temperature of the tannins is 60-70 ℃, germanium sinking time is 10~30min.
更进一步的,所述沉锗后液I的pH值为1~2,温度为60~65℃,沉锗后液I中锗含量为20~80mg/L,Fe3+含量为5~30mg/L,锌含量为99.4~148.4g/L;单宁锗渣I中锌含量为4.53~12.52%,Fe含量为0.60~0.77%,Ge含量为3.63~4.66%。Further, the pH value of the liquid I after germanium sinking is 1~2, the temperature is 60~65°C, the content of germanium in the liquid I after sinking germanium is 20~80 mg/L, and the content of Fe 3+ is 5~30 mg/L. L, the zinc content is 99.4~148.4g/L; the zinc content in tannin germanium slag I is 4.53~12.52%, the Fe content is 0.60~0.77%, and the Ge content is 3.63~4.66%.
所述步骤(3)工业水的pH为4~5,浆化液固质量比为1:1,超声浆化频率为16-20kHz,超声波强度为0.4~0.7W/cm2,浆化温度为50~70℃,浆化pH为1~3。The pH of the industrial water in the step (3) is 4~5, the mass ratio of slurry to liquid is 1:1, the ultrasonic slurry frequency is 16-20kHz, the ultrasonic intensity is 0.4~0.7W/cm 2 , and the slurry temperature is 50~70℃, slurry pH is 1~3.
所述步骤(3)单宁沉锗温度为60~65℃,沉锗时间为20~40min。In the step (3), the germanium-precipitating temperature of the tannins is 60-65° C., and the germanium-precipitating time is 20-40 minutes.
进一步的,所述沉锗后液II的pH值为2~3,温度为55~60℃,沉锗后液II中锗含量为0.01~0.1mg/L,Fe3+含量为1~5mg/L,锌含量为99~148g/L;单宁锗渣II锌含量为14.62~34.82%,Fe含量0.62~1.26%,Ge含量为3.45~5.62%。Further, the pH value of the germanium-precipitated liquid II is 2~3, the temperature is 55-60°C, the germanium content in the germanium-precipitated liquid II is 0.01-0.1 mg/L, and the Fe 3+ content is 1-5 mg/L. L, the zinc content is 99~148g/L; the zinc content of tannin germanium slag II is 14.62~34.82%, the Fe content is 0.62~1.26%, and the Ge content is 3.45~5.62%.
所述步骤(4)净化用工业水与单宁渣II的液固质量比为2~4:1,净化pH值为1~2,净化温度为40~60℃,单宁渣III中锌含量为0.8~1.5%,Fe3+含量0.4~0.8%,Ge含量为5.2~19.4%。In the step (4), the liquid-solid mass ratio of industrial water for purification to tannin slag II is 2-4:1, the purification pH value is 1-2, the purification temperature is 40-60°C, and the zinc content in tannin slag III is 0.8~1.5%, Fe 3+ content 0.4~0.8%, Ge content 5.2~19.4%.
所述步骤(4)净化后液中有效单宁含量为0.5~1%,Zn含量为70.46~86.38g/L,Fe3+含量为0.66~2.80mg/L,Ge含量为0.12~5.44mg/L。The effective tannin content in the purified liquid in the step (4) is 0.5-1%, the Zn content is 70.46-86.38g/L, the Fe 3+ content is 0.66-2.80mg/L, and the Ge content is 0.12-5.44mg/L L.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)针对单宁酸耗量高本质性问题-单宁溶液具有半胶体溶液性质,且单宁溶液中单宁分子间存在氢键或偶极作用,使单宁半胶体溶液具有缔合作用,极大降低单宁酸沉锗效率,本发明提出超声与解凝剂协同强化手段,声化学产生的剪切力足够强,能破坏氢键或偶极作用,降低单宁酸溶解时的胶体吸附作用,同时解凝剂能使单宁酸胶束分散;超声波空化气泡破裂后产生的液体微射流,足以使分散胶束发生键断裂,产生活性化学物质,三重作用下能强化单宁酸的沉锗作用,大幅度降低单宁酸用量;(1) In view of the essential problem of high consumption of tannic acid - tannin solution has the property of semi-colloidal solution, and there are hydrogen bonds or dipole interactions between tannin molecules in the tannin solution, so that the tannin semi-colloid solution has an association effect , greatly reduce the germanium precipitation efficiency of tannic acid, the present invention proposes a means of synergistic strengthening of ultrasound and decoagulant, the shear force generated by sonochemistry is strong enough to destroy hydrogen bonds or dipole interactions, and reduce the colloidal concentration of tannic acid when it dissolves At the same time, the decoagulant can disperse the tannic acid micelles; the liquid microjet generated after the ultrasonic cavitation bubbles are broken is enough to break the bonds of the dispersed micelles and produce active chemical substances, which can strengthen the tannic acid under the triple action The effect of sinking germanium can greatly reduce the dosage of tannic acid;
(2)本发明方法能将单宁酸用量降低50%~66.67%,以单宁酸4.2万/吨计算,每吨锗沉锗成本降低63~84万,同时单宁用量降低,吸附杂质降低,锗精矿品位由现有水平的25%左右提高至47~59%。(2) The method of the present invention can reduce the amount of tannic acid by 50%~66.67%. Calculated at 42,000/ton of tannic acid, the cost of germanium precipitation per ton of germanium is reduced by 630,000~840,000. At the same time, the amount of tannin is reduced and the adsorption of impurities is reduced , the grade of germanium concentrate increased from about 25% of the current level to 47~59%.
