CN114957691B - 一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法 - Google Patents
一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法 Download PDFInfo
- Publication number
- CN114957691B CN114957691B CN202210573615.8A CN202210573615A CN114957691B CN 114957691 B CN114957691 B CN 114957691B CN 202210573615 A CN202210573615 A CN 202210573615A CN 114957691 B CN114957691 B CN 114957691B
- Authority
- CN
- China
- Prior art keywords
- small
- molecule ligand
- btc
- adsorption
- carbon capture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000003384 small molecules Chemical class 0.000 title claims abstract description 36
- 239000003463 adsorbent Substances 0.000 title claims abstract description 34
- 239000012621 metal-organic framework Substances 0.000 title claims abstract description 25
- 239000003446 ligand Substances 0.000 title claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000002184 metal Substances 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 37
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 36
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 14
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 11
- 239000004202 carbamide Substances 0.000 claims description 11
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 239000000839 emulsion Substances 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 150000001868 cobalt Chemical class 0.000 claims description 3
- 150000001879 copper Chemical class 0.000 claims description 3
- 150000002815 nickel Chemical class 0.000 claims description 3
- 150000003751 zinc Chemical class 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 56
- 239000000463 material Substances 0.000 abstract description 34
- 239000002131 composite material Substances 0.000 abstract description 22
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 230000009881 electrostatic interaction Effects 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 abstract description 2
- 125000004430 oxygen atom Chemical group O* 0.000 abstract description 2
- 229910052725 zinc Inorganic materials 0.000 abstract description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 22
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 19
- 229910002092 carbon dioxide Inorganic materials 0.000 description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 16
- 239000013148 Cu-BTC MOF Substances 0.000 description 15
- NOSIKKRVQUQXEJ-UHFFFAOYSA-H tricopper;benzene-1,3,5-tricarboxylate Chemical compound [Cu+2].[Cu+2].[Cu+2].[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1.[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1 NOSIKKRVQUQXEJ-UHFFFAOYSA-H 0.000 description 15
- 238000000926 separation method Methods 0.000 description 9
- 239000011787 zinc oxide Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 239000003345 natural gas Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003546 flue gas Substances 0.000 description 3
- 239000005431 greenhouse gas Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229910002480 Cu-O Inorganic materials 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229960000935 dehydrated alcohol Drugs 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- ALDOUWLIYKWJTN-UHFFFAOYSA-N fluoro(dioxido)borane;nickel(2+) Chemical compound [Ni+2].[O-]B([O-])F ALDOUWLIYKWJTN-UHFFFAOYSA-N 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 1
- 239000013384 organic framework Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- IPCXNCATNBAPKW-UHFFFAOYSA-N zinc;hydrate Chemical compound O.[Zn] IPCXNCATNBAPKW-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/008—Supramolecular polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/223—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
- B01J20/226—Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3071—Washing or leaching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3206—Organic carriers, supports or substrates
- B01J20/3208—Polymeric carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
- C10L3/104—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/20—Organic adsorbents
- B01D2253/204—Metal organic frameworks (MOF's)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/24—Hydrocarbons
- B01D2256/245—Methane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明属于吸附材料技术领域,公开了一种用于碳捕获的小分子配体修饰MOFs吸附剂。本发明利用小分子配体改性金属‑BTC,在常温下快速合成了具有CO2选择性的复合吸附材料,其结构式为Lx@M3(BTC)2(x≤1)(L=分子量小于80的小分子,M=Cu、Co、Ni、Zn),该类材料在常温常压下对CO2的吸附容量优于已报道的绝大多数MOFs吸附剂。小分子配体与不饱和金属位点结合,减弱了吸附剂对水蒸气的吸附作用力,增强了金属‑BTC的水稳定性,同时改性后材料的比表面积增大,小分子配体的N/O原子与CO2形成静电相互作用,提高了复合材料对CO2的吸附容量和CO2/N2、CO2/CH4选择性。
Description
技术领域
本发明属于吸附材料技术领域,具体涉及了一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法。
背景技术
温室气体浓度自21世纪以来快速上升,引发了众多环境问题,例如生物多样性减少,海洋酸化,极端天气频发,冰川融化,海平面上升,淹没沿海国家等等。其中CO2作为主要温室气体,对全球气温影响显著。双碳政策的落实有两大途经,一是从源头减少CO2排放,二是吸收空气中已排放的CO2,具体而言可分为燃烧前捕获、燃烧后捕获和富氧燃烧。燃烧前捕获涉及从天然气中捕获CO2。天然气的碳排放量远远小于煤炭和石油,被认为是煤炭和石油的有效替代能源,CH4是天然气的主要成分,CO2的存在大大降低了天然气的热值,且会加剧管道腐蚀,增大安全事故发生的风险,故从天然气中分离CO2和 CH4对我国能源结构调整具有重要战略意义。燃烧后捕获涉及从烟道气中捕获 CO2。在煤等化石燃料燃烧时会产生大量对环境有害的气态物质,主要成分为氮气、二氧化碳等,其中CO2对于制碱业和制糖工业是重要的化工原料,故CO2和N2分离对于减少大气中温室气体排放和回收CO2具有重要意义。
目前,化学吸收、低温蒸馏技术被广泛用于CO2捕获中,但高耗能、低重复使用率、低吸附容量显著提高了分离成本。近些年,吸附分离技术由于其常温常压的分离条件获得了广泛的关注。其关键是制备出具有高吸附容量和高选择性的固体吸附剂。
金属有机骨架(MOFs)具有骨架灵活、比表面积高、孔道结构可调等优势,被誉为最具潜力的吸附材料,广泛应用于气体分离、水吸附、污染物处理、催化等领域。其中,Cu-BTC(HKUST-1)被认为是常温常压下最好的吸附材料之一。Jerzy Choma等报道在273K,1atm下,Cu-BTC对CO2最高吸附量达到9.59 mmol/g(B.,Choma,J.Graphene-containing microporous composites for selective CO2 adsorption[J].Microporousand Mesoporous Materials,2020,292)。此外,Cu-BTC还被应用在烯烃烷烃分离、污染物降解、催化等领域。然而,水的存在会与Cu-BTC的配体产生竞争,使Cu-O键断裂,制约了Cu-BTC的工业应用,因此如何提高Cu-BTC的水稳定性成为了众多专家学者研究的热门课题之一。林等人通过ACN负载Cu-BTC提高了Cu-BTC的水稳定性,但CO2吸附性能略微下降(Lin,Z.,Lv,Z.,Zhou,X.,Xiao,H.,Wu,J.,Li,Z.Postsynthetic Strategy To Prepare ACN@Cu-BTCs with Enhanced Water Vapor Stability and CO2/CH4 Separation Selectivity[J].Industrial&Engineering Chemistry Research,2018,57 (10),3765-3772)。NikaVrtovec等人用乙二胺修饰Cu-BTC,其CO2性能仅为原材料的50%(Vrtovec,N.,Mazaj,M.,Buscarino,G.,Terracina,A.,Agnello,S., I.,J.,Zabukovec Logar,N.Structural and CO2 Capture Properties of Ethylenediamine-Modified HKUST-1Metal–Organic Framework[J].Crystal Growth &Design,2020,20(8),5455-5465)。由此可见,一些策略在提高水稳定性的同时,对吸附容量会产生负向影响。开发出具有高选择性和高吸附容量,且在水汽条件下稳定的MOFs材料,是实现CO2捕获,缓解环境问题的关键。
发明内容
针对MOFs用作化工分离材料的结构稳定性和吸附选择性挑战,本发明首要目的是提供一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法,该方法通过调控MOFs结构单元以增强其对CO2吸附分离能力,制备的新型小分子配体@金属-BTC吸附剂可从天然气中高效分离CO2和CH4和从烟道气中高效分离CO2和N2,该类材料的吸附容量和选择性均有增强。
本发明另一目的在于提供上述方法制备的用于碳捕获的小分子配体修饰 MOFs吸附剂,该小分子配体@金属-BTC的结构稳定性得到提高。
本发明通过以下技术方案实现:
一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法,主要包括以下步骤:
(1)将氧化锌(ZnO)粉末分散到水中,超声至乳状,命名为A;
(2)将金属盐和小分子配体分散到水中,命名为B。同时,将均苯三甲酸 (H3BTC)分散到无水乙醇(EtOH)中,命名为C;
(3)将N-N二甲基甲酰胺(DMF)和B、C溶液在搅拌下依次加入到ZnO 乳液中,该顺序能够降低Cu直接和配体配位所需要的能量,是一种节能又高效的方法,搅拌至溶液从浅蓝色变为深蓝色,得到固体;
(4)待固体沉淀完全后抽滤、洗涤,接着进行活化;
(5)将活化后的固体干燥,得到小分子配体@Cu-BTC。
步骤(1)中所述的ZnO和水的摩尔体积比为1mol:(2-3L);
步骤(2)中所述的金属盐指铜盐、钴盐、镍盐、锌盐的一种,其中铜盐指硫酸铜、氯化铜、硝酸铜、醋酸铜、乙酸铜等其中的一种;钴盐指硫酸钴、氯化钴、硝酸钴、乙酸钴等其中的一种;镍盐指硝酸镍、乙酸镍、氯化镍、四氟硼酸镍等其中的一种;锌盐指乙酸锌、氯化锌、硫酸锌、硝酸锌等其中的一种。
步骤(2)中所述的小分子配体为分子量小于80的小分子,包括羟基乙酸 (GA)、1,2,4-三氮唑(TZ)、尿素(urea)等其中的一种;
步骤(2)中所述的均苯三甲酸(H3BTC)和无水乙醇的摩尔体积比为 1mol:(3-5L)。
步骤(2)中所述的金属盐和水的摩尔体积比为1mol:(1-1.3L);
步骤(2)中所述的小分子配体、金属盐和均苯三甲酸的摩尔比为 (0-1):1:(0.5-0.7);
步骤(1)-(3)中所述的水总量:DMF:无水乙醇的体积比为(0.8-1.2):(0.8-1.2)1;
步骤(3)中所述的ZnO与B中的金属盐的摩尔比为1:(1.9-2.2);
步骤(3)中所述的搅拌时间为1-60min;
步骤(4)中所述的洗涤是指依次用DMF和EtOH洗涤固体2~5遍;
步骤(5)中所述的活化是指使用无水乙醇(EtOH)和甲醇(MeOH)浸泡活化,先使用无水乙醇,再进一步用分子更小、表面张力稍大的甲醇替换无水乙醇和孔道内未反应的分子,通过加热使甲醇挥发,孔道得以充分暴露,具体为用无水乙醇和甲醇各浸泡两天,每24h换一次溶剂;
步骤(5)中所述的干燥为真空干燥箱中100-120℃干燥8~24h。
通过上述方法制备得到的一种用于碳捕获的小分子配体修饰MOFs吸附剂材料。
与现有技术相比,本发明所制备的用于碳捕获的小分子配体修饰MOFs吸附剂具有以下优点和有益效果:
本发明利用小分子配体修饰MOFs,在常温下快速合成了具有CO2选择性的复合吸附材料,其结构式为Lx@M3(BTC)2(x≤1)(L=分子量小于80的小分子,M=Cu、Co、Ni、Zn)。该类材料在常温常压下对CO2的吸附容量优于已报道的绝大多数MOFs吸附剂,且制备方法绿色低耗,操作简单。小分子配体与不饱和金属位点结合,减弱了吸附剂对水蒸气的吸附作用力,增强了金属-BTC 的水稳定性,同时改性后材料的比表面积增大,小分子配体的N/O原子与CO2形成静电相互作用,提高了复合材料对CO2的吸附容量和CO2/N2、CO2/CH4选择性。本发明材料在国际上是首次报道,且小分子配体价格便宜,原料易得,为实现在常温常压下工业化捕获CO2奠定了技术基础。
附图说明
图1是实施例1,2,3,4,5和对比例制备的复合吸附材料的XRD表征图;
图2是实施例1,2,3和对比例制备的复合吸附材料的N2吸附等温线图(77 K);
图3是复合吸附材料对CO2、N2的吸附等温线(298K),其中(a)、(b)、 (c)和(d)图分别为实施例1、2、3制备的复合吸附材料和对比例(Cu-BTC) 在298K,1bar条件下对CO2、N2的吸附等温线;
图4是复合吸附材料对CO2、CH4的吸附等温线(298K),其中(a)、(b)、 (c)和(d)图分别为实施例1、2、3制备的复合吸附材料和对比例(Cu-BTC) 在298K,1bar条件下对CO2、CH4的吸附等温线;
图5是实施例1和对比例在RH=55%下放置一段时间后的CO2吸附量变化图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
称0.293g ZnO于蓝盖瓶,加水8mL,超声15min至乳浊液,命名A。称 1.74g Cu(NO3)2·3H2O和0.1442g尿素于烧杯,加入8mL水,超声使其完全溶解,命名B。称0.84g H3BTC于烧杯,加入16mL无水乙醇,超声使其完全溶解,命名C。以16mL DMF、B和C溶液在搅拌下依次倒入蓝盖瓶A中,搅拌 15min,静止2min,用DMF和无水乙醇依次抽滤洗涤,再用无水乙醇和甲醇各浸泡两天,每24h换一次溶剂。最后在120℃下干燥8h得到尿素@Cu-BTC,记为urea@Cu-BTC。
实施例2
称0.293g ZnO于蓝盖瓶,加水7.2mL,超声15min至乳浊液,命名A。称 1.16gCuCl2·2H2O和0.1442g羟基乙酸于烧杯,加入6.8mL水,搅拌使其完全溶解,命名B。称0.76gH3BTC于烧杯,加入12mL无水乙醇,搅拌使其完全溶解,命名C。以16mL DMF、B和C的顺序倒入蓝盖瓶A中,搅拌30min,静止7min,用DMF和无水乙醇依次抽滤洗涤,再用无水乙醇和甲醇各浸泡两天,每24h换一次溶剂。最后在100℃下干燥24h得到羟基乙酸@Cu-BTC,记为GA@Cu-BTC。
实施例3
称0.293g ZnO于蓝盖瓶,加水10.8mL,超声15min至乳浊液,命名A。称10.2gCoCl2·6H2O和0.1442g 1,2,4-三氮唑于烧杯,加入7.8mL水,超声使其完全溶解,命名B。称1.06g H3BTC于烧杯,加入20mL无水乙醇,超声使其完全溶解,命名C。以16mL DM、B和C的顺序倒入蓝盖瓶A中,搅拌60min,静止5min,用DMF和无水乙醇依次抽滤洗涤,再用无水乙醇和甲醇各浸泡两天,每24h换一次溶剂。最后在110℃下干燥16h得到1,2,4-三氮唑@Co-BTC,记为TZ@Co-BTC。
实施例4
称0.293g ZnO于蓝盖瓶,加水10.8mL,超声15min至乳浊液,命名A。称1.71gNiCl2·6H2O和0.1442g尿素于烧杯,加入7.2mL水,超声使其完全溶解,命名B。称0.98gH3BTC于烧杯,加入15mL无水乙醇,超声使其完全溶解,命名C。以16mL DM、B和C的顺序倒入蓝盖瓶A中,搅拌30min,静止3min,用DMF和无水乙醇依次抽滤洗涤,再用无水乙醇和甲醇各浸泡两天,每24h换一次溶剂。最后在110℃下干燥11h得到尿素@Ni-BTC,记为 urea@Ni-BTC。
实施例5
称0.293g ZnO于蓝盖瓶,加水8.5mL,超声20min至乳浊液,命名A。称2.32g Zn(NO3)2·6H2O和0.1442g 1,2,4-三氮唑于烧杯,加入8.3mL水,搅拌使其完全溶解,命名B。称0.88g H3BTC于烧杯,加入15mL无水乙醇,超声使其完全溶解,命名C。以16mL DM、B和C的顺序倒入蓝盖瓶A中,搅拌25min,静止1min,用DMF和无水乙醇依次抽滤洗涤,再用无水乙醇和甲醇各浸泡两天,每24h换一次溶剂。最后在120℃下干燥13h得到1,2,4-三氮唑@Zn-BTC,记为TZ@Zn-BTC。
对比例
称0.293g ZnO于蓝盖瓶,加水8mL,超声15min至乳浊液,命名A。称 1.74g Cu(NO3)2·3H2O于烧杯,加入8mL水,超声使其完全溶解,命名B。称 0.84g H3BTC于烧杯,加入16mL无水乙醇,超声使其完全溶解,命名C。以 16mL DMF、B和C的顺序倒入蓝盖瓶A中,搅拌15min,静止5min,用DMF 和无水乙醇依次抽滤洗涤,再用无水乙醇和甲醇各浸泡两天,每24h换一次溶剂。最后在120℃下干燥8h得到Cu-BTC,记为Cu-BTC。
复合吸附材料吸附剂表征和性能测定
实施例1、2、3、4、5制备的复合吸附材料和对比例(Cu-BTC)所具有的结构特征、CO2、N2吸附性能测试结果如下:
表1应用ASAP 2460比表面积和孔隙分布结构测试仪测试了实施例1、2、 3制备的复合吸附材料和对比例的比表面积和孔隙结构表征参数,测试结果如表 1所示。
表1
(注:a SBET为BET比表面积;b Vt为总孔容,c Vmicro为微孔孔容,d Vmeso为介孔孔容。)
表1表明,本发明制备的用于碳捕获的小分子配体修饰MOFs吸附剂比表面积约在1601~1901m2/g,总孔容范围为0.69~0.79cm3/g。说明本发明制备的材料孔道结构发达。
图1为实施例1,2,3,4,5制备的复合吸附材料和对比例的XRD谱图。它们在2θ=5°-30°范围内的特征峰如图1所示,说明小分子配体的负载并未影响金属-BTC的晶体生长。
图2为实施例1,2,3制备的复合吸附材料和对比例在77K下的N2吸附脱附等温线。由图可知,在低压下实施例1,2,3和对比例均为Ⅰ型等温线,说明他们都具有发达的微孔结构。此外,实施例1,2,3对N2吸附量比对比例高,说明制备的复合吸附材料微孔和比表面积比对比例高。
图3中的(a)、(b)、(c)和(d)图分别为实施例1,2,3制备的复合吸附材料和对比例在298K,1bar条件下对CO2、N2的吸附等温线。从图中可以看出,与对比例相比,实施例材料对CO2的吸附容量更高,其中实施例1 的吸附容量最高,达5.89mmol/g,高于已发表的大多数MOFs材料。具体地,实施例1,2,3和对比例制得的吸附剂在298K条件下对CO2的吸附量分别为 5.89mmol/g、5.18mmol/g、4.78mmol/g、4.76mmol/g,实施例1,2,3和对比例制得的吸附剂在298K条件下对N2的吸附容量分别达到了0.34mmol/g、0.31 mmol/g、0.29mmol/g、0.35mmol/g。此外,复合材料对CO2和N2的吸附强度相差较大,因此能够使CO2从N2中成功分离,实现常温常压下从烟道气中捕获 CO2,缓解温室效应。本技术为早日达到碳中和提供了一种技术可能。
图4中的(a)、(b)、(c)和(d)图分别为实施例1,2,3制备的复合吸附材料和对比例在298K,1bar条件下对CO2、CH4的吸附等温线。具体地,实施例1,2,3和对比例制得的吸附剂在298K条件下对CO2的吸附量分别为5.89mmol/g、5.18mmol/g、4.78mmol/g、4.76mmol/g,实施例1,2,3 和对比例制得的吸附剂在298K条件下对CH4的吸附容量分别达到了1.11 mmol/g、1.09mmol/g、1.01mmol/g、1.00mmol/g。此外,复合材料对CO2和 CH4的吸附强度相差较大,因此能够使CO2从CH4中成功分离,实现常温常压下从天然气中捕获CO2。
图5是实施例1和对比例在RH=55%的环境中放置不同天数后,其CO2吸附量变化的百分比图。在RH=55%环境下放置21天后,实施例1的CO2吸附量仅下降11%。表明本发明的urea@Cu-BTC材料的水汽稳定性得到很大的增强。
表6是实施例1,2,3制备的复合吸附材料和对比例吸附CO2/N2、CO2/CH4的选择性(由吸附等温线低压下的亨利系数计算得到)。
表6
吸附剂 | urea@Cu-BTC | GA@Cu-BTC | TZ@Co-BTC | Cu-BTC |
CO<sub>2</sub>/N<sub>2</sub>吸附选择性 | 23.07 | 20.05 | 19.98 | 19.91 |
CO<sub>2</sub>/CH<sub>4</sub>吸附选择性 | 5.65 | 5.50 | 5.41 | 5.38 |
表6表明,本发明制备的实施例CO2/N2、CO2/CH4亨利选择性系数均大于原材料,说明本发明的技术手段能够提高材料的吸附选择性。
实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (7)
1.一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法,其特征在于主要包括以下步骤:
(1)将ZnO分散到水中,超声至乳状,命名为A;
(2)将金属盐和小分子配体分散到水中,命名为B;同时,将均苯三甲酸分散到无水乙醇中,命名为C;
(3)将DMF和B、C溶液在搅拌下依次加入到ZnO乳液中,搅拌至溶液从浅蓝色变为深蓝色,得到固体;
(4)待固体沉淀完全后抽滤、洗涤,接着进行活化;
(5)将活化后的固体干燥,得到小分子配体@金属-BTC;
步骤(2)中所述的金属盐指铜盐、钴盐、镍盐、锌盐中的一种;
步骤(2)中所述的小分子配体为分子量小于80的小分子,为羟基乙酸、1,2,4-三氮唑、尿素中的一种。
2.根据权利要求1中所述的一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法,其特征在于:步骤(1)中所述的ZnO和水的摩尔体积比为1mol:2-3L。
3.根据权利要求1中所述的一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法,其特征在于:步骤(2)中所述的均苯三甲酸和无水乙醇的摩尔体积比为1mol:3-5L;
步骤(2)中所述的金属盐和水的摩尔体积比为1mol:1-1.3L。
4.根据权利要求1中所述的一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法,其特征在于:步骤(1)-(3)中所述的水总量:DMF:无水乙醇的体积比为(0.8-1.2):(0.8-1.2) :1。
5.根据权利要求1中所述的一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法,其特征在于:步骤(3)中所述的ZnO与B中的金属盐的摩尔比为1: (1.9-2.2)。
6.根据权利要求1中所述的一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法,其特征在于:步骤(4)中所述的洗涤是指依次用DMF和EtOH洗涤固体2~5遍;
步骤(5)中所述的活化是指使用无水乙醇和甲醇各浸泡两天,每24 h换一次溶剂;所述的干燥为真空干燥箱中100-120℃干燥8~24 h。
7.根据权利要求1~6中任一项所述的方法制备得到的一种用于碳捕获的小分子配体修饰MOFs吸附剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210573615.8A CN114957691B (zh) | 2022-05-25 | 2022-05-25 | 一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210573615.8A CN114957691B (zh) | 2022-05-25 | 2022-05-25 | 一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114957691A CN114957691A (zh) | 2022-08-30 |
CN114957691B true CN114957691B (zh) | 2023-02-14 |
Family
ID=82955245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210573615.8A Active CN114957691B (zh) | 2022-05-25 | 2022-05-25 | 一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114957691B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104151335A (zh) * | 2014-08-01 | 2014-11-19 | 南开大学 | 一种对酸碱稳定的金属有机框架材料及其制备方法和应用 |
CN105833852A (zh) * | 2016-05-26 | 2016-08-10 | 华南理工大学 | 一种MOFs复合吸附材料IMI@Cu-BTC及其制备方法 |
CN106000321A (zh) * | 2016-05-26 | 2016-10-12 | 华南理工大学 | 一种MOFs复合吸附材料TED@Cu-BTC及其制备方法 |
CN106457120A (zh) * | 2014-04-22 | 2017-02-22 | 加利福尼亚大学董事会 | 酸性气体在功能化的金属‑有机骨架中的协同化学吸附 |
CN108339522A (zh) * | 2018-02-26 | 2018-07-31 | 华南理工大学 | 一种氨基酸@Cu-BTC复合吸附剂及其制备方法 |
CN108840879A (zh) * | 2018-05-17 | 2018-11-20 | 西北师范大学 | 一种双配体mof配合物及其合成和在荧光识别铁离子的应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140163111A1 (en) * | 2009-10-30 | 2014-06-12 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Porous biomolecule-containing metal-organic frameworks |
DE102018222193A1 (de) * | 2018-12-18 | 2020-06-18 | Henkel Ag & Co. Kgaa | Verfahren zur Herstellung von Metal Organic Frameworks |
-
2022
- 2022-05-25 CN CN202210573615.8A patent/CN114957691B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106457120A (zh) * | 2014-04-22 | 2017-02-22 | 加利福尼亚大学董事会 | 酸性气体在功能化的金属‑有机骨架中的协同化学吸附 |
CN104151335A (zh) * | 2014-08-01 | 2014-11-19 | 南开大学 | 一种对酸碱稳定的金属有机框架材料及其制备方法和应用 |
CN105833852A (zh) * | 2016-05-26 | 2016-08-10 | 华南理工大学 | 一种MOFs复合吸附材料IMI@Cu-BTC及其制备方法 |
CN106000321A (zh) * | 2016-05-26 | 2016-10-12 | 华南理工大学 | 一种MOFs复合吸附材料TED@Cu-BTC及其制备方法 |
CN108339522A (zh) * | 2018-02-26 | 2018-07-31 | 华南理工大学 | 一种氨基酸@Cu-BTC复合吸附剂及其制备方法 |
CN108840879A (zh) * | 2018-05-17 | 2018-11-20 | 西北师范大学 | 一种双配体mof配合物及其合成和在荧光识别铁离子的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN114957691A (zh) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110496604B (zh) | 一种钴镍双金属有机框架二氧化碳吸附材料及其制备方法与应用 | |
CN103372420B (zh) | 金属有机骨架与胺修饰氧化石墨的复合材料及其制备 | |
CN107362807B (zh) | 一种Mn/Co基低温SCO催化剂及其制备方法 | |
CN107722285B (zh) | 一种憎水性锆金属有机骨架材料及其制备方法 | |
CN107353412B (zh) | 一种金属有机骨架材料的制备方法及应用 | |
CN110773120A (zh) | 金属盐改性分子筛及其制备方法和应用 | |
CN105233802B (zh) | 一种掺杂l‑精氨酸的铜基金属有机骨架材料及其制备方法 | |
CN113683784A (zh) | 金属有机骨架二氧化碳吸附材料的制备方法及应用 | |
CN109232781B (zh) | 一种含氮多孔有机聚合物的制备方法 | |
CN115554986B (zh) | 一种具有高效吸附作用的金属有机框架材料及其制备方法和应用 | |
CN114588879B (zh) | 一种IL@MOFs复合材料及其制备方法与应用 | |
CN110773121B (zh) | 硼酸改性分子筛及其制备方法和应用 | |
CN110102287B (zh) | 一种金属掺杂改性层状δ-MnO2及其制备和应用 | |
WO2021143112A1 (zh) | 一种超微孔锆基金属有机骨架材料及其制备方法和应用 | |
CN114570340B (zh) | 一种氧化石墨烯/金属有机骨架复合材料在光控脱附挥发性有机物中的应用 | |
CN110404530A (zh) | 一种多孔纳米氧化锰催化剂、其制备和应用 | |
CN114957691B (zh) | 一种用于碳捕获的小分子配体修饰MOFs吸附剂的制备方法 | |
CN112979983B (zh) | 一种表面掺杂多孔ZIF-8的柔性MOFs材料、制备方法及应用 | |
WO2014056164A1 (zh) | 一种Cu-BTC材料的再生方法 | |
CN113967482A (zh) | 一种介尺度调控制备双金属六面体纳米片Ti-Ni-MOF催化剂的方法及应用 | |
CN116730825B (zh) | 一种利用溶剂调控甲酸铝形貌的微波辅助合成方法及其应用 | |
CN110773129A (zh) | 二元取代苯改性分子筛及其制备方法和应用 | |
CN114887594B (zh) | 一种疏水性hkust-1复合材料、制备方法及碳中和应用 | |
CN110040714A (zh) | 一种吸附二氧化碳用氮磷掺杂多孔碳材料及其制备方法 | |
CN116284063A (zh) | 一种含氮羧酸过渡金属配合物及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |