CN115242331B - Collaborative spectrum sensing optimization method for cognitive radio in virtual power plant - Google Patents
Collaborative spectrum sensing optimization method for cognitive radio in virtual power plant Download PDFInfo
- Publication number
- CN115242331B CN115242331B CN202210871108.2A CN202210871108A CN115242331B CN 115242331 B CN115242331 B CN 115242331B CN 202210871108 A CN202210871108 A CN 202210871108A CN 115242331 B CN115242331 B CN 115242331B
- Authority
- CN
- China
- Prior art keywords
- follows
- expression
- value
- cognitive
- spectrum sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001149 cognitive effect Effects 0.000 title claims abstract description 75
- 238000001228 spectrum Methods 0.000 title claims abstract description 57
- 238000005457 optimization Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000013178 mathematical model Methods 0.000 claims abstract description 32
- 230000002431 foraging effect Effects 0.000 claims abstract description 25
- 241001471424 Manta birostris Species 0.000 claims description 34
- 238000001514 detection method Methods 0.000 claims description 28
- 230000004927 fusion Effects 0.000 claims description 23
- 230000019637 foraging behavior Effects 0.000 claims description 22
- 238000004364 calculation method Methods 0.000 claims description 18
- 238000012360 testing method Methods 0.000 claims description 15
- 241000211181 Manta Species 0.000 claims description 9
- NFGXHKASABOEEW-LDRANXPESA-N methoprene Chemical compound COC(C)(C)CCCC(C)C\C=C\C(\C)=C\C(=O)OC(C)C NFGXHKASABOEEW-LDRANXPESA-N 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 6
- 230000000996 additive effect Effects 0.000 claims description 6
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical group C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 238000005562 fading Methods 0.000 claims description 3
- 238000009827 uniform distribution Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 12
- 238000005516 engineering process Methods 0.000 abstract description 7
- 241001331491 Myliobatis californica Species 0.000 abstract 1
- 238000011161 development Methods 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000021824 exploration behavior Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Economics (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Optimization (AREA)
- Operations Research (AREA)
- General Health & Medical Sciences (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Life Sciences & Earth Sciences (AREA)
- Marketing (AREA)
- Software Systems (AREA)
- Computational Mathematics (AREA)
- Signal Processing (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Quality & Reliability (AREA)
- Evolutionary Biology (AREA)
- Algebra (AREA)
- Development Economics (AREA)
- Databases & Information Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Probability & Statistics with Applications (AREA)
- Primary Health Care (AREA)
- Artificial Intelligence (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及电力通信技术领域,特别是一种虚拟电厂中认知无线电的协作频谱感知优化方法。The present invention relates to the field of electric power communication technology, and in particular to a collaborative spectrum sensing optimization method of cognitive radio in a virtual power plant.
背景技术Background technique
无线电通信频谱在无线通信技术无比发达的今天显得尤为珍贵,且随着无线通信技术的飞快发展,频谱资源贫乏的问题日益严重。虚拟电厂中由于存在分布式能源、电动汽车和储能等设备之间进行大量的数据交换,但分配的电力通信频谱资源有限。Radio communication spectrum is particularly precious today when wireless communication technology is extremely developed. With the rapid development of wireless communication technology, the problem of poor spectrum resources is becoming increasingly serious. In the virtual power plant, a large amount of data is exchanged between distributed energy sources, electric vehicles, energy storage and other equipment, but the allocated power communication spectrum resources are limited.
现有协作频谱感知方法应用于虚拟电厂中是一种常用有效的充分利用频谱资源的方法。例如,中国专利CN103401625A提供一种基于粒子群优化算法的协作频谱感知优化方法,获得较优检测性能的同时减少算法在频谱感知时所耗费的时间;中国专利CN103401626B提出了一种基于遗传算法的协作频谱感知优化方法,采用概率的变迁规则来指导它的搜索方向,这样相较于现有技术,该发明搜索到最优解的可能性有所增加;中国专利CN108900266B公开了一种基于协作节点选取和FCM算法的认知车联网频谱感知方法,基于车辆位置和车辆间相关性动态选取协作车辆,保证频谱感知准确性并节省开销;考虑车辆位置的移动,无需信噪比等先验信息,提高检测性能。然而,上述现有研究多采用较为陈旧的算法,对于复杂问题会陷入局部最优解和收敛速度较慢的问题,且难以将认知无线电引入到虚拟电厂中。The existing cooperative spectrum sensing method applied in virtual power plants is a commonly used and effective method to fully utilize spectrum resources. For example, Chinese patent CN103401625A provides a collaborative spectrum sensing optimization method based on particle swarm optimization algorithm, which can obtain better detection performance while reducing the time spent by the algorithm in spectrum sensing; Chinese patent CN103401626B proposes a collaborative spectrum sensing based on genetic algorithm The spectrum sensing optimization method uses probability transition rules to guide its search direction, so that compared with the existing technology, the possibility of searching for the optimal solution is increased; Chinese patent CN108900266B discloses a method based on collaborative node selection Cognitive Internet of Vehicles spectrum sensing method with FCM algorithm dynamically selects collaborative vehicles based on vehicle position and inter-vehicle correlation to ensure spectrum sensing accuracy and save costs; considering the movement of vehicle positions, no prior information such as signal-to-noise ratio is required, improving Detection performance. However, the above-mentioned existing research mostly uses older algorithms, which will fall into local optimal solutions and slow convergence speed for complex problems, and it is difficult to introduce cognitive radio into virtual power plants.
蝠鲼觅食优化算法MRFO是受蝠鲼觅食的行为而启发。MRFO通过模仿链式、旋风、翻筋斗等主要觅食策略而制定的。但是在某些优化情况下,MRFO算法会陷入局部解,尤其是在复杂和高维问题中。因为每个解决方案都是基于前一个解决方案更新当前位置,降低了算法的收敛速度,并且没有有效地覆盖搜索空间解决方案,导致MRFO算法的过早收敛。GBO算法中的本地转义运算符LEO用于避免陷入局部最优解,也解决了过早收敛,LEO策略更新解决方案遵循稳健的策略,在搜索空间上随机选择解决方案来更新解决方案。The Manta Ray Foraging Optimization Algorithm MRFO is inspired by the foraging behavior of manta rays. MRFO is formulated by imitating major foraging strategies such as chain, whirlwind, and somersault. However, in some optimization situations, the MRFO algorithm will fall into local solutions, especially in complex and high-dimensional problems. Because each solution updates the current position based on the previous solution, the convergence speed of the algorithm is reduced, and the search space solution is not effectively covered, resulting in premature convergence of the MRFO algorithm. The local escape operator LEO in the GBO algorithm is used to avoid falling into the local optimal solution and also solves the premature convergence. The LEO strategy updates the solution following a robust strategy and randomly selects solutions on the search space to update the solution.
发明内容Contents of the invention
本发明的目的是克服现有技术的上述不足而提供一种虚拟电厂中认知无线电的协作频谱感知优化方法,基于改进蝠鲼觅食算法MRFO-GBO的协作频谱感知技术,将认知无线电引入虚拟电厂通信系统,优化融合中心的加权向量,进而提高虚拟电厂中数据通信的效率和可靠性。The purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a cooperative spectrum sensing optimization method for cognitive radio in a virtual power plant. Based on the cooperative spectrum sensing technology of the improved manta ray foraging algorithm MRFO-GBO, cognitive radio is introduced The virtual power plant communication system optimizes the weighted vector of the fusion center, thereby improving the efficiency and reliability of data communication in the virtual power plant.
本发明的技术方案是:虚拟电厂中认知无线电的协作频谱感知优化方法,包括如下步骤,The technical solution of the present invention is: a collaborative spectrum sensing optimization method for cognitive radio in a virtual power plant, which includes the following steps:
步骤1:建立虚拟电厂中认知无线电的协作频谱感知模型。Step 1: Establish a collaborative spectrum sensing model for cognitive radio in virtual power plants.
步骤2:利用改进蝠鲼觅食优化算法优化虚拟电厂中认知无线电的协作频谱感知模型。Step 2: Use the improved manta ray foraging optimization algorithm to optimize the cooperative spectrum sensing model of cognitive radio in the virtual power plant.
步骤3:采用旋风式和链式觅食行为数学模型更新位置。Step 3: Update the position using the mathematical model of cyclone and chain foraging behavior.
步骤4:计算更新位置适应度的最优值及其对应的权重因子值:计算更新位置对应每个蝠鲼的适应度值,比较每两个蝠鲼的适应度值取较小者,再将该较小者与下一个蝠鲼的适应度值作比较,直到找到此时的最优值,以及对应的权重因子值。Step 4: Calculate the optimal value of the fitness value of the updated position and its corresponding weight factor value: calculate the fitness value of each manta ray corresponding to the updated position, compare the fitness values of each two manta rays, whichever is smaller, and then The smaller one is compared with the fitness value of the next manta ray until the optimal value at this time is found, as well as the corresponding weight factor value.
步骤5:引入GBO算法中的本地转义运算符改进蝠鲼觅食优化算法确定数学模型更新位置。Step 5: Introduce the local escape operator in the GBO algorithm to improve the manta ray foraging optimization algorithm and determine the update position of the mathematical model.
步骤6:计算更新位置后的更新最优值及对应的位置:将步骤5得到的更新位置与步骤4中的最优值比较取较小者为更新最优值,以及得到对应的位置。Step 6: Calculate the updated optimal value and the corresponding position after the updated position: Compare the updated position obtained in step 5 with the optimal value in step 4, and take the smaller one as the updated optimal value, and obtain the corresponding position.
步骤7:根据迭代次数和最大迭代次数判断是否达到优化的结果。Step 7: Determine whether the optimization result is achieved based on the number of iterations and the maximum number of iterations.
本发明进一步的技术方案是:所述步骤1具体为,设置虚拟电厂中将本地感知的统计数据发送到融合中心的能源设备为认知用户,设置共存在M个认知用户。A further technical solution of the present invention is that step 1 specifically includes setting the energy equipment in the virtual power plant that sends local sensing statistical data to the fusion center as a cognitive user, and setting a total of M cognitive users.
设置固定有特定频段且具有协作感知优先权的能源设备为主用户,非固定特定频段或没有协作感知优先权的能源设备为次要用户;虚拟电厂中认知无线电的协作频谱感知框架包括M个认知用户和融合中心;则第k时刻第m个认知用户接收到的频谱感知信号gm(k)的二元假设检验表达式为:Energy equipment with a fixed specific frequency band and cooperative sensing priority is set as the primary user, and energy equipment with a non-fixed specific frequency band or without cooperative sensing priority is set as the secondary user; the cooperative spectrum sensing framework of cognitive radio in the virtual power plant includes M Cognitive user and fusion center; then the binary hypothesis test expression of the spectrum sensing signal g m (k) received by the m cognitive user at the kth moment is:
其中,s(k)是主用户发出的信号,该信号的能量大小为hm是主用户和第m个认知用户之间的信道增益,它受到信道阴影、信道损失和衰落等的影响,其向量表达式为h=[|h1|2,|h2|2,...,|hM|2]Τ;am(k)是认知用户在感知主用户时的加性高斯白噪声,其均值为0、方差为/>H0表示不存在主用户,H1表示存在主用户。Among them, s(k) is the signal sent by the main user, and the energy of the signal is h m is the channel gain between the main user and the mth cognitive user. It is affected by channel shadow, channel loss and fading, etc. Its vector expression is h=[|h 1 | 2 ,|h 2 | 2 ,...,|h M | 2 ] Τ ; a m (k) is the additive Gaussian white noise when the cognitive user perceives the main user, with a mean of 0 and a variance of/> H 0 indicates that there is no main user, and H 1 indicates that there is a main user.
对于每个认知用户,其感知主用户N次的样本检测接收信号能量的汇总作为总统计量um,具体表达式如下所示:For each cognitive user, the summary of the energy of the sample detection received signal of the primary user N times is used as the presidential metric um . The specific expression is as follows:
因此,第m个认知用户本地信噪比Rm的表达式如下:Therefore, the expression of the local signal-to-noise ratio R m of the mth cognitive user is as follows:
为了实现多个认知用户之间的合作,um通过专用控制信道传输到融合中心,在融合中心得到的第m个认知用户感知的输出信号ym的表达式如下:In order to realize cooperation among multiple cognitive users, u m is transmitted to the fusion center through a dedicated control channel. The expression of the output signal y m perceived by the mth cognitive user obtained at the fusion center is as follows:
ym=um+nm, m=1,2,...,M (4)ym=um+nm, m=1,2,...,M (4)
其中,nm是由认知用户将感知信息发往融合中心的加性高斯白噪声,其均值为0、方差为方差以向量的形式表达Among them, n m is the additive Gaussian white noise sent by the cognitive user to the fusion center, with a mean value of 0 and a variance of The variance is expressed as a vector
从而得到此时全局测试统计量yfc的表达式如下:Thus, the expression of the global test statistic y fc at this time is obtained as follows:
其中,x为融合中心给各认知用户统计量所分配的权重因子,具体表达式为x=[x1,x2,...,xM]T,并且有y=[y1,y2,...,yM]T。Among them, x is the weight factor assigned by the fusion center to each cognitive user statistics. The specific expression is x=[x 1 ,x 2 ,...,x M ] T , and y=[y 1 , y 2 ,...,y M ] T .
全局测试统计量yfc在H0情况下的方差计算结果如下:The calculation results of the variance of the global test statistic y fc in the case of H 0 are as follows:
其中, in,
全局测试统计量yfc在H1情况下的方差计算结果如下:The variance calculation results of the global test statistic y fc in the H 1 case are as follows:
其中,ζ=2Ndiag2(σ)+diag(δ)+4Esdiag(h)diag(σ)。Among them, ζ = 2Ndiag 2 (σ) + diag (δ) + 4E s diag (h) diag (σ).
设有阈值γfc,用于将全局测试统计量yfc与融合中心收到的能量信号大小比较,进而判断是否存在主用户发送信号,若能量信号大于阈值则判断主用户发送信号,否则没有。There is a threshold γ fc , which is used to compare the global test statistic y fc with the energy signal size received by the fusion center, and then determine whether there is a signal sent by the main user. If the energy signal is greater than the threshold, it is judged that the main user sends a signal, otherwise there is no signal.
从而,协作频谱感知中虚警概率的表达式如下所示:Therefore, the expression of false alarm probability in cooperative spectrum sensing is as follows:
其中, in,
协作频谱感知中检测概率的表达式如下所示:The expression of detection probability in cooperative spectrum sensing is as follows:
由公式(8)中Pf的表达式得到阈值γfc的表达式为:From the expression of P f in formula (8), the expression of threshold γ fc is:
将公式(10)代入公式(9)得到:Substituting formula (10) into formula (9) we get:
从公式(11)中能够得到,当Pf给定时,通过优化x即可得到Pd的最大值;因此得到虚拟电厂中认知无线电的协作频谱感知模型的相关目标函数和约束条件如下所示:It can be seen from formula (11) that when P f is given, the maximum value of P d can be obtained by optimizing x; therefore, the relevant objective functions and constraints of the cooperative spectrum sensing model of cognitive radio in the virtual power plant are as follows: :
考虑到公式(11)中的Q函数是一个单调递减的函数,则最大化Pd相当于公式(12)最小化f(x),以此找到最优权重向量。Considering that the Q function in formula (11) is a monotonically decreasing function, maximizing P d is equivalent to minimizing f(x) in formula (12) to find the optimal weight vector.
本发明再进一步的技术方案是:所述步骤2具体包括,步骤2-1,初始化改进蝠鲼觅食优化算法的参数:设置最大迭代次数为MaxIt;当前迭代次数t=1,随机产生N个蝠鲼作为初始值,记蝠鲼n的初始值为xn=[xn1,xn2,...,xnM],n=1,2,...,N,并须满足约束条件 A further technical solution of the present invention is: the step 2 specifically includes, step 2-1, initializing the parameters of the improved manta ray foraging optimization algorithm: setting the maximum number of iterations to MaxIt; the current number of iterations t=1, randomly generating N Manta ray is used as the initial value. The initial value of manta ray n is x n = [x n1 , x n2 ,..., x nM ], n = 1, 2,..., N, and must satisfy the constraints.
步骤2-2,计算适应度的最优值及其对应的权重因子值:通过比较的方式比较每两个蝠鲼的适应度值取较小者,再将该较小者与下一个蝠鲼的适应度值作比较,直到找到此时的最优值,以及对应的权重因子值。Step 2-2: Calculate the optimal value of fitness and its corresponding weight factor value: compare the fitness values of each two manta rays to choose the smaller one, and then compare the smaller one with the next manta ray Compare the fitness values until the optimal value at this time is found, as well as the corresponding weight factor value.
本发明更进一步的技术方案是:所述步骤3具体包括,设有随机数rand,其值在0~1之间;若rand<0.5,则根据旋风式觅食行为数学模型更新位置;否则,根据链式觅食行为数学模型更新位置。A further technical solution of the present invention is: the step 3 specifically includes setting a random number rand with a value between 0 and 1; if rand < 0.5, update the position according to the mathematical model of whirlwind foraging behavior; otherwise, Update positions based on a mathematical model of chain foraging behavior.
所述根据旋风式觅食行为数学模型更新位置包括:The updating of the position according to the mathematical model of whirlwind foraging behavior includes:
设coef=t/MaxIt,当coef<rand时,选择搜索空间中随机生成的位置作为探索最优解的参考位置;当coef>rand时,选择当前最佳解决方案对应的权重因子值作为探索最优解的参考位置。Suppose coef=t/MaxIt. When coef<rand, select a randomly generated position in the search space as the reference position to explore the optimal solution; when coef>rand, select the weight factor value corresponding to the current best solution as the reference position to explore the optimal solution. The reference position of the optimal solution.
当coef<rand时,旋风式觅食行为的数学模型如下:When coef<rand, the mathematical model of whirlwind foraging behavior is as follows:
其中,xn,m(t)是第n个蝠鲼在第t次迭代中第m个认知用户的位置,是在搜索空间中随机产生的一个随机位置,/>r是(0,1)范围内的随机向量;Ubm和Lbm分别是在第m个认知用户的上限和下限,在协作频谱感知模型下Ubm=1,Lbm=0;β是权重系数,/>其中r1是(0,1)中的随机数。where xn,m (t) is the position of the mth user recognized by the nth manta ray in the tth iteration, is a random position randomly generated in the search space,/> r is a random vector in the range of (0,1); Ub m and Lb m are the upper and lower limits of the mth cognitive user, respectively. In the cooperative spectrum sensing model, Ub m = 1, Lb m = 0; β is a weight coefficient, /> Where r1 is a random number in (0, 1).
当coef>rand时,旋风式觅食行为的数学模型如下:When coef>rand, the mathematical model of whirlwind foraging behavior is as follows:
其中,是第t次迭代高浓度浮游生物的位置,选择当前最佳解决方案BestF对应的权重因子值BestX作为探索最优解的参考位置。in, is the position of the high concentration of plankton in the t-th iteration, and the weight factor value BestX corresponding to the current best solution BestF is selected as the reference position for exploring the optimal solution.
所述根据链式觅食行为数学模型更新位置利用如下公式进行模型更新:The updated position according to the mathematical model of chain foraging behavior uses the following formula to update the model:
其中,α是权重系数, Among them, α is the weight coefficient,
本发明更进一步的技术方案是:所述步骤5具体包括,设置概率参数pr=0.5,若rand<pr,则采用GBO算法中的本地转义运算符更新位置;否则,根据翻筋斗觅食数学模型更新位置。A further technical solution of the present invention is: the step 5 specifically includes setting the probability parameter pr=0.5. If rand<pr, the local escape operator in the GBO algorithm is used to update the position; otherwise, the position is updated according to the mathematics of somersault foraging. Model update position.
所述采用GBO算法中的本地转义运算符更新位置包括:The use of the local escape operator in the GBO algorithm to update the location includes:
根据最优值及对应的权重因子值的梯度指定的方向更新每个代理位置;为了保证重要搜索空间区域的探索与接近最优点和全局点之间的平衡,重要参数ρ1表达式如下:Each agent position is updated according to the direction specified by the gradient of the optimal value and the corresponding weight factor value; in order to ensure the balance between exploration of important search space areas and close to the optimal point and the global point, the important parameter ρ 1 is expressed as follows:
其中,γmin和γmax分别为0.2和1.2,t是迭代次数,MaxIt是最大迭代次数,梯度搜索规则的计算公式如下:Among them, γ min and γ max are 0.2 and 1.2 respectively, t is the number of iterations, MaxIt is the maximum number of iterations, and the calculation formula of the gradient search rule is as follows:
其中,Δx为当前最优位置xbest和随机位置之间的步长,参数θ用于确保Δx随迭代次数改变,计算表达式如下:Among them, Δx is the current optimal position x best and the random position The step size between, parameter θ is used to ensure that Δx changes with the number of iterations, the calculation expression is as follows:
其中,rand(1:N)是一个N维的随机数,r1,r2,r3和r4(r1≠r2≠r3≠r4≠n)是从(1,N)中随机选择的不同整数,step是步长,与xbest和相关,/>是随着/>更新生成的新向量,位置/>在搜索空间中由梯度搜索规则和移动方向指定的随机点创建,移动方向是指当前向量xn在xbest-xn方向上移动,移动方向DM的表达式如下:Among them, rand(1:N) is an N-dimensional random number, r1, r2, r3 and r4 (r1≠r2≠r3≠r4≠n) are different integers randomly selected from (1,N), and step is step size, with x best and Related,/> is following/> Update the new vector generated, position/> Random points are created in the search space specified by the gradient search rule and the moving direction. The moving direction refers to the current vector x n moving in the x best -x n direction. The expression of the moving direction DM is as follows:
DM=rand·ρ1(xbest-xn) (20)DM=rand·ρ 1 (x best -x n ) (20)
因此得到:So we get:
其中,ypn=yn+Δx,yqn=yn-Δx;yn是zn+1和xn的平均值,zn+1表达式如下:Among them, yp n =y n +Δx, yq n =y n -Δx; y n is the average value of z n+1 and x n , and the expression of z n+1 is as follows:
其中,xn为当前解向量,randn为维度为n的随机解向量,xworst和xbest分别为当下最差和最好的解,通过将对应公式中的当前向量/>替换为最佳向量的位置xbest,新向量表示如下:Among them, x n is the current solution vector, randn is a random solution vector with dimension n, x worst and x best are the current worst and best solutions respectively. By Corresponds to the current vector in the formula/> Replace with the position of the best vector x best , the new vector Expressed as follows:
下一次迭代中的新位置更新公式如下:The new position update formula in the next iteration is as follows:
其中,ra和rb是(0,1)之间的随机数,的的计算公式如下:Among them, r a and r b are random numbers between (0,1), The calculation formula is as follows:
LEO的数学表达式为:The mathematical expression of LEO is:
其中,f1是(-1,1)范围内服从均匀分布的随机数;f2是服从正态分布的随机数,均值为0,标准差为1;u1、u2和u3是三个随机数,为了平衡全局探索和局部探索,其参数设置如下: 的表达式为:/>且xrand=Lbm+rand(0,1)·(Ubm-Lbm),/>是随机选择的总体解(p∈[1,2,...,N]),μ2是(0,1)范围内的随机数。Among them, f 1 is a random number obeying a uniform distribution within the range of (-1, 1); f 2 is a random number obeying a normal distribution, with a mean of 0 and a standard deviation of 1; u 1 , u 2 and u 3 are three random number. In order to balance global exploration and local exploration, its parameters are set as follows: The expression is:/> And x rand =Lb m +rand(0,1)·(Ub m -Lb m ),/> is the randomly selected overall solution (p∈[1,2,...,N]), and μ 2 is a random number in the range of (0,1).
所述根据翻筋斗觅食数学模型更新位置利用如下公式进行模型更新:The updating position according to the somersault foraging mathematical model is performed by using the following formula to update the model:
其中,S是决定蝠鲼空翻范围的空翻系数,S=2;r2和r3是(0,1)中的两个随机数。Among them, S is the somersault coefficient that determines the manta ray's somersault range, S=2; r 2 and r 3 are two random numbers in (0,1).
本发明更进一步的技术方案是:所述步骤7具体包括,判断迭代次数t是否达到最大迭代次数MaxIt,若达到,则计算并输出检测概率Pd;否则,迭代次数t=t+1,重复步骤2~7直至达到最大迭代次数MaxIt。A further technical solution of the present invention is: the step 7 specifically includes judging whether the number of iterations t reaches the maximum number of iterations MaxIt. If it reaches the maximum number of iterations, calculate and output the detection probability Pd ; otherwise, the number of iterations t=t+1, repeat Steps 2 to 7 until the maximum number of iterations MaxIt is reached.
本发明与现有技术相比具有如下特点:Compared with the prior art, the present invention has the following characteristics:
(1)本发明在现有虚拟电厂中引入认知无线电技术,在促进电力系统的可持续发展、保证电力系统的安全稳定运行的同时,能够有效提升虚拟电厂中大量采集、监测和控制数据的通信质量以及其调度优化管理水平。(1) The present invention introduces cognitive radio technology into the existing virtual power plant, which can effectively improve the communication quality of a large amount of data collected, monitored and controlled in the virtual power plant and its scheduling optimization management level while promoting the sustainable development of the power system and ensuring the safe and stable operation of the power system.
(2)本发明通过采用改进的MRFO算法减少了计算成本、提高了计算准确性,减少了电力系统中断概率,从而能够降低经济损失,降低通信成本。(2) By using the improved MRFO algorithm, the present invention reduces calculation costs, improves calculation accuracy, and reduces the probability of power system interruption, thereby reducing economic losses and reducing communication costs.
(3)本发明通过采用改进的MRFO算法优化融合中心的加权向量,最大化了检测概率,进而降低了误报概率,提高了频谱利用率以及虚拟电厂中数据通信的可靠性和效率。(3) The present invention optimizes the weighted vector of the fusion center by adopting an improved MRFO algorithm, thereby maximizing the detection probability, thereby reducing the false alarm probability, and improving the spectrum utilization as well as the reliability and efficiency of data communication in the virtual power plant.
以下结合附图和具体实施方式对本发明的详细结构作进一步描述。The detailed structure of the present invention is further described below in conjunction with the accompanying drawings and specific implementation methods.
附图说明Description of drawings
附图1为本发明的协作频谱感知优化方法流程图;Figure 1 is a flow chart of the cooperative spectrum sensing optimization method of the present invention;
附图2为本发明建立协作频谱感知模型的示意图;FIG2 is a schematic diagram of establishing a collaborative spectrum sensing model according to the present invention;
附图3为本发明具体的协作频谱感知优化方法算法流程图;Figure 3 is a specific algorithm flow chart of the cooperative spectrum sensing optimization method of the present invention;
附图4为本发明方法与其他算法在不同迭代速度下的检测概率;Figure 4 shows the detection probabilities of the method of the present invention and other algorithms at different iteration speeds;
附图5为本发明方法与其他算法在不同虚警概率下的检测概率;Figure 5 shows the detection probabilities of the method of the present invention and other algorithms under different false alarm probabilities;
附图6为本发明方法与蝠鲼觅食优化算法在不同数量认知用户下的检测概率;FIG6 shows the detection probability of the method of the present invention and the manta ray foraging optimization algorithm under different numbers of cognitive users;
附图7为本发明方法与蝠鲼觅食优化算法在不同信噪比下的检测概率。Figure 7 shows the detection probabilities of the method of the present invention and the manta ray foraging optimization algorithm under different signal-to-noise ratios.
具体实施方式Detailed ways
实施例,如附图1所示,一种虚拟电厂中认知无线电的协作频谱感知优化方法,包括如下步骤:Embodiment, as shown in Figure 1, a collaborative spectrum sensing optimization method for cognitive radio in a virtual power plant includes the following steps:
步骤1:建立虚拟电厂中认知无线电的协作频谱感知模型。Step 1: Establish a collaborative spectrum sensing model for cognitive radio in the virtual power plant.
设置虚拟电厂中将本地感知的统计数据发送到融合中心的能源设备为认知用户,所述能源设备包括光伏发电、电动汽车、储能、风力发电等,本实施例中设置共存在M个认知用户。The energy equipment that sends local sensing statistical data to the fusion center in the virtual power plant is set as a cognitive user. The energy equipment includes photovoltaic power generation, electric vehicles, energy storage, wind power generation, etc. In this embodiment, a total of M cognitive users are set. Know the user.
设置固定有特定频段且具有协作感知优先权的能源设备为主用户,非固定特定频段或没有协作感知优先权的能源设备为次要用户。认知无线电网络的基础是频谱感知,高质量的频谱感知能力是实现频谱接入管理和频谱分配的前提。虚拟电厂中认知无线电的协作频谱感知框架包括M个认知用户和融合中心。则第k时刻第m个认知用户接收到的频谱感知信号gm(k)的二元假设检验表达式为:Set energy devices with fixed specific frequency bands and cooperative sensing priorities as primary users, and energy devices with non-fixed specific frequency bands or without cooperative sensing priorities as secondary users. The basis of cognitive radio networks is spectrum sensing, and high-quality spectrum sensing capabilities are the prerequisite for spectrum access management and spectrum allocation. The cooperative spectrum sensing framework of cognitive radio in virtual power plant includes M cognitive users and fusion center. Then the binary hypothesis test expression of the spectrum sensing signal g m (k) received by the m cognitive user at the k time is:
其中,s(k)是主用户发出的信号,该信号的能量大小为hm是主用户和第m个认知用户之间的信道增益,它受到信道阴影、信道损失和衰落等的影响,其向量表达式为h=[|h1|2,|h2|2,...,|hM|2]Τ;am(k)是认知用户在感知主用户时的加性高斯白噪声,其均值为0、方差为/>H0表示不存在主用户,H1表示存在主用户。Among them, s(k) is the signal sent by the primary user, and the energy of the signal is h m is the channel gain between the primary user and the mth cognitive user, which is affected by channel shadowing, channel loss and fading, and its vector expression is h = [|h 1 | 2 ,|h 2 | 2 ,...,|h M | 2 ] Τ ; a m (k) is the additive Gaussian white noise of the cognitive user when perceiving the primary user, with a mean of 0 and a variance of/> H 0 means that there is no primary user, and H 1 means that there is a primary user.
对于每个认知用户,其感知主用户N次的样本检测接收信号能量的汇总作为总统计量um,具体表达式如下所示:For each cognitive user, the summary of the energy of the sample detection received signal of the primary user N times is used as the presidential metric um . The specific expression is as follows:
因此,第m个认知用户本地信噪比Rm的表达式如下:Therefore, the expression of the local signal-to-noise ratio R m of the mth cognitive user is as follows:
为了实现多个认知用户之间的合作,um通过专用控制信道传输到融合中心,在融合中心得到的第m个认知用户感知的输出信号ym的表达式如下:In order to realize cooperation among multiple cognitive users, u m is transmitted to the fusion center through a dedicated control channel. The expression of the output signal y m perceived by the mth cognitive user obtained at the fusion center is as follows:
ym=um+nm, m=1,2,...,M (4)y m = um +n m , m=1,2,...,M (4)
其中,nm是由认知用户将感知信息发往融合中心的加性高斯白噪声,其均值为0、方差为方差以向量的形式表达Among them, n m is the additive Gaussian white noise sent by the cognitive user to the fusion center, with a mean value of 0 and a variance of The variance is expressed as a vector
从而得到此时全局测试统计量yfc的表达式如下:Thus, the expression of the global test statistic y fc at this time is obtained as follows:
其中,x为融合中心给各认知用户统计量所分配的权重因子,具体表达式为x=[x1,x2,...,xM]T,并且有y=[y1,y2,...,yM]T。权重向量的大小体现了某一认知用户的信号对全局决策做出的贡献。Among them, x is the weight factor assigned by the fusion center to each cognitive user statistics. The specific expression is x=[x 1 ,x 2 ,...,x M ] T , and y=[y 1 , y 2 ,...,y M ] T . The size of the weight vector reflects the contribution of a certain cognitive user's signal to the global decision-making.
全局测试统计量yfc在H0情况下的方差计算结果如下:The calculation results of the variance of the global test statistic y fc in the case of H 0 are as follows:
其中, in,
全局测试统计量yfc在H1情况下的方差计算结果如下:The variance calculation result of the global test statistic y fc in the H 1 case is as follows:
其中,ζ=2Ndiag2(σ)+diag(δ)+4Esdiag(h)diag(σ)。Among them, ζ = 2Ndiag 2 (σ) + diag (δ) + 4E s diag (h) diag (σ).
设有阈值γfc,用于将全局测试统计量yfc与融合中心收到的能量信号大小比较,进而判断是否存在主用户发送信号,若能量信号大于阈值则判断主用户发送信号,否则没有。There is a threshold γ fc , which is used to compare the global test statistic y fc with the energy signal size received by the fusion center, and then determine whether there is a signal sent by the main user. If the energy signal is greater than the threshold, it is judged that the main user sends a signal, otherwise there is no signal.
从而,协作频谱感知中虚警概率的表达式如下所示:Therefore, the expression of false alarm probability in cooperative spectrum sensing is as follows:
其中, in,
协作频谱感知中检测概率的表达式如下所示:The expression of detection probability in cooperative spectrum sensing is as follows:
由公式(8)中Pf的表达式得到阈值γfc的表达式为:From the expression of P f in formula (8), the expression of threshold γ fc is:
将公式(10)代入公式(9)得到:Substituting formula (10) into formula (9) we get:
从公式(11)中能够得到,当Pf给定时,通过优化x即可得到Pd的最大值。因此得到虚拟电厂中认知无线电的协作频谱感知模型的相关目标函数和约束条件如下所示:It can be seen from formula (11) that when P f is given, the maximum value of P d can be obtained by optimizing x. Therefore, the relevant objective functions and constraints of the cooperative spectrum sensing model of cognitive radio in virtual power plants are obtained as follows:
考虑到公式(11)中的Q函数是一个单调递减的函数,则最大化Pd相当于公式(12)最小化f(x),以此找到最优权重向量。Considering that the Q function in formula (11) is a monotonically decreasing function, maximizing P d is equivalent to minimizing f(x) in formula (12) to find the optimal weight vector.
步骤2:利用改进蝠鲼觅食优化算法(MRFO-GBO)优化虚拟电厂中认知无线电的协作频谱感知模型。Step 2: Use the improved manta ray foraging optimization algorithm (MRFO-GBO) to optimize the collaborative spectrum sensing model of cognitive radio in virtual power plants.
步骤2-1,初始化改进蝠鲼觅食优化算法(MRFO-GBO)的参数:设置最大迭代次数为MaxIt;当前迭代次数t=1,随机产生N个蝠鲼作为初始值,记蝠鲼n的初始值为xn=[xn1,xn2,...,xnM],n=1,2,...,N,并须满足约束条件 Step 2-1, initialize the parameters of the improved manta ray foraging optimization algorithm (MRFO-GBO): set the maximum number of iterations to MaxIt; the current iteration number t = 1, randomly generate N manta rays as the initial value, and record the initial value of manta ray n as xn = [ xn1 , xn2 , ..., xnM ], n = 1, 2, ..., N, and must satisfy the constraints
步骤2-2,计算适应度的最优值BestF及其对应的权重因子值BestX:通过比较的方式比较每两个蝠鲼的适应度值取较小者,再将该较小者与下一个蝠鲼的适应度值作比较,直到找到此时的最优值BestF,以及对应的权重因子值BestX。Step 2-2, calculate the optimal value of fitness BestF and its corresponding weight factor value BestX: Compare the fitness values of each two manta rays by comparing the smaller one, and then compare the smaller one with the next one The fitness values of the manta ray are compared until the optimal value BestF at this time is found, as well as the corresponding weight factor value BestX.
步骤3:采用旋风式和链式觅食行为数学模型更新位置:设有随机数rand,其值在0~1之间;若rand<0.5,则根据旋风式觅食行为数学模型更新位置;否则,根据链式觅食行为数学模型更新位置。Step 3: Use the mathematical model of whirlwind and chain foraging behavior to update the position: there is a random number rand, whose value is between 0 and 1; if rand < 0.5, update the position according to the mathematical model of whirlwind foraging behavior; otherwise , update the position according to the mathematical model of chain foraging behavior.
所述根据旋风式觅食行为数学模型更新位置包括:The updating of the position according to the mathematical model of whirlwind foraging behavior includes:
设coef=t/MaxIt,当coef<rand时,选择搜索空间中随机生成的位置作为探索最优解的参考位置;当coef>rand时,选择当前最佳解决方案BestF对应的权重因子值BestX作为探索最优解的参考位置;Let coef=t/MaxIt. When coef<rand, select a randomly generated position in the search space as the reference position to explore the optimal solution; when coef>rand, select the weight factor value BestX corresponding to the current best solution BestF as Explore the reference position of the optimal solution;
当coef<rand时,旋风式觅食行为的数学模型如下:When coef<rand, the mathematical model of whirlwind foraging behavior is as follows:
其中,xn,m(t)是第n个蝠鲼在第t次迭代中第m个认知用户的位置,是在搜索空间中随机产生的一个随机位置,/>r是(0,1)范围内的随机向量;Ubm和Lbm分别是在第m个认知用户的上限和下限,在协作频谱感知模型下Ubm=1,Lbm=0;β是权重系数,/>其中r1是(0,1)中的随机数。Among them, x n,m (t) is the position of the n-th manta ray in the t-th iteration of the m-th cognitive user, is a random position randomly generated in the search space,/> r is a random vector in the range of (0,1); Ub m and Lb m are the upper and lower limits of the mth cognitive user respectively. Under the cooperative spectrum sensing model, Ub m =1, Lb m =0; β is Weight coefficient,/> where r 1 is a random number in (0, 1).
当coef>rand时,旋风式觅食行为的数学模型如下:When coef>rand, the mathematical model of whirlwind foraging behavior is as follows:
其中,是第t次迭代高浓度浮游生物的位置,选择当前最佳解决方案BestF对应的权重因子值BestX作为探索最优解的参考位置。in, is the position of the high concentration of plankton in the t-th iteration, and the weight factor value BestX corresponding to the current best solution BestF is selected as the reference position for exploring the optimal solution.
所述根据链式觅食行为数学模型更新位置利用如下公式进行模型更新:The chain foraging behavior mathematical model is used to update the position using the following formula to update the model:
其中,α是权重系数, Among them, α is the weight coefficient,
步骤4:计算更新位置适应度的最优值newPopF及其对应的权重因子值newPopP。计算更新位置对应每个蝠鲼的适应度值,比较每两个蝠鲼的适应度值取较小者,再将该较小者与下一个蝠鲼的适应度值作比较,直到找到此时的最优值newPopF,以及对应的权重因子值newPopP。Step 4: Calculate the optimal value newPopF of the updated position fitness and its corresponding weight factor value newPopP. Calculate the fitness value of each manta ray corresponding to the updated position, compare the fitness values of every two manta rays and take the smaller one, then compare the smaller one with the fitness value of the next manta ray, until the optimal value newPopF and the corresponding weight factor value newPopP are found.
步骤5:引入GBO算法中的本地转义运算符(Local Escaping,LEO)改进蝠鲼觅食优化算法MRFO确定数学模型更新位置。Step 5: Introduce the local escaping operator (LEO) in the GBO algorithm to improve the manta ray foraging optimization algorithm MRFO to determine the mathematical model update position.
设置概率参数pr=0.5,若rand<pr,则采用GBO算法中的本地转义运算符(LocalEscaping,LEO)更新位置;否则,根据翻筋斗觅食数学模型更新位置。Set the probability parameter pr = 0.5. If rand < pr, the local escape operator (LEO) in the GBO algorithm is used to update the position; otherwise, the position is updated according to the somersault foraging mathematical model.
所述采用GBO算法中的本地转义运算符(Local Escaping,LEO)更新位置包括:The updated location using the local escaping operator (Local Escaping, LEO) in the GBO algorithm includes:
根据最优值newPopF及对应的权重因子值newPopP的梯度指定的方向更新每个代理位置。为了保证重要搜索空间区域的探索与接近最优点和全局点之间的平衡,重要参数ρ1表达式如下:Each agent position is updated according to the direction specified by the gradient of the optimal value newPopF and the corresponding weight factor value newPopP. In order to ensure the balance between the exploration of important search space areas and the closeness to the optimal point and the global point, the important parameter ρ 1 is expressed as follows:
其中,γmin和γmax分别为0.2和1.2,t是迭代次数,MaxIt是最大迭代次数。ρ1在早期迭代中具有较大的值以增强种群多样性,后期随着迭代次数的增加其值减小以加速收敛。Among them, γ min and γ max are 0.2 and 1.2 respectively, t is the number of iterations, and MaxIt is the maximum number of iterations. ρ 1 has a larger value in early iterations to enhance population diversity, and its value decreases in the later stages as the number of iterations increases to accelerate convergence.
通过增加种群的多样性,使得所提出的算法避免陷入局部最优解,GSR(Gradient-based optimizer,梯度搜索规则)计算公式如下:By increasing the diversity of the population, the proposed algorithm can avoid falling into the local optimal solution. The calculation formula of GSR (Gradient-based optimizer) is as follows:
通过GSR的概念为GBO算法提供更多的随机性,从而增强探索行为并避免局部最优。上式中Δx为当前最优位置xbest和随机位置之间的步长,参数θ用于确保Δx随迭代次数改变,具体表达式如下:Provide more randomness to the GBO algorithm through the concept of GSR, thereby enhancing exploration behavior and avoiding local optima. In the above formula, Δx is the current optimal position x best and the random position The step size between, parameter θ is used to ensure that Δx changes with the number of iterations, the specific expression is as follows:
其中,rand(1:N)是一个N维的随机数,r1,r2,r3和r4(r1≠r2≠r3≠r4≠n)是从(1,N)中随机选择的不同整数,step是步长,与xbest和相关。/>是随着/>更新生成的新向量,位置/>在搜索空间中由GSR和DM(Direction moving,移动方向)指定的随机点创建,DM是指当前向量(xn)在(xbest-xn)方向上移动。这个过程提供了一个合适的局部搜索趋势,以提高算法的收敛速度。DM的表达式如下:Among them, rand(1:N) is an N-dimensional random number, r1, r2, r3 and r4 (r1≠r2≠r3≠r4≠n) are different integers randomly selected from (1,N), and step is step size, with x best and Related. /> is following/> Update the new vector generated, position/> Created from random points specified by GSR and DM (Direction moving, moving direction) in the search space, where DM refers to the current vector (x n ) moving in the (x best -x n ) direction. This process provides a suitable local search trend to improve the convergence speed of the algorithm. The expression of DM is as follows:
DM=rand·ρ1(xbest-xn) (20)DM=rand·ρ 1 (x best -x n ) (20)
因此得到:So we get:
其中,ypn=yn+Δx,yqn=yn-Δx;yn是zn+1和xn的平均值,zn+1表达式如下:Among them, yp n =y n +Δx, yq n =y n -Δx; y n is the average value of z n+1 and x n , and the expression of z n+1 is as follows:
其中,xn为当前解向量,randn为维度为n的随机解向量,xworst和xbest分别为当下最差和最好的解。通过将对应公式中的当前向量/>替换为最佳向量的位置xbest,新向量表示如下:Among them, x n is the current solution vector, randn is a random solution vector with dimension n, x worst and x best are the current worst and best solutions respectively. by adding Corresponds to the current vector in the formula/> Replace with the position of the best vector x best , the new vector Expressed as follows:
GBO算法利用公式(21)用来增强探索阶段的全局搜索,而公式(23)用于增强开发阶段的局部搜索能力。The GBO algorithm uses formula (21) to enhance the global search in the exploration phase, while formula (23) is used to enhance the local search capability in the development phase.
下一次迭代中的新位置更新公式如下:The new position update formula in the next iteration is as follows:
其中,ra和rb是(0,1)之间的随机数,的的计算公式如下:Among them, r a and r b are random numbers between (0,1), The calculation formula is as follows:
LEO的引入增强了求解复杂问题的优化算法的性能。LEO算子可以有效地更新解的位置,从而帮助算法跳出局部最优点,加快优化算法的收敛速度。The introduction of LEO enhances the performance of optimization algorithms for solving complex problems. The LEO operator can effectively update the position of the solution, thereby helping the algorithm jump out of the local optimal point and speeding up the convergence of the optimization algorithm.
LEO的数学表达式为:The mathematical expression of LEO is:
其中,f1是(-1,1)范围内服从均匀分布的随机数;f2是服从正态分布的随机数,均值为0,标准差为1。u1、u2和u3是三个随机数,为了平衡全局探索和局部探索,其参数设置如下: 的表达式为:/>且xrand=Lbm+rand(0,1)·(Ubm-Lbm),/>是随机选择的总体解(p∈[1,2,...,N]),μ2是(0,1)范围内的随机数。Among them, f 1 is a random number obeying a uniform distribution in the range of (-1, 1); f 2 is a random number obeying a normal distribution, with a mean of 0 and a standard deviation of 1. u 1 , u 2 and u 3 are three random numbers. In order to balance global exploration and local exploration, their parameters are set as follows: The expression is:/> And x rand =Lb m +rand(0,1)·(Ub m -Lb m ),/> is the randomly selected overall solution (p∈[1,2,...,N]), and μ 2 is a random number in the range of (0,1).
所述根据翻筋斗觅食数学模型更新位置利用如下公式进行模型更新:The updated position according to the somersault foraging mathematical model uses the following formula to update the model:
其中,S是决定蝠鲼空翻范围的空翻系数,S=2。r2和r3是(0,1)中的两个随机数。Among them, S is the somersault coefficient that determines the manta ray's somersault range, S=2. r 2 and r 3 are two random numbers in (0, 1).
步骤6:计算更新位置后的更新最优值Best_PopF及对应的位置Best_PopP:将步骤5得到的更新位置与步骤4中的newPopF比较取较小者为Best_PopF,以及得到对应的位置Best_PopP。Step 6: Calculate the updated optimal value Best_PopF and the corresponding position Best_PopP after the updated position: Compare the updated position obtained in step 5 with the newPopF in step 4, whichever is smaller is Best_PopF, and obtain the corresponding position Best_PopP.
步骤7:判断迭代次数t是否达到最大迭代次数MaxIt,若达到,则计算并输出检测概率Pd;否则,迭代次数t=t+1,重复步骤2~7直至达到最大迭代次数MaxIt。Step 7: Determine whether the number of iterations t reaches the maximum number of iterations MaxIt. If it does, calculate and output the detection probability P d ; otherwise, the number of iterations t=t+1, repeat steps 2 to 7 until the maximum number of iterations MaxIt is reached.
为了更好地描述本发明的效果,将虚拟电厂中认知无线电的协作频谱感知优化方法(MRFO-GBO)与其他元启发式算法进行比较,其他元启发式算法包括蝠鲼觅食优化算法(MRFO)、梯度优化算法(GBO)和粒子群算法(PSO)。各算法在计算时的参数设置如下表1所示。In order to better describe the effect of the present invention, the collaborative spectrum sensing optimization method for cognitive radio in virtual power plants (MRFO-GBO) is compared with other meta-heuristic algorithms, including the manta ray foraging optimization algorithm ( MRFO), Gradient Optimization Algorithm (GBO) and Particle Swarm Optimization (PSO). The parameter settings of each algorithm during calculation are shown in Table 1 below.
表1各算法在计算时的参数设置表Table 1 Parameter setting table for calculation of each algorithm
其中附图4示出了MRFO-GBO与其他元启发式算法在不同的迭代速度下的检测概率,其中MRFO-GBO的其他参数设置为:自变量最大值Ubm=1,自变量最小值Lbm=0,T=30,M=6,N=20,δ6=σ6=(1,1,1,1,1,1),虚警概率Pf=0.1,不同信噪比R6=[-9.3,17.8,-4.6,-9.6,15.5,-4.2]T。从附图4中能够看出,MRFO-GBO在迭代次数等于7时能到达到检测概率为0.75115,较之MRFO在迭代14次后达到0.74833、GBO在迭代22次后达到0.74896以及PSO在迭代14次后达到0.71433,不仅在达到最优解时迭代次数最少,并且此时能够达到的检测概率最高,具有最快的收敛速度。Figure 4 shows the detection probabilities of MRFO-GBO and other metaheuristic algorithms at different iteration speeds. The other parameters of MRFO-GBO are set as follows: the maximum value of the independent variable Ub m =1, and the minimum value of the independent variable Lb m = 0, T = 30, M = 6, N = 20, δ 6 = σ 6 = (1, 1, 1, 1, 1, 1), false alarm probability P f = 0.1, different signal-to-noise ratio R 6 =[-9.3,17.8,-4.6,-9.6,15.5,-4.2] T . As can be seen from Figure 4, MRFO-GBO can reach a detection probability of 0.75115 when the number of iterations is equal to 7, compared with MRFO reaching 0.74833 after 14 iterations, GBO reaching 0.74896 after 22 iterations, and PSO after 14 iterations. It reaches 0.71433 after times, which not only has the smallest number of iterations when reaching the optimal solution, but also has the highest detection probability and the fastest convergence speed.
附图5示出了MRFO-GBO与其他元启发式算法在不同的虚警概率下的检测概率,其中MRFO-GBO的其他参数设置为:M=6,N=10,Pf=(0.05,1),信噪比R=[6,-5.9,12.1,5.5,14.2,-5.2]T。从附图5中能够看出,MRFO-GBO在虚警概率相等的情况下,具有明显高于其他算法的检测概率。Figure 5 shows the detection probabilities of MRFO-GBO and other meta-heuristic algorithms under different false alarm probabilities, where other parameters of MRFO-GBO are set to: M=6, N=10, P f = (0.05, 1), signal-to-noise ratio R=[6,-5.9,12.1,5.5,14.2,-5.2] T . It can be seen from Figure 5 that MRFO-GBO has a significantly higher detection probability than other algorithms when the false alarm probabilities are equal.
为了考虑虚拟电厂中认知无线电的协作频谱感知优化方法在不同数量的认知用户和不同信噪比情况下的对检测概率的影响。选择认知用户的数量分别为M=6、8、10、12且其他参数相同时,计算MRFO-GBO与蝠鲼觅食优化算法(MRFO)在不同的虚警概率下的检测概率,其结果附图6所示。从附图6中能够看出,检测概率随着M值的增加而提高,这是因为随着共同感知主用户数量的增加,能够更好地在可行解中搜索最优解,因此所有算法在M值较高的情况下性能更好;并且当M值相同时,MRFO-GBO算法寻找最大检测概率的能力大于MRFO算法。In order to consider the impact of the cooperative spectrum sensing optimization method of cognitive radio in virtual power plants on the detection probability under different numbers of cognitive users and different signal-to-noise ratios. When the number of cognitive users is selected as M=6, 8, 10, and 12 respectively and other parameters are the same, the detection probabilities of MRFO-GBO and manta ray foraging optimization algorithm (MRFO) under different false alarm probabilities are calculated. The results As shown in Figure 6. It can be seen from Figure 6 that the detection probability increases with the increase of the M value. This is because as the number of co-sensing primary users increases, the optimal solution can be better searched among feasible solutions. Therefore, all algorithms The performance is better when the M value is higher; and when the M value is the same, the MRFO-GBO algorithm has a greater ability to find the maximum detection probability than the MRFO algorithm.
选择信噪比分别为case1=8.33dB、case2=-0.2dB、case3=-8.15dB时,计算MRFO-GBO与蝠鲼觅食优化算法(MRFO)在不同信噪比下的检测概率,并且M=6,N=20,Pf=(0.05,1),其结果附图7所示。从附图7中能够看出,信噪比越大,检测概率越好;且在相同信噪比下MRFO-GBO算法相比较MRFO算法能够实现更大的检测概率。When the signal-to-noise ratios are selected as case1=8.33dB, case2=-0.2dB, and case3=-8.15dB, calculate the detection probabilities of MRFO-GBO and manta ray foraging optimization algorithm (MRFO) under different signal-to-noise ratios, and M =6, N=20, P f =(0.05,1), the results are shown in Figure 7. It can be seen from Figure 7 that the greater the signal-to-noise ratio, the better the detection probability; and under the same signal-to-noise ratio, the MRFO-GBO algorithm can achieve a greater detection probability than the MRFO algorithm.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210871108.2A CN115242331B (en) | 2022-07-23 | 2022-07-23 | Collaborative spectrum sensing optimization method for cognitive radio in virtual power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210871108.2A CN115242331B (en) | 2022-07-23 | 2022-07-23 | Collaborative spectrum sensing optimization method for cognitive radio in virtual power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115242331A CN115242331A (en) | 2022-10-25 |
CN115242331B true CN115242331B (en) | 2024-04-02 |
Family
ID=83676354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210871108.2A Active CN115242331B (en) | 2022-07-23 | 2022-07-23 | Collaborative spectrum sensing optimization method for cognitive radio in virtual power plant |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115242331B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103401625A (en) * | 2013-08-23 | 2013-11-20 | 西安电子科技大学 | Particle swarm optimization algorithm based cooperative spectrum sensing optimization method |
WO2015039487A1 (en) * | 2013-09-17 | 2015-03-26 | 中兴通讯股份有限公司 | Processing method and device for frequency spectrum sensing data in heterogeneous network |
CN106992823A (en) * | 2017-03-02 | 2017-07-28 | 南京邮电大学 | A Spectrum Sensing Method for Cognitive Radio Networks |
CN113255871A (en) * | 2021-05-11 | 2021-08-13 | 合肥宏晶微电子科技股份有限公司 | Path planning method, electronic device and computer readable storage medium |
CN113638841A (en) * | 2021-09-23 | 2021-11-12 | 华北电力大学 | Variable-pitch control method of double-wind-wheel wind turbine based on neural network predictive control |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190015378A (en) * | 2016-06-03 | 2019-02-13 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Optical filters with spatially varying fine-cloned layers |
-
2022
- 2022-07-23 CN CN202210871108.2A patent/CN115242331B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103401625A (en) * | 2013-08-23 | 2013-11-20 | 西安电子科技大学 | Particle swarm optimization algorithm based cooperative spectrum sensing optimization method |
WO2015039487A1 (en) * | 2013-09-17 | 2015-03-26 | 中兴通讯股份有限公司 | Processing method and device for frequency spectrum sensing data in heterogeneous network |
CN106992823A (en) * | 2017-03-02 | 2017-07-28 | 南京邮电大学 | A Spectrum Sensing Method for Cognitive Radio Networks |
CN113255871A (en) * | 2021-05-11 | 2021-08-13 | 合肥宏晶微电子科技股份有限公司 | Path planning method, electronic device and computer readable storage medium |
CN113638841A (en) * | 2021-09-23 | 2021-11-12 | 华北电力大学 | Variable-pitch control method of double-wind-wheel wind turbine based on neural network predictive control |
Non-Patent Citations (4)
Title |
---|
Cooperative Spectrum Sensing Optimization in Cognitive Radio networks based on a Hybrid (MFO-GDO) Heuristic Search Algorithm;Swati Thimmapuram;《2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)》;全文 * |
基于改进群搜索优化算法的认知无线电协作频谱感知;江辉;陈飞飞;杜文峰;;电路与系统学报(第01期);全文 * |
李笑.基于杂草算法的认知网络的认知无线电频谱协作感知与分配.全文. * |
面向虚拟电厂中电动汽车调度管理的协作频谱感知优化方法;吴青青;《电力信息与通信技术》;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115242331A (en) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | DRL-driven dynamic resource allocation for task-oriented semantic communication | |
Gu et al. | Deep multiagent reinforcement-learning-based resource allocation for internet of controllable things | |
Xia et al. | Federated-learning-based client scheduling for low-latency wireless communications | |
Xie et al. | Dynamic computation offloading in IoT fog systems with imperfect channel-state information: A POMDP approach | |
Zhang et al. | Toward intelligent resource allocation on task-oriented semantic communication | |
CN111917509A (en) | Multi-domain intelligent communication model and communication method based on channel-bandwidth joint decision | |
Zhu et al. | Machine-learning-based opportunistic spectrum access in cognitive radio networks | |
CN114641076A (en) | Edge computing unloading method based on dynamic user satisfaction in ultra-dense network | |
Yang et al. | Game-based channel access for AoI-oriented data transmission under dynamic attack | |
CN105792218B (en) | Optimization method for cognitive radio network with RF energy harvesting capability | |
Chen et al. | A deep learning based resource allocation scheme in vehicular communication systems | |
Shodamola et al. | A machine learning based framework for KPI maximization in emerging networks using mobility parameters | |
Jiang et al. | Dynamic user pairing and power allocation for NOMA with deep reinforcement learning | |
Zhang et al. | Deep-reinforcement-learning-based distributed dynamic spectrum access in multiuser multichannel cognitive radio Internet of Things networks | |
CN114126021A (en) | Green cognitive radio power distribution method based on deep reinforcement learning | |
Liang et al. | Multi-agent reinforcement learning for spectrum sharing in vehicular networks | |
CN102497643A (en) | Cognitive ratio power control method | |
CN115766089B (en) | An optimal transmission method for energy harvesting cognitive IoT networks with anti-interference | |
CN113115355A (en) | Power distribution method based on deep reinforcement learning in D2D system | |
Fiems et al. | Mean value analysis of the age of information in slotted ALOHA | |
Gao et al. | Reinforcement learning based resource allocation in cache-enabled small cell networks with mobile users | |
CN115866787A (en) | Network resource allocation method integrating terminal direct transmission communication and multi-access edge calculation | |
CN118828699B (en) | A joint optimization method for resource allocation in Internet of Vehicles based on dominance strategy | |
CN112996118B (en) | NOMA downlink user pairing method and storage medium | |
CN112445617B (en) | Load strategy selection method and system based on mobile edge calculation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |