CN115208483A - Underwater acoustic communication method under polar impulse interference - Google Patents
Underwater acoustic communication method under polar impulse interference Download PDFInfo
- Publication number
- CN115208483A CN115208483A CN202210772171.0A CN202210772171A CN115208483A CN 115208483 A CN115208483 A CN 115208483A CN 202210772171 A CN202210772171 A CN 202210772171A CN 115208483 A CN115208483 A CN 115208483A
- Authority
- CN
- China
- Prior art keywords
- interference
- channel
- symbol
- output
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000004891 communication Methods 0.000 title claims abstract description 35
- 238000009826 distribution Methods 0.000 claims abstract description 33
- 230000008030 elimination Effects 0.000 claims abstract description 11
- 238000003379 elimination reaction Methods 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims abstract description 6
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 4
- 230000010363 phase shift Effects 0.000 claims abstract description 4
- 238000005315 distribution function Methods 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 14
- 238000012549 training Methods 0.000 claims description 13
- 238000012937 correction Methods 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 description 13
- 241000239366 Euphausiacea Species 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 238000003672 processing method Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013398 bayesian method Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B13/00—Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
- H04B13/02—Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03305—Joint sequence estimation and interference removal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03433—Arrangements for removing intersymbol interference characterised by equaliser structure
- H04L2025/03439—Fixed structures
- H04L2025/03445—Time domain
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Filters That Use Time-Delay Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及水声通信领域,具体涉及一个在极地冰下脉冲干扰下性能稳健且计算复杂度可以接受的方法。The invention relates to the field of underwater acoustic communication, in particular to a method with robust performance and acceptable computational complexity under the pulse interference under polar ice.
背景技术Background technique
由于冰层破裂或者挤压,北极存在着大量的脉冲噪声,此外,脉冲噪声还出现在水下生物活动频繁的区域,其存在使得背景噪声统计上不再服从高斯分布,严重影响传统单载波频域均衡的性能,因此亟需稳健的单载波通信方法。Due to the rupture or extrusion of the ice layer, there is a large amount of impulse noise in the Arctic. In addition, impulse noise also appears in areas with frequent underwater biological activities. Its existence makes the background noise statistically no longer obey the Gaussian distribution, which seriously affects the traditional single-carrier frequency. Therefore, a robust single-carrier communication method is urgently needed.
对于脉冲干扰抑制的研究主要集中在OFDM系统,单载波调制作为实现高速水声通信的优选方案之一,在峰均功率比和对抗载波频率偏移等方面与OFDM系统相比具有优势,但是针对单载波体制的脉冲干扰抑制方法较少。针对单载波块传输系统,传统的频域均衡结构均建立在背景噪声为高斯白噪声的情况下,并未考虑到脉冲干扰对其造成的影响,严重影响了通信性能。The research on pulse interference suppression mainly focuses on the OFDM system. As one of the preferred solutions to realize high-speed underwater acoustic communication, single-carrier modulation has advantages compared with the OFDM system in terms of peak-to-average power ratio and anti-carrier frequency offset. There are fewer impulse interference suppression methods in the single-carrier system. For the single-carrier block transmission system, the traditional frequency-domain equalization structure is established when the background noise is Gaussian white noise, and the impact of impulse interference on it is not considered, which seriously affects the communication performance.
如何在脉冲干扰存在的水声信道中,对单载波通信数据进行高性能解码,成为水声通信技术中重要的研究课题。How to perform high-performance decoding of single-carrier communication data in underwater acoustic channels with pulse interference has become an important research topic in underwater acoustic communication technology.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了提高水声单载波通信系统在极地脉冲干扰下的稳健性,现提供一种极地脉冲干扰下的针对水声单载波块传输系统的通信方法。基本思路为设计一种单载波块传输结构下的信号处理方法,主要通过迭代干扰估计消除与频域均衡和时域信道、干扰、符号联合估计相结合的方法,实现脉冲干扰的抑制,提高通信可靠性。The purpose of the present invention is to improve the robustness of the underwater acoustic single-carrier communication system under the polar pulse interference, and now provides a communication method for the underwater acoustic single-carrier block transmission system under the polar pulse interference. The basic idea is to design a signal processing method under the single-carrier block transmission structure, mainly through the method of iterative interference estimation cancellation combined with frequency domain equalization and time domain channel, interference, and symbol joint estimation to achieve the suppression of impulse interference and improve communication. reliability.
本发明的目的是这样实现的:The object of the present invention is achieved in this way:
一种极地脉冲干扰下的水声通信方法,基于单载波相移键控调制体制,将通信信号调制到载波相位上,信息比特通过卷积编码器进行信道编码,接收端通信信号的解码流程如下:An underwater acoustic communication method under polar pulse interference. Based on a single-carrier phase shift keying modulation system, the communication signal is modulated to the carrier phase, and the information bits are channel-coded by a convolutional encoder. The decoding process of the communication signal at the receiving end is as follows :
步骤1:信号预处理,输出训练部分的信号yp和数据信号y;Step 1: Signal preprocessing, output the signal y p of the training part and the data signal y;
步骤2:基于步骤1输出的训练部分信号yp和发射训练序列,估计当前符号块中的信道并输出;Step 2: Estimate the channel in the current symbol block based on the training part signal y p output in
步骤3:基于步骤1输出的数据信号y,进行脉冲干扰检测与参数化,将干扰i参数化为输出其位置选择矩阵P和对应位置处的干扰样本e;Step 3: Based on the data signal y output in
步骤4:进行脉冲干扰估计与消除,得到干扰消除后的信号z;Step 4: Perform pulse interference estimation and cancellation to obtain the signal z after interference cancellation;
步骤5:基于步骤4得到的脉冲干扰消除后的信号z,进行频域均衡与分组相位矫正,输出本次均衡后的时域符号;Step 5: Perform frequency domain equalization and group phase correction based on the signal z obtained in
步骤6:判断是否到达最大迭代次数,未到达则重复步骤4、5,直至满足迭代次数,结束迭代,输出均衡后的时域符号 Step 6: Determine whether the maximum number of iterations is reached, if not, repeat
步骤7:基于步骤6输出的均衡后的时域符号采用基于变分贝叶斯的信道、脉冲干扰和符号联合估计算法,利用多个参数的概率分布拟合联合概率分布,得到信道、脉冲干扰和符号的估计符号D;Step 7: Based on the equalized time-domain symbols output in
步骤8:对步骤7输出的估计符号D进行解码。Step 8: Decode the estimated symbol D output in Step 7.
所述步骤4和步骤5构成脉冲干扰估计与消除和步骤5共同构成迭代结构,在第i次迭代中,基于步骤2输出的信道估计结果和第i-1次迭代的频域均衡输出的符号重构数据信号,随后使用最小二乘准则得到噪声样本的估计值与步骤3输出的位置选择矩阵P相乘并从步骤1输出的数据信号y中消减,得到干扰消除后的信号z。Described
所述步骤7具体为:首先将步骤6输出的均衡后的时域符号作为已知符号进行联合估计,利用信道和干扰的稀疏性,采用变分贝叶斯将其各自的概率分布拟合为联合概率,联合估计信道、干扰、符号,在该步骤中,表示需要被估计的超参数,分别为信道干扰i、控制稀疏度的参数ε和噪声方差σ2,其中,ε分为ε0:L-1、两部分,L和K分别为信道的维度和时域符号的维度,信道干扰i分别服从均值为0、方差为ε0:L-1、的高斯分布,采用变分贝叶斯将所有超参数的联合概率分布因式分解,分别更新每个超参数的分布函数q(i)、q(ε)、qnew(σ2),下面分别描述四个分布函数的更新:The step 7 is specifically: first, the equalized time domain symbols output in
(1)q(σ2)服从参数为c+K-L+1和d的伽马分布,基于步骤1输出的数据信号y,σ2更新结果为 (1) q(σ 2 ) obeys the gamma distribution with parameters c+K-L+1 and d. Based on the data signal y output in
其中,x为估计得到的符号组成的矩阵,第一次联合估计时,估计符号为 Among them, x is the matrix composed of the estimated symbols. In the first joint estimation, the estimated symbols are
(2)服从均值为μh,方差为∑h的高斯分布,通过更新分布函数均值和方差,即可获得信道分布函数的更新,的更新结果为:(2) It obeys the Gaussian distribution with mean μ h and variance ∑ h . By updating the mean and variance of the distribution function, the update of the channel distribution function can be obtained, The updated result is:
(3)q(i)服从均值为μi,方差为∑i的高斯分布,同样通过更新分布函数均值和方差,即可获得干扰分布函数的更新,q(i)的更新结果为:(3) q(i) obeys a Gaussian distribution with a mean of μ i and a variance of ∑ i . Similarly, by updating the mean and variance of the distribution function, the update of the interference distribution function can be obtained. The update result of q(i) is:
其中,I为维度与∑i相同的单位阵;Among them, I is the identity matrix with the same dimension as ∑ i ;
(4)q(ε)服从参数为a+1和的伽马分布,ε中的每一个元素的更新结果为:(4) q(ε) obeys the parameters a+1 and The gamma distribution of , the update result of each element in ε is:
基于本步骤(2)、(3)得到的信道和干扰的估计值μh、μi,通过解决下列问题获得符号x的估计:Based on the estimated values μ h and μ i of the channel and interference obtained in steps (2) and (3), the estimation of the symbol x is obtained by solving the following problems:
经过更新x中的所有元素之后,将其第一列作为符号向量D的估计并输出。After updating all elements in x, use its first column as an estimate of the symbol vector D and output it.
本发明提出一种在脉冲干扰存在的水声信道中的水声通信方法,发明的创造性体现在针对单载波块传输系统,首先进行迭代脉冲干扰估计消除频域均衡,再基于均衡后的符号,利用信道、干扰的稀疏性,对其分布进一步拟合,采用变分贝叶斯的方法再次估计信道、干扰与符号进一步消除脉冲干扰,可实现脉冲干扰下对单载波通信数据进行高性能解码。The present invention proposes an underwater acoustic communication method in an underwater acoustic channel where impulse interference exists. The inventiveness of the invention is embodied in that for a single-carrier block transmission system, firstly, iterative impulse interference estimation is performed to eliminate frequency domain equalization, and then based on the equalized symbols, Using the sparseness of the channel and interference, the distribution is further fitted, and the variational Bayesian method is used to re-estimate the channel, interference and symbol to further eliminate the impulse interference, which can realize high-performance decoding of single-carrier communication data under the impulse interference.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明提出一种脉冲干扰下的水声通信方法,针对单载波块传输结构,通过迭代干扰消除与频域均衡的步骤进行干扰的初步消除,基于均衡后的时域符号,通过拟合信道、干扰的联合分布概率进行信道、干扰、符号的联合估计再次进行残余干扰的消除,输出最终的估计符号。与传统单载波块传输的均衡方法相比,本发明的有益效果是:The present invention proposes an underwater acoustic communication method under impulse interference. For a single-carrier block transmission structure, the interference is initially eliminated through the steps of iterative interference elimination and frequency domain equalization. The joint distribution probability of interference is used for joint estimation of channel, interference and symbol, and the residual interference is eliminated again, and the final estimated symbol is output. Compared with the equalization method of traditional single carrier block transmission, the beneficial effects of the present invention are:
(1)提高通信的可靠性(1) Improve the reliability of communication
通信可靠性与方法的性能高度相关,存在脉冲干扰时,传统的针对块传输的频域均衡方法收到噪声影响,信道估计结果极差,导致均衡效果急剧下降。本发明提出的方法首先在迭代过程中进行了干扰估计与消除,对干扰消除后的信号进行均衡,并通过迭代的结构对结果进行更新和修正,再通过联合估计进一步消除残余干扰,得到符号的估计结果。通过以上步骤,消除脉冲干扰的影响,大幅提高了方法的性能,从而有效提高通信的可靠性。The communication reliability is highly related to the performance of the method. When there is impulse interference, the traditional frequency domain equalization method for block transmission is affected by noise, and the channel estimation result is extremely poor, resulting in a sharp decline in the equalization effect. The method proposed by the present invention first performs interference estimation and cancellation in the iterative process, equalizes the signal after interference cancellation, updates and corrects the result through an iterative structure, and further eliminates residual interference through joint estimation to obtain the symbol estimated results. Through the above steps, the influence of pulse interference is eliminated, the performance of the method is greatly improved, and the reliability of communication is effectively improved.
(2)利用参数的物理特征,计算量小(2) Using the physical characteristics of the parameters, the calculation amount is small
水声信道和脉冲干扰具有明显的稀疏性,本发明所提方法在联合估计时利用了这一物理特性,减小了计算量。The underwater acoustic channel and impulse interference have obvious sparsity, and the method proposed in the present invention utilizes this physical characteristic in joint estimation, which reduces the amount of computation.
附图说明Description of drawings
为了更清晰的说明本发明实施例中的技术方案,下面对实施例描述中需要使用的附图做简单介绍。下面描述的附图中仅是本发明的一些实施例,对于其他技术人员,在不付出创造性劳动的前提下,还可根据这些附图获得其他的附图,其中:In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings to be used in the description of the embodiments. The accompanying drawings described below are only some embodiments of the present invention. For other skilled persons, other drawings can also be obtained from these drawings without creative work, wherein:
图1是极地脉冲干扰下的水声通信方法流程图;Fig. 1 is the flow chart of underwater acoustic communication method under polar pulse interference;
图2是单载波块传输的帧结构;Fig. 2 is the frame structure of single carrier block transmission;
图3是采集的磷虾噪声时域图;Fig. 3 is a time domain diagram of the collected krill noise;
图4是脉冲干扰背景下干噪比为25dB时的误码率曲线;Figure 4 is the bit error rate curve when the interference-to-noise ratio is 25dB under the background of impulse interference;
图5是脉冲干扰背景下干噪比为30dB时的误码率曲线。Figure 5 is the bit error rate curve when the interference-to-noise ratio is 30dB under the background of impulse interference.
具体实施方式Detailed ways
下面结合附图举例对本发明做进一步详细描述。The present invention will be further described in detail below with reference to the accompanying drawings.
本发明提供的一种极地脉冲干扰下的水声通信方法,本发明的工作流程如图1,具体实施方式如下:The present invention provides a method for underwater acoustic communication under the interference of polar pulses. The workflow of the present invention is shown in Figure 1, and the specific implementation is as follows:
步骤1:输入接收信号,对接收信号进行预处理,构建预处理后单个符号块的信号模型,输出符号块中训练部分的信号和数据信号。Step 1: Input the received signal, preprocess the received signal, build a signal model of a single symbol block after preprocessing, and output the signal and data signal of the training part in the symbol block.
步骤1所述的接收信号的预处理,需要对接收信号进行多普勒估计与补偿。对于单载波块传输结构,符号块长较短,可假设在单个符号块内信道时不变,建立数据信号的模型,输出单个符号块的训练部分信号yp和数据信号y。The preprocessing of the received signal described in
步骤2:基于步骤1输出的训练部分信号和发射训练序列,估计当前符号块中的信道并输出。Step 2: Based on the training part signal and the transmission training sequence output in
步骤2所述的信道估计过程基于步骤1输出的训练部分信号yp和发射的训练序列,进行信道估计,输出信道估计结果 The channel estimation process described in
步骤3:基于步骤1输出的数据信号,进行脉冲干扰的检测,输出位置选择矩阵和对应位置的噪声样本。Step 3: Based on the data signal output in
步骤3所述的脉冲干扰检测与参数化,是在步骤1输出的数据信号y中检测干扰的存在,并将干扰i参数化为输出其位置选择矩阵P和对应位置处的噪声样本e。The pulse interference detection and parameterization described in
步骤4:与步骤5共同构成迭代脉冲干扰估计消除与频域均衡结构。基于步骤1输出的数据信号、步骤2输出的信道估计结果和步骤3输出的位置选择矩阵与脉冲干扰样本,用前一次迭代得到的均衡符号重构数据信号,估计干扰样本的值,将其从步骤1输出的数据信号中消减并输出。Step 4: together with Step 5, an iterative impulse interference estimation elimination and frequency domain equalization structure is formed. Based on the data signal output in
步骤4所述的脉冲干扰估计与消除和步骤5共同构成迭代结构,在第i次迭代中,基于步骤2输出的信道估计结果和第i-1次迭代的频域均衡输出的符号重构数据信号,随后使用最小二乘准则得到噪声样本的估计值与步骤3输出的位置选择矩阵P相乘并从步骤1输出的数据信号y中消减,得到干扰消除后的信号z。The impulse interference estimation and elimination described in
步骤5:基于步骤4得到的脉冲干扰消除后的信号,进行频域均衡与分组相位矫正,输出本次均衡后的时域符号。Step 5: Perform frequency domain equalization and packet phase correction based on the signal obtained in
步骤5所述的频域均衡与分组相位纠正步骤,基于步骤4输出的干扰消除后的信号z,选用频域均衡的方法进行均衡并转换到时域,经过频域均衡后的符号仍然残留不完全多普勒补偿造成的相位旋转,应用分组相位纠正的方法进行相位补偿,输出本次均衡后的时域符号。In the frequency domain equalization and group phase correction steps described in step 5, based on the signal z after the interference cancellation output in
步骤6:判断是否到达最大迭代次数,未到达则重复步骤4、5,直至满足迭代次数,结束迭代,输出均衡后的时域符号。Step 6: Determine whether the maximum number of iterations is reached, if not, repeat
步骤6所述的判断步骤为迭代干扰估计消除与频域均衡的迭代次数判断,未达到最大次数Iter则继续重复步骤4、5,直至到达迭代次数后输出均衡后的时域符号 The judging step described in
步骤7:基于步骤6输出的均衡后的时域符号,考虑到信道和脉冲干扰的稀疏性,利用各自的概率分布拟合联合概率分布,对步骤1输出的数据信号进行信道、干扰符号的联合估计,进一步消除干扰,输出估计符号。Step 7: Based on the equalized time-domain symbols output in
步骤7所述的信道、干扰和符号的联合估计步骤为本发明的核心,创造之处在于,首先将步骤6输出的均衡后的时域符号作为已知符号进行联合估计,不使用额外的训练序列,保证了系统的通信速率;其次利用信道和干扰的稀疏性,采用变分贝叶斯的思想,将其各自的概率分布拟合为联合概率,联合估计信道、干扰、符号,在该步骤中,表示需要被估计的超参数,分别为信道干扰i、控制稀疏度的参数ε和噪声方差σ2,其中,ε分为ε0:L-1、两部分,L和K分别为信道的维度和时域符号的维度,信道干扰i分别服从均值为0、方差为ε0:L-1、的高斯分布,采用变分贝叶斯的思想,将所有超参数的联合概率分布因式分解,分别更新每个超参数的分布函数q(i)、q(ε)、qnew(σ2)。下面分别描述四个分布函数的更新;The joint estimation step of channel, interference and symbol described in step 7 is the core of the present invention. As a known symbol for joint estimation, no additional training sequence is used, which ensures the communication rate of the system; secondly, the sparseness of the channel and interference is used, and the idea of variational Bayes is adopted to fit their respective probability distributions as joint probability, jointly estimate the channel, interference, and symbols, in this step, Represents the hyperparameters that need to be estimated, respectively the channel Interference i, parameter ε that controls sparsity and noise variance σ 2 , where ε is divided into ε 0:L-1 , Two parts, L and K are the dimension of the channel and the dimension of the time-domain symbol, respectively, the channel The interference i obeys the mean value of 0, the variance is ε 0:L-1 , The Gaussian distribution of , adopts the idea of variational Bayes, factorizes the joint probability distribution of all hyperparameters, and updates the distribution function of each hyperparameter separately q(i), q(ε), q new (σ 2 ). The updates of the four distribution functions are described below;
(1)q(σ2)服从参数为c+K-L+1和d的伽马分布,基于步骤1输出的数据信号y,σ2更新结果为 (1) q(σ 2 ) obeys the gamma distribution with parameters c+K-
其中,x为估计得到的符号组成的矩阵,第一次联合估计时,估计符号为 Among them, x is the matrix composed of the estimated symbols. In the first joint estimation, the estimated symbols are
(2)服从均值为μh,方差为∑h的高斯分布,通过更新分布函数均值和方差,即可获得信道分布函数的更新,的更新结果为:(2) It obeys the Gaussian distribution with mean μ h and variance ∑ h . By updating the mean and variance of the distribution function, the update of the channel distribution function can be obtained, The updated result is:
(3)q(i)服从均值为μi,方差为∑i的高斯分布,同样通过更新分布函数均值和方差,即可获得干扰分布函数的更新,q(i)的更新结果为:(3) q(i) obeys a Gaussian distribution with a mean of μ i and a variance of ∑ i . Similarly, by updating the mean and variance of the distribution function, the update of the interference distribution function can be obtained. The update result of q(i) is:
其中,I为维度与∑i相同的单位阵。Among them, I is the identity matrix with the same dimension as ∑ i .
(4)q(ε)服从参数为a+1和的伽马分布,ε中的每一个元素的更新结果为:(4) q(ε) obeys the parameters a+1 and The gamma distribution of , the update result of each element in ε is:
基于本步骤(2)、(3)得到的信道和干扰的估计值μh、μi,通过解决下列问题获得符号x的估计:Based on the estimated values μ h and μ i of the channel and interference obtained in steps (2) and (3), the estimation of the symbol x is obtained by solving the following problems:
经过更新x中的所有元素之后,将其第一列作为符号向量D的估计并输出。After updating all elements in x, use its first column as an estimate of the symbol vector D and output it.
步骤8:对步骤7输出的向量D进行解码,这里D无需判决,可以直接进行解码。Step 8: Decode the vector D output in Step 7, where D does not need to be judged, and can be directly decoded.
下面将结合仿真实验结果,对本发明的优势进一步阐释。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例,仅用于说明和解释本发明,并不限定用于本发明。基于本发明中的仿真结果,本领域普通技术人员在没有创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。The advantages of the present invention will be further explained below in conjunction with the simulation experiment results. Obviously, the described embodiments are a part of the embodiments of the present invention, but not all of the embodiments, and are only used to illustrate and explain the present invention, but not limited to the present invention. Based on the simulation results in the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.
仿真实验结果:Simulation results:
实验条件:在仿真中,单载波块传输的形式如图2所示,块的长度为1024,采用1/2卷积码进行信道编码。载波中心频率为12kHz,带宽为2kHz,通带采样率为96kHz。使用QPSK映射方式。块时长1024ms,后加零保护间隔的时长50ms。仿真中考虑4个抽头的水声信道,能量[0,-4.43,-10.46,-10.46]dB,时延分别[0,5.2,15,21]ms。Experimental conditions: In the simulation, the form of single-carrier block transmission is shown in Figure 2, the length of the block is 1024, and the 1/2 convolutional code is used for channel coding. The carrier center frequency is 12kHz, the bandwidth is 2kHz, and the passband sampling rate is 96kHz. Use QPSK mapping method. The block duration is 1024ms, followed by a zero guard interval of 50ms. In the simulation, the underwater acoustic channel with 4 taps is considered, the energy is [0, -4.43, -10.46, -10.46] dB, and the delay is [0, 5.2, 15, 21] ms, respectively.
极地地区存在大量磷虾,会产生大量脉冲噪声,影响通信性能。各地区磷虾噪声类似,经统计,这种脉冲噪声其概率密度函数符合服从SαS分布。实验中添加了国立新加坡大学声学实验室采集到的新加坡附近海域的磷虾产生的脉冲噪声,其时域波形如图3所示,可以看出有很多尖峰。会影响频域均衡的性能The existence of a large number of krill in polar regions will generate a large amount of impulse noise and affect the communication performance. The krill noise in each area is similar. According to statistics, the probability density function of this impulse noise conforms to the SαS distribution. In the experiment, the impulse noise generated by krill in the waters near Singapore collected by the Acoustics Laboratory of National Singapore University was added. The time domain waveform is shown in Figure 3, and it can be seen that there are many spikes. will affect the performance of frequency domain equalization
图4、5分别为磷虾噪声背景下干噪比为25dB和30dB的各方法误码率曲线,曲线越靠近x轴,表示相同信噪比下误码率越小,方法性能越好,迭代结构意为本发明提到的迭代脉冲干扰估计消除与频域均衡结构。从图中可以看出,四种方法性能排序为:传统频域均衡方法<使用迭代结构的方法<使用迭代结构与稀疏贝叶斯联合估计信道、符号的方法<本发明所提方法。除传统的频域均衡外,其余三种方法均进行了干扰消除,因此在干扰存在的场景,性能均优于传统频域均衡方法。本发明所提出的处理方法,除进行干扰消除外,还基于迭代结构的结果,在联合估计中考虑到了残余干扰的存在,利用了脉冲噪声的稀疏性,在进行符号估计时再次对残余干扰进行消除,所以性能最好,与没有干扰时频域均衡的性能相当。而且比较图4和图5的处理结果,在干噪比增大,即干扰能量明显增强时,并没有明显影响处理方法的性能,证明所提方法具有鲁棒性。Figures 4 and 5 show the bit error rate curves of each method with an INR of 25dB and 30dB under the background of krill noise. The closer the curve is to the x-axis, the smaller the bit error rate under the same signal-to-noise ratio, and the better the method performance. The structure means the iterative impulse interference estimation cancellation and frequency domain equalization structure mentioned in the present invention. As can be seen from the figure, the performance ranking of the four methods is: traditional frequency domain equalization method < method using iterative structure < method using iterative structure and sparse Bayesian joint estimation of channels and symbols < method proposed in the present invention. In addition to the traditional frequency domain equalization, the other three methods have carried out interference cancellation, so in the scene where interference exists, the performance is better than the traditional frequency domain equalization method. The processing method proposed by the present invention not only performs interference cancellation, but also based on the results of the iterative structure, considers the existence of residual interference in the joint estimation, makes use of the sparsity of impulse noise, and performs the residual interference analysis again when performing symbol estimation. Cancellation, so the performance is the best, which is comparable to the performance of time-frequency domain equalization without interference. Moreover, comparing the processing results in Figure 4 and Figure 5, when the interference-to-noise ratio increases, that is, when the interference energy is significantly enhanced, the performance of the processing method is not significantly affected, which proves that the proposed method is robust.
综上所述,本发明所提方法优于传统的单载波块传输系统下均衡方法。To sum up, the method proposed in the present invention is superior to the traditional equalization method in a single-carrier block transmission system.
本发明的目的在于提供一种极地脉冲干扰下的水声通信方法。本发明公开了一种极地脉冲干扰下的水声通信方法,属于水声通信技术领域。本发明通过以下技术方案予以实现:考虑单载波块传输系统,基于单载波相移键控调制体制,将通信信息调制到载波相位上,信息比特通过卷积编码器进行信道编码。接收端通信信号的解码流程如下:首先进行脉冲检测,重构接收信号中的脉冲干扰。再通过迭代脉冲干扰估计消除与频域均衡的方法,在最小二乘准则下对接收信号进行干扰重建、消除并进行频域均衡。由于信道估计误差及噪声的存在,脉冲干扰的影响不能完全消除。之后,基于均衡后的符号,采用基于变分贝叶斯的信道、脉冲干扰和符号联合估计算法,利用多个参数的概率分布拟合联合概率分布,得到信道、干扰及符号的估计值。本发明的优点在于(1)同时考虑了信道和脉冲干扰的稀疏性;(2)在脉冲噪声环境下稳健性好;(3)保证性能的同时计算复杂度可以接受。The purpose of the present invention is to provide an underwater acoustic communication method under polar pulse interference. The invention discloses an underwater acoustic communication method under polar pulse interference, which belongs to the technical field of underwater acoustic communication. The present invention is realized by the following technical solutions: considering a single-carrier block transmission system, based on a single-carrier phase shift keying modulation system, the communication information is modulated onto the carrier phase, and the information bits are channel-coded by a convolutional encoder. The decoding process of the communication signal at the receiving end is as follows: First, pulse detection is performed to reconstruct the pulse interference in the received signal. Then through the method of iterative impulse interference estimation elimination and frequency domain equalization, the received signal is reconstructed, eliminated and equalized in frequency domain under the least squares criterion. Due to the existence of channel estimation error and noise, the influence of impulse interference cannot be completely eliminated. Then, based on the equalized symbols, a variational Bayesian-based joint estimation algorithm of channel, impulse interference and symbols is used to fit the joint probability distribution with the probability distribution of multiple parameters to obtain the estimated values of channel, interference and symbols. The advantages of the present invention are that (1) the sparsity of the channel and impulse interference is considered at the same time; (2) the robustness is good in the impulse noise environment; (3) the computational complexity is acceptable while the performance is guaranteed.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210772171.0A CN115208483B (en) | 2022-06-30 | 2022-06-30 | A Method of Underwater Acoustic Communication Under Polar Pulse Interference |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210772171.0A CN115208483B (en) | 2022-06-30 | 2022-06-30 | A Method of Underwater Acoustic Communication Under Polar Pulse Interference |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115208483A true CN115208483A (en) | 2022-10-18 |
CN115208483B CN115208483B (en) | 2023-02-10 |
Family
ID=83578252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210772171.0A Active CN115208483B (en) | 2022-06-30 | 2022-06-30 | A Method of Underwater Acoustic Communication Under Polar Pulse Interference |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115208483B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115913840A (en) * | 2022-11-11 | 2023-04-04 | 中国船舶重工集团公司第七一五研究所 | MIMO high-speed underwater acoustic communication method based on vector array receiving |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006094860A1 (en) * | 2005-03-08 | 2006-09-14 | France Telecom | Method for the iterative reception of a multicarrier signal with interference cancellation, and corresponding receiver and computer program |
CN101212235A (en) * | 2007-12-24 | 2008-07-02 | 北京邮电大学 | Low-complexity frequency-domain implementation of frequency-domain equalization joint interference cancellation detection algorithm |
CN105227512A (en) * | 2015-10-19 | 2016-01-06 | 宁波大学 | Impulsive noise method of estimation in a kind of OFDM underwater sound communication system |
CN108900443A (en) * | 2018-06-05 | 2018-11-27 | 中国科学院声学研究所 | A kind of underwater acoustic channel interference elimination method in underwater sound communication |
CN113242189A (en) * | 2021-04-13 | 2021-08-10 | 华南理工大学 | Adaptive equalization soft information iteration receiving method combined with channel estimation |
CN113381951A (en) * | 2021-05-31 | 2021-09-10 | 北京理工大学 | MFTN joint channel estimation and equalization method under time-frequency conversion selective fading channel |
CN114285495A (en) * | 2021-12-30 | 2022-04-05 | 电子科技大学 | Received Signal Processing Method of Underwater Acoustic OFDM Communication System Based on Message Passing |
-
2022
- 2022-06-30 CN CN202210772171.0A patent/CN115208483B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006094860A1 (en) * | 2005-03-08 | 2006-09-14 | France Telecom | Method for the iterative reception of a multicarrier signal with interference cancellation, and corresponding receiver and computer program |
CN101212235A (en) * | 2007-12-24 | 2008-07-02 | 北京邮电大学 | Low-complexity frequency-domain implementation of frequency-domain equalization joint interference cancellation detection algorithm |
CN105227512A (en) * | 2015-10-19 | 2016-01-06 | 宁波大学 | Impulsive noise method of estimation in a kind of OFDM underwater sound communication system |
CN108900443A (en) * | 2018-06-05 | 2018-11-27 | 中国科学院声学研究所 | A kind of underwater acoustic channel interference elimination method in underwater sound communication |
CN113242189A (en) * | 2021-04-13 | 2021-08-10 | 华南理工大学 | Adaptive equalization soft information iteration receiving method combined with channel estimation |
CN113381951A (en) * | 2021-05-31 | 2021-09-10 | 北京理工大学 | MFTN joint channel estimation and equalization method under time-frequency conversion selective fading channel |
CN114285495A (en) * | 2021-12-30 | 2022-04-05 | 电子科技大学 | Received Signal Processing Method of Underwater Acoustic OFDM Communication System Based on Message Passing |
Non-Patent Citations (1)
Title |
---|
何成兵等: "基于扩频码的单载波迭代频域均衡水声通信", 《物理学报》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115913840A (en) * | 2022-11-11 | 2023-04-04 | 中国船舶重工集团公司第七一五研究所 | MIMO high-speed underwater acoustic communication method based on vector array receiving |
Also Published As
Publication number | Publication date |
---|---|
CN115208483B (en) | 2023-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113395221B (en) | Orthogonal time-frequency-space joint-based channel estimation and symbol detection method | |
CN113242189B (en) | Adaptive equalization soft information iteration receiving method combined with channel estimation | |
CN108900443B (en) | A Method for Eliminating Interference of Underwater Acoustic Channel in Underwater Acoustic Communication | |
CN102571666B (en) | MMSE (Minimum Mean Square Error)-based equalization method of underwater sound OFDM (Orthogonal Frequency Division Multiplexing) judgment iterative channel | |
CN108712353B (en) | Soft iteration channel estimation method | |
CN111614584B (en) | Transform domain adaptive filtering channel estimation method based on neural network | |
CN115208480B (en) | A method for underwater acoustic communication under ice based on joint message passing | |
CN102724147A (en) | Channel estimation method for underwater sound orthogonal frequency division multiplexing | |
CN108270702A (en) | Turbo iteration equalizing detection methods based on MCMC | |
CN114389754B (en) | Frequency domain adaptive turbo equalization method based on FBNLMS algorithm | |
CN112866151A (en) | Underwater sound MPSK signal blind Turbo equalization method based on channel blind estimation | |
CN105591990A (en) | Method for suppressing impulse interference | |
CN115208483B (en) | A Method of Underwater Acoustic Communication Under Polar Pulse Interference | |
CN116016055B (en) | Self-adaptive underwater acoustic channel equalization method based on vector approximation message transmission | |
CN106506425B (en) | A Partial Transmission Sequence Peak-to-Average Ratio Suppression Algorithm Based on Bit Error Accumulation Detection in Underwater Acoustic OFDM Communication System | |
CN115883298B (en) | Underwater acoustic communication method based on Haar distributed domain coding diversity | |
CN110233808B (en) | A kind of FTN system signal detection method | |
Fang et al. | Non-cooperative MPSK modulation identification in SIMO underwater acoustic multipath channel | |
CN115208482B (en) | A Method of Underwater Acoustic Communication Under Polar Pulse Interference | |
CN110166386A (en) | A kind of underwater sound communication equilibrium interpretation method based on recurrence Constructing Chaotic Code | |
CN115208481B (en) | Single carrier frequency domain equalization receiving processing method of underwater acoustic time-varying channel in polar environment | |
CN117880024B (en) | Pulse noise suppression method for polar ice underwater acoustic OFDM communication | |
CN118089741B (en) | Navigation data processing method based on turbo equalization in delay-Doppler domain | |
CN115987721B (en) | A channel impulse noise estimation method based on variational Bayesian learning | |
CN117880032B (en) | A MSK demodulation method based on a new gating network under impulse noise |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231020 Address after: 1294 Chuangxin Road, Songbei District, Harbin City, Heilongjiang Province, 150001 Patentee after: HARBIN XINGUANG PHOTOELECTRIC TECHNOLOGY Co.,Ltd. Address before: 150001 Intellectual Property Office, Harbin Engineering University science and technology office, 145 Nantong Avenue, Nangang District, Harbin, Heilongjiang Patentee before: HARBIN ENGINEERING University |