CN103715339A - GaN-based light emitting diode and preparation method thereof - Google Patents
GaN-based light emitting diode and preparation method thereof Download PDFInfo
- Publication number
- CN103715339A CN103715339A CN201310665463.5A CN201310665463A CN103715339A CN 103715339 A CN103715339 A CN 103715339A CN 201310665463 A CN201310665463 A CN 201310665463A CN 103715339 A CN103715339 A CN 103715339A
- Authority
- CN
- China
- Prior art keywords
- gallium nitride
- type
- layer
- nitride layer
- emitting diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 104
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 101
- 230000000903 blocking effect Effects 0.000 claims abstract description 24
- 238000001312 dry etching Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims 1
- 238000013517 stratification Methods 0.000 claims 1
- 238000000206 photolithography Methods 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 25
- 210000002381 plasma Anatomy 0.000 description 21
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 238000001039 wet etching Methods 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000004020 luminiscence type Methods 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000010980 sapphire Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000003877 atomic layer epitaxy Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000039 congener Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- MSNOMDLPLDYDME-UHFFFAOYSA-N gold nickel Chemical compound [Ni].[Au] MSNOMDLPLDYDME-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005289 physical deposition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/835—Reflective materials
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种氮化镓基发光二极管及其制备方法,所述氮化镓基发光二极管包括X型氮化镓层和设置于X型氮化镓层上的X型电极;所述X型电极下部的X型氮化镓层上形成有电流阻隔区域;电流阻隔区域的面积小于X型电极的面积;所述X型氮化镓层为N型氮化镓层或P型氮化镓层,所述X型电极对应X型氮化镓层为N型电极或P型电极。本发明利用光刻和等离子干法刻蚀技术,使被处理表面形成高阻区域,最终实现电流分向导引的目的,使LED电极区域的无效发光被大大降低。
The invention discloses a gallium nitride-based light emitting diode and a preparation method thereof. The gallium nitride-based light emitting diode comprises an X-type gallium nitride layer and an X-type electrode arranged on the X-type gallium nitride layer; the X A current blocking region is formed on the X-type GaN layer at the bottom of the X-type electrode; the area of the current blocking region is smaller than that of the X-type electrode; the X-type GaN layer is an N-type GaN layer or a P-type GaN layer layer, and the X-type electrode corresponds to the X-type gallium nitride layer as an N-type electrode or a P-type electrode. The invention utilizes photolithography and plasma dry etching technology to form a high-resistance area on the treated surface, finally realizes the purpose of current splitting and guiding, and greatly reduces the invalid light emission of the LED electrode area.
Description
技术领域:Technical field:
本发明属于氮化镓基发光二极管制造工艺技术领域,具体涉及一种氮化镓基发光二极管及其制备方法。The invention belongs to the technical field of gallium nitride-based light-emitting diode manufacturing technology, and specifically relates to a gallium nitride-based light-emitting diode and a preparation method thereof.
背景技术:Background technique:
发光二极管(Light Emitting Diode,简称LED)的发展经历了数十年历史,已经在信号显示、背光源和固态照明领域获得了极其广泛的应用,给人类的生活带来了各种便利。以III-V族化合物氮化镓(GaN)材料为基础的LED器件(包括其同族In、Al元素掺杂获得的各种合金材料体系)可以覆盖从深紫外到可见光的大部分波段。LED器件制造大多是通过外延方式生长形成P-型和N-型层薄膜材料,并在P-型和N-型层间生长不同能带结构的周期性多层材料组成载流子复合区即发光区。其外延生长衬底多采用蓝宝石(Al2O3)或碳化硅(SiC)等材料,然后再利用半导体加工工艺完成芯片工作区域定义、电极的制作和表面织构化等步骤形成发光器件,最终经封装后加上正向电压使其而发光。在器件设计工作中,根据能带设计理论和实际工艺调控,可以实现不同范围波长的光输出,并获得广泛的实际应用。Light Emitting Diode (LED for short) has been developed for decades, and has been widely used in the fields of signal display, backlight and solid-state lighting, bringing various conveniences to human life. LED devices based on III-V compound gallium nitride (GaN) materials (including various alloy material systems obtained by doping its congeners In and Al elements) can cover most of the wavelength bands from deep ultraviolet to visible light. Most LED devices are manufactured by epitaxial growth to form P-type and N-type layer thin film materials, and grow periodic multilayer materials with different energy band structures between the P-type and N-type layers to form the carrier recombination zone. Luminous area. The epitaxial growth substrate mostly uses materials such as sapphire (Al 2 O 3 ) or silicon carbide (SiC), and then uses semiconductor processing technology to complete the steps of chip working area definition, electrode fabrication, and surface texturing to form light-emitting devices. After being packaged, a forward voltage is added to make it emit light. In the device design work, according to the energy band design theory and actual process control, the optical output of different wavelengths can be realized, and a wide range of practical applications can be obtained.
水平结构LED器件是将N型和P型电极置于LED薄膜的同一侧,而在此薄膜的底层是绝缘的蓝宝石材料衬底。P-型和N-型电极制作是采用光刻、局部干法刻蚀、物理气相沉积等工艺加工获得,分布在芯片同一表面的不同位置,其注入工作电流由水平方向流过LED的发光区。这种器件由于不均匀的电子横向注入和侧面扩散导致从P-型电极区到N-型电极区的不均匀电流注入,限制了单颗LED最大芯片尺寸以及整体器件的发光效率。同时由于氮化镓材料和空气或封装材料的折射率差异较大,其全反射角较大导致出光效率低。另一种器件是采用芯片倒置的方式,将芯片通过厚的金属焊层与导电材料如硅衬底压合在一起,同时在芯片制备时使用高反射镜结构,使芯片从蓝宝石面出光,可以获得更高的发光效率,但P和N极仍处于同一层。第三种方法是彻底改变LED器件的结构,采用紫外激光剥离等衬底去除和转移的方式,利用紫外激光在蓝宝石材料与GaN材料的界面的强烈光吸收产生GaN局部热分解,实现LED薄膜和蓝宝石衬底的分离。使N-型和P-型电极从水平结构变成垂直结构,即注入电流主要以垂直于薄膜表面的方式均匀流过LED器件结构,实现垂直结构LED器件,不仅大幅度提高工作电流,且由于散热效果同时获得改善,其器件的可靠性也大幅度提升。The horizontal structure LED device places the N-type and P-type electrodes on the same side of the LED film, and the bottom layer of the film is an insulating sapphire material substrate. The P-type and N-type electrodes are manufactured by photolithography, partial dry etching, physical vapor deposition and other processes, and are distributed on different positions on the same surface of the chip, and the injected working current flows through the light-emitting area of the LED from the horizontal direction. . Due to the uneven electron lateral injection and lateral diffusion of this device, the uneven current injection from the P-type electrode area to the N-type electrode area limits the maximum chip size of a single LED and the luminous efficiency of the overall device. At the same time, due to the large difference in refractive index between gallium nitride material and air or packaging material, its total reflection angle is large, resulting in low light extraction efficiency. Another device is to use the chip upside-down method. The chip is pressed together with a conductive material such as a silicon substrate through a thick metal solder layer. Get higher luminous efficiency, but P and N poles are still in the same layer. The third method is to completely change the structure of LED devices, using substrate removal and transfer methods such as ultraviolet laser lift-off, and using the strong light absorption of ultraviolet laser at the interface between sapphire material and GaN material to generate local thermal decomposition of GaN to realize LED thin film and Separation of sapphire substrates. Make the N-type and P-type electrodes change from a horizontal structure to a vertical structure, that is, the injection current mainly flows through the LED device structure in a manner perpendicular to the surface of the film to realize a vertical structure LED device, which not only greatly improves the operating current, but also because At the same time, the heat dissipation effect is improved, and the reliability of the device is also greatly improved.
但在以上各种结构LED芯片结构中,由于电极焊盘下方是电流注入最集中的区域,该区域发光效果最为明显,然而由于电极的遮挡使其形成无效发光(被电极反射后在器件内部再经多次反射被材料吸收形成热效应),因此在LED芯片工艺中已经普遍采用绝缘材料制备电流阻隔层(CBL–current blocking layer),使注入电流减少或避开此区域,减少了无效发光。这种工艺需要在电极之下的氮化镓表面上,利用化学气相沉积、光刻、湿法蚀刻制备具有一定厚度的电介质材料层,如氮化硅或氧化硅;由于该位置的多界面特性其表面状况较为复杂,若工艺处理不当,很容易带来后续大面积掉电极等一系列量产异常状况,并造成无法挽回的损失。However, in the LED chip structures with various structures above, since the area under the electrode pad is the area where the current injection is the most concentrated, the luminous effect in this area is the most obvious. After multiple reflections, it is absorbed by the material to form a thermal effect), so insulating materials have been widely used in the LED chip process to prepare the current blocking layer (CBL–current blocking layer), so that the injected current can be reduced or avoided in this area, reducing ineffective luminescence. This process requires the use of chemical vapor deposition, photolithography, and wet etching to prepare a dielectric material layer with a certain thickness on the surface of gallium nitride under the electrode, such as silicon nitride or silicon oxide; due to the multi-interface characteristics of this position Its surface condition is relatively complicated. If the process is not handled properly, it is easy to cause a series of abnormalities in mass production, such as large-area electrode dropouts, and cause irreparable losses.
发明内容:Invention content:
本发明的目的在于,提供一种氮化镓基发光二极管及其制备方法,以改善和提高氮化镓基发光二极管发光效率。The object of the present invention is to provide a gallium nitride-based light-emitting diode and a preparation method thereof, so as to improve and increase the luminous efficiency of the gallium nitride-based light-emitting diode.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种氮化镓基发光二极管,包括X型氮化镓层和设置于X型氮化镓层上的X型电极;所述X型电极下部的X型氮化镓层上形成有电流阻隔区域;电流阻隔区域的面积小于X型电极的面积;所述X型氮化镓层为N型氮化镓层或P型氮化镓层,所述X型电极对应X型氮化镓层为N型电极或P型电极。A gallium nitride-based light-emitting diode, comprising an X-type gallium nitride layer and an X-type electrode disposed on the X-type gallium nitride layer; a current blocking region is formed on the X-type gallium nitride layer under the X-type electrode The area of the current blocking region is smaller than the area of the X-type electrode; the X-type GaN layer is an N-type GaN layer or a P-type GaN layer, and the X-type electrode corresponds to an X-type GaN layer of N Type electrode or P type electrode.
本发明进一步的改进在于:所述电流阻隔区域为在X型氮化镓层上采用等离子体进行干法刻蚀,使该区域P型氮化镓材料的导电能力下降而形成。The further improvement of the present invention is that: the current blocking region is formed by performing dry etching with plasma on the X-type GaN layer to reduce the conductivity of the P-type GaN material in this region.
本发明进一步的改进在于:X型电极的下部设有反光镜层。The further improvement of the present invention lies in that: the lower part of the X-shaped electrode is provided with a mirror layer.
本发明进一步的改进在于:所述氮化镓基发光二极管工作时,电流阻隔区域具有电流阻挡作用对电流分向导引,电流从X型氮化镓层的电流阻隔区域以外的其他低阻区域流过,减少了X型电极因遮挡效应造成的发光损失,间接提高电流阻隔区域以外其他区域的发光。The further improvement of the present invention is that: when the gallium nitride-based light-emitting diode is working, the current blocking region has a current blocking effect to guide the current splitting, and the current flows from other low-resistance regions other than the current blocking region of the X-type gallium nitride layer. Flowing through reduces the luminescence loss caused by the blocking effect of the X-shaped electrode, and indirectly improves the luminescence of other areas except the current blocking area.
本发明进一步的改进在于:采用等离子体进行干法刻蚀制备电流阻隔区域时,采用O2等离子体、F基等离子体或两者混合等离子。The further improvement of the present invention is that: when using plasma for dry etching to prepare the current blocking region, O2 plasma, F-based plasma or a mixture of the two plasmas is used.
本发明进一步的改进在于:所述氮化镓基发光二极管为水平结构,所述X型氮化镓层为P型氮化镓层,所述X型电极为P型电极;P型氮化镓层下方依次设有多量子阱层、N型氮化镓层和衬底;P型氮化镓层上设有TCL透明导电层TCL透明导电层部分被刻蚀掉露出P型氮化镓层上的电流阻隔区域;P型电极设置于TCL透明导电层被刻蚀掉部分的上部;N型氮化镓层(11)上形成有N电极区域,N电极区域上设有N型电极。The further improvement of the present invention is that: the gallium nitride-based light-emitting diode has a horizontal structure, the X-type gallium nitride layer is a P-type gallium nitride layer, and the X-type electrode is a P-type electrode; the P-type gallium nitride layer is a P-type gallium nitride layer; A multi-quantum well layer, an N-type gallium nitride layer, and a substrate are provided in sequence below the layer; a TCL transparent conductive layer is provided on the P-type gallium nitride layer, and part of the TCL transparent conductive layer is etched away to expose the P-type gallium nitride layer. The current blocking area; the P-type electrode is arranged on the upper part of the etched part of the TCL transparent conductive layer; an N-electrode area is formed on the N-type gallium nitride layer (11), and an N-type electrode is arranged on the N-electrode area.
本发明进一步的改进在于:所述氮化镓基发光二极管为垂直结构,所述X型氮化镓层为N型氮化镓层,所述X型电极为N型电极;N型氮化镓层下方依次设有多量子阱层、P型氮化镓层、金属键合层、导电衬底和焊接层。The further improvement of the present invention is that: the gallium nitride-based light emitting diode has a vertical structure, the X-type gallium nitride layer is an N-type gallium nitride layer, and the X-type electrode is an N-type electrode; the N-type gallium nitride layer is an N-type gallium nitride layer; A multi-quantum well layer, a p-type gallium nitride layer, a metal bonding layer, a conductive substrate and a welding layer are sequentially arranged under the layer.
本发明进一步的改进在于:电流阻隔区域的比接触电阻率>10-5Ω·cm2。The further improvement of the present invention lies in: the specific contact resistivity of the current blocking region is >10 -5 Ω·cm 2 .
一种氮化镓基发光二极管的制备方法,在所述X型氮化镓层上利用O基等离子体、F基等离子体或二者混合的离子体对该X型氮化镓层上部分区域进行等离子干法刻蚀,使该区域X型氮化镓材料的导电能力下降,获得电流阻隔区域;然后再在电流阻隔区域的上方制备出X型电极。A method for preparing a gallium nitride-based light-emitting diode, using O-based plasma, F-based plasma, or a mixture of the two ions on the X-type gallium nitride layer to treat the upper part of the X-type gallium nitride layer Perform plasma dry etching to reduce the conductivity of the X-type gallium nitride material in this region to obtain a current blocking region; then prepare an X-type electrode above the current blocking region.
本发明利用光刻和等离子干法刻蚀技术,对LED芯片P型电极下区域进行表面处理,使其成为高阻区域以获得电流阻挡效果,使电流从P型氮化镓层其他低阻区域流过,减少了该电极区域因遮挡效应造成的发光损失,间接提高其他区域的发光,并使用铝镜或银镜作为P电极金属结构的组成部分,从而实现高效发光的目的。The invention utilizes photolithography and plasma dry etching technology to carry out surface treatment on the area under the P-type electrode of the LED chip to make it a high-resistance area to obtain a current blocking effect, so that the current flows from other low-resistance areas of the P-type gallium nitride layer. Flowing through reduces the luminous loss of the electrode area due to the shading effect, indirectly improves the luminous light of other areas, and uses aluminum mirrors or silver mirrors as part of the metal structure of the P electrode, so as to achieve the purpose of high-efficiency luminescence.
本发明中,外延生长工艺包括但不限于金属有机化学气相外延,分子束外延、原子层外延、脉冲激光溅射;外延生长衬底的选取包括但不限于蓝宝石、氮化铝、氮化镓、硅、碳化硅、氧化锌,其晶向包括但不限于0001等极化、半极化和非极化方向;所选衬底包含各种特征尺寸的图形化表面结构。In the present invention, the epitaxial growth process includes but not limited to metal organic chemical vapor phase epitaxy, molecular beam epitaxy, atomic layer epitaxy, pulsed laser sputtering; the selection of epitaxial growth substrate includes but not limited to sapphire, aluminum nitride, gallium nitride, Silicon, silicon carbide, and zinc oxide, whose crystal orientations include but not limited to polarized, semipolarized, and nonpolarized directions such as 0001; the selected substrate contains patterned surface structures of various feature sizes.
本发明中,LED芯片(氮化镓基发光二极管)包括但不限于水平结构LED芯片、倒装结构LED芯片、垂直结构LED芯片,或其他特有结构的LED芯片。In the present invention, LED chips (gallium nitride-based light emitting diodes) include but are not limited to horizontal structure LED chips, flip-chip structure LED chips, vertical structure LED chips, or LED chips with other unique structures.
本发明中,等离子干法刻蚀工艺,包括但不限于O2等离子体、F基等离子体、或两者混合等离子。In the present invention, the plasma dry etching process includes but not limited to O 2 plasma, F-based plasma, or a mixture of the two plasmas.
本发明中,芯片制备工艺流程,包括但不限于光刻、湿法和干法刻蚀、电子束或溅射、化学气相沉积、退火方法。In the present invention, the chip preparation process flow includes but not limited to photolithography, wet and dry etching, electron beam or sputtering, chemical vapor deposition, and annealing methods.
本发明中,P型氮化镓层上设有P型电极下的反光镜层,为单一或多层金属或化合物结构,包括但不限于银、铝、金、DBR或ODR层。In the present invention, the reflector layer under the P-type electrode is arranged on the P-type GaN layer, which is a single or multi-layer metal or compound structure, including but not limited to silver, aluminum, gold, DBR or ODR layers.
本发明中,P型氮化镓层上设有P型电极金属层、N型氮化镓层上设置有N型电极金属层,分别与P/N型层半导体材料形成良好欧姆接触,为单一或多层金属结构,包括但不限于镍、钛,铝,金,铂及其合金。In the present invention, the P-type gallium nitride layer is provided with a P-type electrode metal layer, and the N-type gallium nitride layer is provided with an N-type electrode metal layer, respectively forming good ohmic contact with the P/N-type layer semiconductor material, which is a single Or multilayer metal structures, including but not limited to nickel, titanium, aluminum, gold, platinum and their alloys.
本发明利用光刻和等离子干法刻蚀技术,使被处理表面形成高阻区域,最终实现电流分向导引的目的,使LED电极区域的无效发光被大大降低。其相对于现有技术,具有以下有益效果:The invention utilizes photolithography and plasma dry etching technology to form a high-resistance area on the treated surface, finally realizes the purpose of current splitting and guiding, and greatly reduces the invalid light emission of the LED electrode area. Compared with the prior art, it has the following beneficial effects:
(1)工艺制作简单减少了原有工艺步骤,省去了介质膜沉积和化学湿法蚀刻工艺,在减少工艺步骤的同也降低了产业化生产成本;(2)采用线宽精细度达到数十纳米级别的干法刻工艺,替代线宽精细度为微米级别的湿法蚀刻工艺,使工艺控制能力大大提升;(3)本发明在氮化镓和电极层之间不再引入其他材料和界面,降低了界面复杂程度,可以避免因界面状况复杂和化学湿法蚀刻处理不当造成的后续掉电极状况,提高工艺良品率;(4)本发明不但可用于水平结构LED芯片,同时也适用于制作其他各种结构的LED芯片。(1) The process is simple and reduces the original process steps, eliminating the need for dielectric film deposition and chemical wet etching processes, while reducing the process steps, it also reduces the cost of industrial production; (2) The line width fineness reaches several The ten-nanometer-level dry etching process replaces the micron-level wet etching process, which greatly improves the process control capability; (3) The present invention does not introduce other materials and The interface reduces the complexity of the interface, which can avoid subsequent electrode drop conditions caused by complex interface conditions and improper chemical wet etching treatment, and improve the process yield; (4) The present invention is not only applicable to horizontal structure LED chips, but also applicable to Make LED chips of various other structures.
附图说明Description of drawings
图1为水平结构LED芯片的结构示意图;Fig. 1 is a structural schematic diagram of a horizontal structure LED chip;
图2为垂直结构LED芯片的结构示意图。Fig. 2 is a schematic structural diagram of a vertical structure LED chip.
具体实施方式Detailed ways
下面结合附图对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
本发明一种氮化镓基发光二极管的制备方法,利用光刻和等离子干法刻蚀技术,对LED芯片P型电极下区域进行表面处理,使其成为高阻区域以获得电流阻挡效果,使电流从P型氮化镓层其他低阻区域流过,减少了该电极区域因遮挡效应造成的发光损失,间接提高其他区域的发光,并使用铝镜或银镜作为P电极金属结构的组成部分,从而实现高效发光的目的,该制备方法至少包括以下步骤:The preparation method of a gallium nitride-based light-emitting diode of the present invention uses photolithography and plasma dry etching technology to carry out surface treatment on the area under the P-type electrode of the LED chip, making it a high-resistance area to obtain a current blocking effect, so that The current flows through other low-resistance regions of the P-type gallium nitride layer, which reduces the loss of luminescence caused by the shading effect in this electrode region, indirectly improves the luminescence of other regions, and uses aluminum mirrors or silver mirrors as part of the metal structure of the P electrode , so as to achieve the purpose of high-efficiency light emission, the preparation method at least includes the following steps:
1)利用MOCVD(Metal-organic Chemical Vapor Deposition,金属有机化合物化学气相沉淀)方法生长获得LED外延结构,LED外延结构包括衬底10和依次沉淀在和P型氮化镓层13;通过光刻方式在晶圆表面形成N电极区域,再利用干法刻蚀工艺对该区域外延层进行刻蚀暴露出N型氮化镓,形成同侧PN结,完成的芯片图形和尺寸定义;1) Using MOCVD (Metal-organic Chemical Vapor Deposition, Metal Organic Compound Chemical Vapor Deposition) method to grow and obtain LED epitaxial structure, LED epitaxial structure includes substrate 10 and sequentially deposited on and P-type
2)在LED外延片P型氮化镓层13之上,利用PVD物理沉积技术如电子束蒸发或溅射法,制备TCL透明导电层15,TCL透明导电层15的材质如镍金或ITO氧化铟锡导电材料;再按照LED芯片设计,利用光刻和湿法蚀刻工艺完成所需TCL透明导电层的制备;2) On the P-type
3)制备P电极区域下的电流阻隔层17,该方法与常规在电极下利用电介质材料(如氧化硅或氮化硅)形成一层不导电的绝缘层不同,其是利用光刻技术将P型电极162下部的部分TCL透明导电层15刻蚀掉,以使P型氮化镓层13的一部分暴露出来,其他区域则用光刻胶进行保护。然后采取等离子干法刻蚀技术,利用O、F基等离子体对该区域进行干法刻蚀,使该区域P型氮化镓材料的导电能力急剧下降,以获得高阻区域的电流阻隔层17,电流阻隔层的比接触电阻率>10-5Ω·cm2;3) Prepare the
4)通过制作P型电极(高反射镜、欧姆电极)162、N型电极161、钝化保护层14最终完成LED芯片的前道制作工艺。P型电极162设置在TCL透明导电层15被刻蚀掉部分的上部。4) By making P-type electrodes (high reflection mirrors, ohmic electrodes) 162, N-type electrodes 161, and passivation protection layer 14, the front-end manufacturing process of the LED chip is finally completed. The P-
本发明中,外延生长工艺包括但不限于金属有机化学气相外延,分子束外延、原子层外延、脉冲激光溅射;所述外延生长衬底的选取包括但不限于蓝宝石、氮化铝、氮化镓、硅、碳化硅、氧化锌,其晶向包括但不限于0001等极化、半极化和非极化方向;所选衬底包含各种特征尺寸的图形化表面结构。In the present invention, the epitaxial growth process includes but not limited to metal organic chemical vapor phase epitaxy, molecular beam epitaxy, atomic layer epitaxy, pulsed laser sputtering; the selection of the epitaxial growth substrate includes but not limited to sapphire, aluminum nitride, nitride Gallium, silicon, silicon carbide, and zinc oxide, whose crystal orientations include but not limited to polarized, semipolarized, and nonpolarized directions such as 0001; the selected substrate contains patterned surface structures of various feature sizes.
本发明中,LED芯片包括但不限于水平结构LED芯片、倒装结构LED芯片、垂直结构LED芯片,或其他特有结构的LED芯片。图2为垂直结构LED芯片,N型氮化镓层11上设有N型电极161;N型氮化镓层11下方依次设有多量子阱层12、P型氮化镓层13、金属键合层20、导电衬底21和焊接层22;N型电极161下方的N型氮化镓层11上设有电流阻隔层17。In the present invention, LED chips include but are not limited to horizontal structure LED chips, flip-chip structure LED chips, vertical structure LED chips, or LED chips with other special structures. Fig. 2 is a vertical structure LED chip, N-
本发明中,等离子干法刻蚀工艺,包括但不限于O2等离子体、F基等离子体、或两者混合等离子。In the present invention, the plasma dry etching process includes but not limited to O 2 plasma, F-based plasma, or a mixture of the two plasmas.
本发明中,芯片制备工艺流程,包括但不限于光刻、湿法和干法刻蚀、电子束或溅射、化学气相沉积、退火方法。In the present invention, the chip preparation process flow includes but not limited to photolithography, wet and dry etching, electron beam or sputtering, chemical vapor deposition, and annealing methods.
本发明中,P型氮化镓层上设有P型电极下的反光镜层,为单一或多层金属或化合物结构,包括但不限于银、铝、金、DBR或ODR层。In the present invention, the reflector layer under the P-type electrode is arranged on the P-type GaN layer, which is a single or multi-layer metal or compound structure, including but not limited to silver, aluminum, gold, DBR or ODR layers.
本发明中,P型氮化镓层上设有P型电极金属层、N型氮化镓层上设置有N型电极金属层,分别与P/N型层半导体材料形成良好欧姆接触,为单一或多层金属结构,包括但不限于镍、钛,铝,金,铂及其合金。In the present invention, the P-type gallium nitride layer is provided with a P-type electrode metal layer, and the N-type gallium nitride layer is provided with an N-type electrode metal layer, respectively forming good ohmic contact with the P/N-type layer semiconductor material, which is a single Or multilayer metal structures, including but not limited to nickel, titanium, aluminum, gold, platinum and their alloys.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310665463.5A CN103715339A (en) | 2013-12-10 | 2013-12-10 | GaN-based light emitting diode and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310665463.5A CN103715339A (en) | 2013-12-10 | 2013-12-10 | GaN-based light emitting diode and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103715339A true CN103715339A (en) | 2014-04-09 |
Family
ID=50408135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310665463.5A Pending CN103715339A (en) | 2013-12-10 | 2013-12-10 | GaN-based light emitting diode and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103715339A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106206894A (en) * | 2016-07-19 | 2016-12-07 | 厦门乾照光电股份有限公司 | A kind of light emitting diode with high value GaN current barrier layer and preparation method thereof |
CN107527982A (en) * | 2017-08-28 | 2017-12-29 | 聚灿光电科技股份有限公司 | LED chip and preparation method thereof |
CN108808444A (en) * | 2018-06-19 | 2018-11-13 | 扬州乾照光电有限公司 | A kind of upside-down mounting VCSEL chips and production method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020163007A1 (en) * | 2001-05-01 | 2002-11-07 | Yukio Matsumoto | Semiconductor light emitting device and method for manufacturing the same |
CN101969089A (en) * | 2010-09-06 | 2011-02-09 | 厦门市三安光电科技有限公司 | Method for manufacturing gallium nitride-based light-emitting diode with current barrier layer |
US20110318855A1 (en) * | 2008-12-26 | 2011-12-29 | Lextar Electronics Corp. | Method for fabricating light emitting diode chip |
US20120037952A1 (en) * | 2010-08-13 | 2012-02-16 | Lextar Electronics Corporation | Light emitting diode and fabricating method thereof |
CN103390703A (en) * | 2013-08-05 | 2013-11-13 | 聚灿光电科技(苏州)有限公司 | Preparation method of low-damage and high-density film and LED chip provided with film |
-
2013
- 2013-12-10 CN CN201310665463.5A patent/CN103715339A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020163007A1 (en) * | 2001-05-01 | 2002-11-07 | Yukio Matsumoto | Semiconductor light emitting device and method for manufacturing the same |
US20110318855A1 (en) * | 2008-12-26 | 2011-12-29 | Lextar Electronics Corp. | Method for fabricating light emitting diode chip |
US20120037952A1 (en) * | 2010-08-13 | 2012-02-16 | Lextar Electronics Corporation | Light emitting diode and fabricating method thereof |
CN101969089A (en) * | 2010-09-06 | 2011-02-09 | 厦门市三安光电科技有限公司 | Method for manufacturing gallium nitride-based light-emitting diode with current barrier layer |
CN103390703A (en) * | 2013-08-05 | 2013-11-13 | 聚灿光电科技(苏州)有限公司 | Preparation method of low-damage and high-density film and LED chip provided with film |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106206894A (en) * | 2016-07-19 | 2016-12-07 | 厦门乾照光电股份有限公司 | A kind of light emitting diode with high value GaN current barrier layer and preparation method thereof |
CN107527982A (en) * | 2017-08-28 | 2017-12-29 | 聚灿光电科技股份有限公司 | LED chip and preparation method thereof |
CN108808444A (en) * | 2018-06-19 | 2018-11-13 | 扬州乾照光电有限公司 | A kind of upside-down mounting VCSEL chips and production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2491683C2 (en) | Contact for semiconductor light-emitting device | |
JP2008227109A (en) | GaN-based LED element and light emitting device | |
JP5628615B2 (en) | Semiconductor light emitting device and manufacturing method thereof | |
CN102270633B (en) | High-power flip-chip array LED chip and manufacturing method thereof | |
CN102456799B (en) | Semiconductor light emitting device and manufacturing method thereof | |
JP6133076B2 (en) | Semiconductor light emitting element and light emitting device | |
CN104241511B (en) | Method for manufacturing high-brightness flip ultraviolet LED chips | |
WO2011018942A1 (en) | Semiconductor light-emitting element, semiconductor light-emitting device, method for producing semiconductor light-emitting element, method for producing semiconductor light-emitting device, illumination device using semiconductor light-emitting device, and electronic apparatus | |
JP2008218440A (en) | GaN-based LED element and light emitting device | |
KR20100120027A (en) | Light emitting device and method for fabricating the same | |
WO2014187235A1 (en) | Method for manufacturing directly attached semiconductor light-emitting eutectic wafer | |
US9812614B2 (en) | Light-emitting device | |
CN100483755C (en) | High power LED flip-chip and its manufacturing method | |
KR101239852B1 (en) | GaN compound semiconductor light emitting element | |
CN103715339A (en) | GaN-based light emitting diode and preparation method thereof | |
CN104733577A (en) | LED chip of perpendicular structure and manufacturing method thereof | |
CN101488539A (en) | Light emitting element | |
CN105161605B (en) | A kind of GaN base LED core piece preparation method of achievable efficient encapsulation | |
CN103489966B (en) | A kind of manufacture method of LED chip electrode, LED chip and LED | |
KR101805301B1 (en) | Ultraviolet Light-Emitting Diode with p-type ohmic contact electrode pattern to enhance the light extraction | |
CN104659167A (en) | High-reliability GaN-based LED (light-emitting diode) chip and preparation method thereof | |
JP2012064759A (en) | Semiconductor light-emitting device and manufacturing method of semiconductor light-emitting device | |
JP2008226866A (en) | GaN-based LED element and light emitting device | |
KR101132885B1 (en) | Nitride light emitting diode and fabricating method thereof | |
JP2014175338A (en) | Semiconductor light-emitting element and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140409 |