附图说明Description of drawings
图1为本发明工艺流程图。Fig. 1 is process flow chart of the present invention.
图2为不加超声和解凝剂条件下所获得单宁锗渣的GPC图;Fig. 2 is the GPC figure of tannin germanium slag obtained under the condition of not adding ultrasonic and decoagulant;
图3为实施例1所获得单宁锗渣III的GPC图。FIG. 3 is a GPC chart of germanium tannin slag III obtained in Example 1.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。The present invention will be described in further detail below in conjunction with specific embodiments, but the protection scope of the present invention is not limited to the content described.
实施例1:一种超声协同单宁酸改性强化单宁沉锗的方法,具体步骤如下:Embodiment 1: A kind of method that ultrasonic synergistic tannic acid modification strengthens tannin precipitation germanium, and specific steps are as follows:
(1)单宁溶解:在温度50℃、超声条件下,将单宁酸和解凝剂(甘油)加入到pH值为1的工业水中溶解5min形成单宁酸液;其中单宁酸液的单宁酸为含锗浸出液中锗质量的10倍,超声功率密度0.3W/cm2,超声频率为16kHz,单宁酸液中单宁酸浓度为10wt.%,解凝剂(甘油)浓度为5wt.%;(1) Tannin dissolution: Add tannic acid and decoagulant (glycerol) into industrial water with a pH value of 1 under ultrasonic conditions at a temperature of 50°C and dissolve for 5 minutes to form a tannic acid solution; Nitric acid is 10 times the mass of germanium in the germanium-containing leaching solution, the ultrasonic power density is 0.3W/cm 2 , the ultrasonic frequency is 16kHz, the concentration of tannic acid in the tannic acid solution is 10wt.%, and the concentration of decoagulant (glycerin) is 5wt .%;
(2)单宁沉锗:将单宁酸液加入含锗浸出液中进行单宁沉锗10min,液固分离得到沉锗后液I和单宁渣I;其中含锗浸出液中锗含量为50mg/L,Fe3+含量为10mg/L,锌含量为100g/L,pH为1,温度为60℃;沉锗后液I中锗含量为20mg/L,Fe3+含量为5mg/L,锌含量为99.4g/L,pH为1,温度为60℃;单宁锗渣I中锌含量为12.52%,Fe含量为0.60%,Ge含量为3.63%;(2) Tannin germanium precipitation: add tannin acid solution to the germanium-containing leaching solution for tannin germanium precipitation for 10 minutes, and liquid-solid separation to obtain germanium-precipitating liquid I and tannin slag I; the germanium content in the germanium-containing leaching solution is 50mg/ L, the content of Fe 3+ is 10mg/L, the content of zinc is 100g/L, the pH is 1, and the temperature is 60°C; The content is 99.4g/L, the pH is 1, and the temperature is 60°C; the zinc content in the germanium tannin slag I is 12.52%, the Fe content is 0.60%, and the Ge content is 3.63%;
(3)单宁渣浆化沉锗:单宁渣I加入到pH值为4的工业水中,在温度60℃下进行超声浆化20min得到混合浆,其中单宁渣I与工业水的固液质量比为1:1,浆化超声频率为16kHz,超声波强度为0.4W/cm2;(3) Tannin slag slurrying germanium precipitation: tannin slag I was added to industrial water with a pH value of 4, and ultrasonically slurried at a temperature of 60°C for 20 minutes to obtain a mixed slurry, in which the solid-liquid mixture of tannin slag I and industrial water The mass ratio is 1:1, the slurry ultrasonic frequency is 16kHz, and the ultrasonic intensity is 0.4W/cm 2 ;
混合浆与沉锗后液I混合后,在温度60℃下进行单宁沉锗20min,液固分离得到沉锗后液II和单宁渣II;沉锗后液II中锗含量为0.01mg/L,Fe3+含量为1mg/L,锌含量为99g/L,pH为2,温度为55℃;单宁锗渣II中锌含量为34.82%,Fe含量0.62%,Ge含量为3.45%;After the mixed slurry is mixed with the germanium-precipitated liquid I, the tannin-precipitated germanium is carried out at a temperature of 60°C for 20 minutes, and the liquid-solid separation is obtained to obtain the germanium-precipitated liquid II and the tannin residue II; the germanium content in the germanium-precipitated liquid II is 0.01mg/ L, the content of Fe 3+ is 1mg/L, the content of zinc is 99g/L, the pH is 2, and the temperature is 55°C; the content of zinc in germanium tannin slag II is 34.82%, the content of Fe is 0.62%, and the content of Ge is 3.45%;
(4)单宁渣净化焙烧:沉锗后液II直接中和后进行净化电积,单宁渣II经工业水净化,液固分离得到单宁渣III和净化后液,其中净化用工业水与单宁渣II的液固质量比为2:1,净化pH为1,净化温度为40℃,单宁渣III中锌含量为0.8%,Fe3+含量0.4%,Ge含量为5.2%;单宁渣III氧化焙烧得到锗精矿,净化后液返回步骤(1)溶解单宁酸和解凝剂;净化后液中有效单宁含量为0.5%,Zn含量为70.46g/L,Fe3+含量为1.78mg/L,Ge含量为0.12mg/L;(4) Purification and roasting of tannin slag: after germanium precipitation, the liquid II is directly neutralized and then purified and electrowinning. The tannin slag II is purified by industrial water, and the liquid and solid are separated to obtain tannin slag III and purified liquid, of which industrial water is used for purification The liquid-solid mass ratio to tannin residue II is 2:1, the purification pH is 1, the purification temperature is 40°C, the zinc content in tannin residue III is 0.8%, the Fe 3+ content is 0.4%, and the Ge content is 5.2%; Tannin slag III is oxidized and roasted to obtain germanium concentrate. After purification, the liquid returns to step (1) to dissolve tannic acid and decoagulant; the effective tannin content in the purified liquid is 0.5%, the Zn content is 70.46g/L, and the Fe 3+ The content is 1.78mg/L, and the Ge content is 0.12mg/L;
不加超声和解凝剂(其他条件不变化)条件下,所获得单宁锗渣的GPC图见图2,本实施例所获得单宁锗渣III的GPC图见图3,从图2可知,不加超声和解凝剂条件下获得单宁锗渣III的数均分子量Mn为3197,分布系数PDI为1.45;本实施例超声和解凝剂(甘油)共同作用下,获得单宁锗渣III的数均分子量Mn为532,分布系数PDI为1.36,证明超声和解凝剂共同作用可降低单宁胶体的缔合作用,形成的单宁锗渣分子量更小,分子量分布更均匀;Under the condition of not adding ultrasound and decoagulant (other conditions do not change), the GPC chart of the obtained tannin germanium slag is shown in Figure 2, and the GPC chart of the tannin germanium slag III obtained in this embodiment is shown in Figure 3, as can be seen from Figure 2, The number-average molecular weight Mn of germanium tannin slag III obtained without adding ultrasound and decoagulant is 3197, and the distribution coefficient PDI is 1.45; The average molecular weight Mn is 532, and the distribution coefficient PDI is 1.36, which proves that the combined action of ultrasound and decoagulant can reduce the association of tannin colloids, and the formed tannin germanium slag has a smaller molecular weight and a more uniform molecular weight distribution;
本实施例所制备锗精矿品位为47.02%。The grade of the germanium concentrate prepared in this example is 47.02%.
实施例2:一种超声协同单宁酸改性强化单宁沉锗的方法,具体步骤如下:Embodiment 2: A kind of method that ultrasonic synergistic tannic acid modification strengthens tannin precipitation germanium, and specific steps are as follows:
(1)单宁溶解:在温度60℃、超声条件下,将单宁酸和解凝剂(乙酸)加入到pH值为2的工业水中溶解10min形成单宁酸液;其中超声功率密度0.5W/cm2,超声频率为18kHz,单宁酸液中单宁酸浓度为15wt.%,解凝剂(乙酸)浓度为0.5wt.%;(1) Tannin dissolution: Add tannic acid and decoagulant (acetic acid) into industrial water with a pH value of 2 under ultrasonic conditions at a temperature of 60°C and dissolve for 10 minutes to form a tannic acid solution; the ultrasonic power density is 0.5W/ cm 2 , the ultrasonic frequency is 18kHz, the concentration of tannic acid in the tannic acid solution is 15wt.%, and the concentration of decoagulant (acetic acid) is 0.5wt.%.
(2)单宁沉锗:将单宁酸液加入含锗浸出液中进行单宁沉锗20min,液固分离得到沉锗后液I和单宁渣I;其中单宁酸液的单宁酸为含锗浸出液中锗质量的12倍,含锗浸出液中锗含量为100mg/L,Fe3+含量为15mg/L,锌含量为120g/L,pH为2,温度为65℃;沉锗后液I中锗含量为30mg/L,Fe3+含量为8mg/L,锌含量为118.9g/L,pH为1.5,温度为62℃;单宁锗渣I中锌含量为8.70%,Fe含量为0.40%,Ge含量为4.08%;(2) Tannin sinking germanium: add tannin acid solution to the germanium-containing leach solution for tannin sinking germanium for 20 minutes, and liquid-solid separation to obtain germanium sinking liquid I and tannin residue I; the tannin acid in the tannin acid solution is The quality of germanium in the germanium-containing leach solution is 12 times, the content of germanium in the leach solution containing germanium is 100mg/L, the content of Fe 3+ is 15mg/L, the content of zinc is 120g/L, the pH is 2, and the temperature is 65°C; The content of germanium in I is 30mg/L, the content of Fe 3+ is 8mg/L, the content of zinc is 118.9g/L, the pH is 1.5, and the temperature is 62°C; the content of zinc in tannin germanium slag I is 8.70%, and the content of Fe is 0.40%, Ge content is 4.08%;
(3)单宁渣浆化沉锗:单宁渣I加入到pH值为4.5的工业水中,在温度60℃下进行超声浆化20min得到混合浆,其中单宁渣I与工业水的固液质量比为1:1,浆化超声频率为18kHz,超声波强度为0.6 W/cm2;(3) Tannin slag slurrying germanium precipitation: tannin slag I was added to industrial water with a pH value of 4.5, and ultrasonically slurried at a temperature of 60°C for 20 minutes to obtain a mixed slurry, in which the solid-liquid mixture of tannin slag I and industrial water The mass ratio is 1:1, the slurry ultrasonic frequency is 18kHz, and the ultrasonic intensity is 0.6 W/cm 2 ;
混合浆与沉锗后液I混合后,在温度62℃下进行单宁沉锗30min,液固分离得到沉锗后液II和单宁渣II;沉锗后液II中锗含量为0.05mg/L,Fe3+含量为2mg/L,锌含量为118.5g/L,pH为2.5,温度为58℃;单宁锗渣II中锌含量为21.09%,Fe含量0.50%,Ge含量为3.82%;After the mixed slurry is mixed with the germanium-precipitated solution I, tannin-precipitated germanium is carried out at a temperature of 62°C for 30 minutes, and liquid-solid separation is obtained to obtain the germanium-precipitated solution II and tannin residue II; the germanium content in the germanium-precipitated solution II is 0.05mg/ L, the content of Fe 3+ is 2mg/L, the content of zinc is 118.5g/L, the pH is 2.5, and the temperature is 58°C; the content of zinc in tannic germanium slag II is 21.09%, the content of Fe is 0.50%, and the content of Ge is 3.82% ;
(4)单宁渣净化焙烧:沉锗后液II直接中和后进行净化电积,单宁渣II经工业水净化,液固分离得到单宁渣III和净化后液,其中净化用工业水与单宁渣II的液固质量比为3:1,净化pH为1.5,净化温度为50℃,单宁渣III中锌含量为1%,Fe3+含量0.6%,Ge含量为7.5%;单宁渣III氧化焙烧得到锗精矿,净化后液返回步骤(1)溶解单宁酸和解凝剂;净化后液中有效单宁含量为0.75%,Zn含量为68.62g/L,Fe3+含量为0.66mg/L,Ge含量为0.13mg/L;(4) Purification and roasting of tannin slag: after germanium precipitation, the liquid II is directly neutralized and then purified and electrowinning. The tannin slag II is purified by industrial water, and the liquid and solid are separated to obtain tannin slag III and purified liquid, of which industrial water is used for purification The liquid-solid mass ratio to tannin residue II is 3:1, the purification pH is 1.5, the purification temperature is 50°C, the zinc content in tannin residue III is 1%, the Fe 3+ content is 0.6%, and the Ge content is 7.5%; Tannin slag III is oxidized and roasted to obtain germanium concentrate, and the purified liquid returns to step (1) to dissolve tannic acid and decoagulant; the effective tannin content in the purified liquid is 0.75%, the Zn content is 68.62g/L, and the Fe 3+ The content is 0.66mg/L, and the Ge content is 0.13mg/L;
本实施例所制备锗精矿品位为50.31%。The grade of the germanium concentrate prepared in this example is 50.31%.
实施例3:一种超声协同单宁酸改性强化单宁沉锗的方法,具体步骤如下:Embodiment 3: A kind of method that ultrasonic synergistic tannic acid modification strengthens tannin precipitation germanium, specific steps are as follows:
(1)单宁溶解:在温度70℃、超声条件下,将单宁酸加入到pH值为3的工业水中溶解20min形成单宁酸液;其中超声功率密度0.6W/cm2,超声频率为20kHz,单宁酸液中单宁酸浓度为20wt.%;(1) Dissolution of tannins: Add tannic acid to industrial water with a pH value of 3 and dissolve for 20 minutes under ultrasonic conditions at a temperature of 70°C to form a tannic acid solution; the ultrasonic power density is 0.6W/cm 2 , and the ultrasonic frequency is 20kHz, the concentration of tannic acid in the tannic acid solution is 20wt.%;
(2)单宁沉锗:将单宁酸液加入含锗浸出液中进行单宁沉锗30min,液固分离得到沉锗后液I和单宁渣I;其中单宁酸液的单宁酸为含锗浸出液中锗质量的15倍,含锗浸出液中锗含量为200mg/L,Fe3+含量为50mg/L,锌含量为150g/L,pH为3,温度为70℃;沉锗后液I中锗含量为80mg/L,Fe3+含量为30mg/L,锌含量为148.4g/L,pH为2,温度为65℃;单宁锗渣I中锌含量为12.52%,Fe含量为0.77%,Ge含量为4.66%;(2) Tannin sinking germanium: add tannin acid solution to the germanium-containing leach solution for tannin sinking germanium for 30 minutes, and liquid-solid separation to obtain germanium sinking liquid I and tannin residue I; the tannin acid in the tannin acid solution is 15 times the quality of germanium in the germanium-containing leach solution, the content of germanium in the leach solution containing germanium is 200mg/L, the content of Fe 3+ is 50mg/L, the content of zinc is 150g/L, the pH is 3, and the temperature is 70°C; The content of germanium in I is 80mg/L, the content of Fe 3+ is 30mg/L, the content of zinc is 148.4g/L, the pH is 2, and the temperature is 65°C; the content of zinc in tannin germanium slag I is 12.52%, and the content of Fe is 0.77%, Ge content is 4.66%;
(3)单宁渣浆化沉锗:单宁渣I加入到pH值为5的工业水中,在温度70℃下进行超声浆化15min得到混合浆,其中单宁渣I与工业水的固液质量比为1:1,浆化超声频率为20kHz,超声波强度为0.7W/cm2;(3) Tannin slag slurrying germanium precipitation: tannin slag I was added to industrial water with a pH value of 5, and ultrasonically slurried at a temperature of 70°C for 15 minutes to obtain a mixed slurry, in which the solid-liquid mixture of tannin slag I and industrial water The mass ratio is 1:1, the slurry ultrasonic frequency is 20kHz, and the ultrasonic intensity is 0.7W/cm 2 ;
混合浆与沉锗后液I混合后,在温度65℃下进行单宁沉锗40min,液固分离得到沉锗后液II和单宁渣II;沉锗后液II中锗含量为0.1mg/L,Fe3+含量为5mg/L,锌含量为148g/L,pH为3,温度为60℃;单宁锗渣II中锌含量为14.62%,Fe含量1.26%,Ge含量为5.62%;After the mixed slurry is mixed with the germanium-precipitated liquid I, the tannin-precipitated germanium is carried out at a temperature of 65°C for 40 minutes, and the liquid-solid separation is obtained to obtain the germanium-precipitated liquid II and the tannin residue II; the germanium content in the germanium-precipitated liquid II is 0.1mg/ L, the content of Fe 3+ is 5mg/L, the content of zinc is 148g/L, the pH is 3, and the temperature is 60°C; the content of zinc in germanium tannin slag II is 14.62%, the content of Fe is 1.26%, and the content of Ge is 5.62%;
(4)单宁渣净化焙烧:沉锗后液II直接中和后进行净化电积,单宁渣II经工业水净化,液固分离得到单宁渣III和净化后液,其中净化用工业水与单宁渣II的液固质量比为4:1,净化pH为2,净化温度为60℃,单宁渣III中锌含量为1.5%,Fe3+含量0.8%,Ge含量为19.4%;单宁渣III氧化焙烧得到锗精矿,净化后液返回步骤(1)溶解单宁酸;净化后液中有效单宁含量为1%,Zn含量为86.38g/L,Fe3+含量为2.80mg/L,Ge含量为5.44mg/L;(4) Purification and roasting of tannin slag: after germanium precipitation, the liquid II is directly neutralized and then purified and electrowinning. The tannin slag II is purified by industrial water, and the liquid and solid are separated to obtain tannin slag III and purified liquid, of which industrial water is used for purification The liquid-solid mass ratio to tannin residue II is 4:1, the purification pH is 2, the purification temperature is 60°C, the zinc content in tannin residue III is 1.5%, the Fe 3+ content is 0.8%, and the Ge content is 19.4%; Tannin slag III is oxidized and roasted to obtain germanium concentrate, and the purified liquid returns to step (1) to dissolve tannic acid; the effective tannin content in the purified liquid is 1%, the Zn content is 86.38g/L, and the Fe 3+ content is 2.80 mg/L, Ge content is 5.44mg/L;
本实施例所制备锗精矿品位为58.86%。The grade of the germanium concentrate prepared in this example is 58.86%.
以上对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。The specific embodiments of the present invention have been described in detail above, but the present invention is not limited to the above embodiments, and various changes can be made without departing from the gist of the present invention within the scope of knowledge possessed by those of ordinary skill in the art .
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211503839.8A CN115537584B (en) | 2022-11-29 | 2022-11-29 | Method for reinforcing tannin germanium precipitation through ultrasonic and tannic acid modification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211503839.8A CN115537584B (en) | 2022-11-29 | 2022-11-29 | Method for reinforcing tannin germanium precipitation through ultrasonic and tannic acid modification |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115537584A CN115537584A (en) | 2022-12-30 |
CN115537584B true CN115537584B (en) | 2023-03-10 |
Family
ID=84722280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211503839.8A Active CN115537584B (en) | 2022-11-29 | 2022-11-29 | Method for reinforcing tannin germanium precipitation through ultrasonic and tannic acid modification |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115537584B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116043039B (en) * | 2023-02-16 | 2024-02-09 | 昆明理工大学 | Method for preparing high-crystallinity germanium concentrate by ultrasonic synergistic purification of tannin germanium slag |
CN118308611A (en) * | 2024-05-15 | 2024-07-09 | 昆明理工大学 | A method for reducing tannin in tannin germanium precipitation process |
CN119144837B (en) * | 2024-11-13 | 2025-03-07 | 昆明理工大学 | Gradient recycling method for germanium, lead, zinc and iron in hard zinc slag |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI882395A0 (en) * | 1987-07-15 | 1988-05-20 | Asturiana De Zinc Sa | Method for recovering germanium from an acidic aqueous solution |
CN106011470A (en) * | 2016-07-04 | 2016-10-12 | 中南大学 | Method of recovering gallium and germanium from oxalate solution containing gallium and germanium |
CN109182787A (en) * | 2018-11-01 | 2019-01-11 | 中南大学 | A method of improving germanium, gallium leaching rate in germanic, gallium material |
RU2689347C1 (en) * | 2018-05-31 | 2019-05-27 | Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) | Method of sorption extraction of rare elements from aqueous solutions |
CN110983046A (en) * | 2019-12-03 | 2020-04-10 | 昆明理工大学 | Method for step ultrasonic strengthening of tannin complexing germanium precipitation |
CN112662898A (en) * | 2020-12-02 | 2021-04-16 | 昆明理工大学 | Method for efficiently extracting germanium from zinc-germanium leaching solution |
CN113355535A (en) * | 2021-06-03 | 2021-09-07 | 昆明理工大学 | Method and device for purifying tannin germanium slag by combining ultrasonic wave with air floatation method |
CN214881768U (en) * | 2021-06-03 | 2021-11-26 | 昆明理工大学 | Device of ultrasonic wave-air floatation method purification tannin germanium sediment |
CN114032397A (en) * | 2021-11-18 | 2022-02-11 | 昆明理工大学 | Method for reducing and leaching germanium-containing soot in ultrasonic-enhanced lead-zinc smelting |
CN114182102A (en) * | 2021-11-10 | 2022-03-15 | 昆明理工大学 | Method for reducing and leaching germanium in germanium-containing zinc oxide smoke by hydrazine sulfate |
CN114672673A (en) * | 2022-03-09 | 2022-06-28 | 昆明理工大学 | A kind of method of tannic acid circulating germanium precipitation |
CN114773410A (en) * | 2022-04-21 | 2022-07-22 | 昆明理工大学 | Method for recovering tannic acid from tannin germanium slag based on ultrasonic outfield |
CN115011801A (en) * | 2022-01-21 | 2022-09-06 | 昆明理工大学 | A method for ultrasonically intensifying germanate leaching in zinc oxide fume |
CN115216651A (en) * | 2022-09-06 | 2022-10-21 | 昆明冶金研究院有限公司 | Method for efficiently recycling zinc and germanium in zinc oxide smoke dust |
CN115354158A (en) * | 2022-08-22 | 2022-11-18 | 昆明理工大学 | Method for degrading germanium-silicon polymer colloid in germanium-containing zinc oxide smoke leaching through dual-frequency ultrasonic synergism |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102127125B (en) * | 2011-01-05 | 2015-10-14 | 中国林业科学研究院林产化学工业研究所 | The modularization preparation of series of purification Weibull multiplexed combination purification technique and products thereof |
CN102250159A (en) * | 2011-04-28 | 2011-11-23 | 贵阳单宁科技有限公司 | Method for extracting and preparing high-purity tannic acid from plant raw material containing tannin |
CN106834695A (en) * | 2017-01-14 | 2017-06-13 | 六盘水中联工贸实业有限公司 | A kind of method that germanium is extracted in the zinc replacement slag from smelting |
-
2022
- 2022-11-29 CN CN202211503839.8A patent/CN115537584B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI882395A0 (en) * | 1987-07-15 | 1988-05-20 | Asturiana De Zinc Sa | Method for recovering germanium from an acidic aqueous solution |
CN106011470A (en) * | 2016-07-04 | 2016-10-12 | 中南大学 | Method of recovering gallium and germanium from oxalate solution containing gallium and germanium |
RU2689347C1 (en) * | 2018-05-31 | 2019-05-27 | Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) | Method of sorption extraction of rare elements from aqueous solutions |
CN109182787A (en) * | 2018-11-01 | 2019-01-11 | 中南大学 | A method of improving germanium, gallium leaching rate in germanic, gallium material |
CN110983046A (en) * | 2019-12-03 | 2020-04-10 | 昆明理工大学 | Method for step ultrasonic strengthening of tannin complexing germanium precipitation |
CN112662898A (en) * | 2020-12-02 | 2021-04-16 | 昆明理工大学 | Method for efficiently extracting germanium from zinc-germanium leaching solution |
CN113355535A (en) * | 2021-06-03 | 2021-09-07 | 昆明理工大学 | Method and device for purifying tannin germanium slag by combining ultrasonic wave with air floatation method |
CN214881768U (en) * | 2021-06-03 | 2021-11-26 | 昆明理工大学 | Device of ultrasonic wave-air floatation method purification tannin germanium sediment |
CN114182102A (en) * | 2021-11-10 | 2022-03-15 | 昆明理工大学 | Method for reducing and leaching germanium in germanium-containing zinc oxide smoke by hydrazine sulfate |
CN114032397A (en) * | 2021-11-18 | 2022-02-11 | 昆明理工大学 | Method for reducing and leaching germanium-containing soot in ultrasonic-enhanced lead-zinc smelting |
CN115011801A (en) * | 2022-01-21 | 2022-09-06 | 昆明理工大学 | A method for ultrasonically intensifying germanate leaching in zinc oxide fume |
CN114672673A (en) * | 2022-03-09 | 2022-06-28 | 昆明理工大学 | A kind of method of tannic acid circulating germanium precipitation |
CN114773410A (en) * | 2022-04-21 | 2022-07-22 | 昆明理工大学 | Method for recovering tannic acid from tannin germanium slag based on ultrasonic outfield |
CN115354158A (en) * | 2022-08-22 | 2022-11-18 | 昆明理工大学 | Method for degrading germanium-silicon polymer colloid in germanium-containing zinc oxide smoke leaching through dual-frequency ultrasonic synergism |
CN115216651A (en) * | 2022-09-06 | 2022-10-21 | 昆明冶金研究院有限公司 | Method for efficiently recycling zinc and germanium in zinc oxide smoke dust |
Non-Patent Citations (1)
Title |
---|
从锌锗浸出液中提取锗的研究进展;杨芳芳;《昆明理工大学学报(自然科学版)》;20210205;第46卷(第1期);9-17 * |
Also Published As
Publication number | Publication date |
---|---|
CN115537584A (en) | 2022-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115537584B (en) | Method for reinforcing tannin germanium precipitation through ultrasonic and tannic acid modification | |
CN112779419B (en) | Method for removing iron, aluminum and silicon from nickel, cobalt, manganese and copper solution under normal pressure | |
CN103276206B (en) | A kind of efficient and stable alkaline thiourea system is used for the method of leaching gold | |
CN105838891A (en) | Method for recovering valuable metals from high-silicon low-germanium and low-indium zinc oxide soot | |
CN105838904B (en) | The method for removing the copper arsenic in material containing zinc sulphur dioxide reduction leachate | |
CN116287733B (en) | A method of ultrasonic synergistically suppressing the adsorption of germanium by lead and alum during the leaching process of zinc oxide fume containing germanium | |
CN116043039B (en) | Method for preparing high-crystallinity germanium concentrate by ultrasonic synergistic purification of tannin germanium slag | |
CN115354158B (en) | Method for cooperatively degrading germanium-silicon polymer colloid in germanium-containing zinc oxide smoke dust leaching by double-frequency ultrasound | |
CN112662878A (en) | Method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag | |
CN107638872A (en) | A kind of flyash/magnetic stalk compound material and preparation method and application | |
CN116065041B (en) | A method for preparing high-grade germanium concentrate by ultrasonic-enhanced segmented pickling and purification of tannic germanium slag | |
CN102534204A (en) | Thiosulfate gold extraction method taking Fe (III) cyanide salts as oxidants | |
CN115109925B (en) | A method for treating transition metal oxide ore using a citric acid system | |
CN112662900A (en) | Method for co-recovering rare earth in leaching mother liquor by coprecipitation acid dissolution and selective precipitation | |
CN116837233A (en) | Method for purifying tannin germanium slag with high efficiency and low cost | |
CN102230086A (en) | Process for simultaneously leaching cobalt and nickel from vulcanized slag | |
CN105755283A (en) | Method for selectively leaching valuable metals in laterite-nickel ore by aid of chloride | |
CN114774719A (en) | A kind of oxalic acid precipitation ion rare earth after the heavy metal recovery oxalate treatment method in the liquid | |
CN115821063A (en) | Method for purifying magnesium from serpentine | |
CN113699389B (en) | A kind of leaching-purification method of rare earth concentrate | |
JPWO2023275375A5 (en) | ||
CN117625956B (en) | An efficient zinc extraction method from zinc baking sand | |
CN115216628B (en) | Method for removing copper and arsenic from copper-arsenic-containing acidic solution | |
CN103710540B (en) | A kind of method preparing manganese sulfate electrolyte | |
CN115612848B (en) | Method for reducing copper content in zinc purification slag by ultrasonic activation of persulfate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |