CN103367625A - Obliquely-tangential gallium arsenide single crystal photo-thermal detector - Google Patents
Obliquely-tangential gallium arsenide single crystal photo-thermal detector Download PDFInfo
- Publication number
- CN103367625A CN103367625A CN2013103001374A CN201310300137A CN103367625A CN 103367625 A CN103367625 A CN 103367625A CN 2013103001374 A CN2013103001374 A CN 2013103001374A CN 201310300137 A CN201310300137 A CN 201310300137A CN 103367625 A CN103367625 A CN 103367625A
- Authority
- CN
- China
- Prior art keywords
- askew
- single crystal
- gallium arsenide
- cutting sth
- arsenide gallium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title abstract description 55
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 title abstract description 53
- 229910001218 Gallium arsenide Inorganic materials 0.000 title abstract description 53
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 229910052802 copper Inorganic materials 0.000 claims abstract description 18
- 239000010949 copper Substances 0.000 claims abstract description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000003292 glue Substances 0.000 claims abstract description 5
- 229910052709 silver Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- 238000002207 thermal evaporation Methods 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000007772 electrode material Substances 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims 13
- 229910052733 gallium Inorganic materials 0.000 claims 13
- 239000004020 conductor Substances 0.000 claims 2
- 239000011888 foil Substances 0.000 claims 1
- 239000013049 sediment Substances 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 18
- 230000035945 sensitivity Effects 0.000 abstract description 11
- 230000005855 radiation Effects 0.000 abstract description 8
- 238000001228 spectrum Methods 0.000 abstract description 2
- 235000012431 wafers Nutrition 0.000 abstract 4
- 230000003287 optical effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- OXLRDKBGARCSLL-UHFFFAOYSA-N [Ca].[Co]=O Chemical compound [Ca].[Co]=O OXLRDKBGARCSLL-UHFFFAOYSA-N 0.000 description 1
- BTGZYWWSOPEHMM-UHFFFAOYSA-N [O].[Cu].[Y].[Ba] Chemical compound [O].[Cu].[Y].[Ba] BTGZYWWSOPEHMM-UHFFFAOYSA-N 0.000 description 1
- KFNJUIWVLBMCPW-UHFFFAOYSA-N calcium lanthanum(3+) manganese(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[La+3].[Ca+2] KFNJUIWVLBMCPW-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- -1 lanthanum aluminate Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 description 1
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种利用斜切砷化镓单晶薄片制作的低成本、高灵敏、宽频段光、热探测器,属于光、热探测器制备技术领域。The invention relates to a low-cost, high-sensitivity, wide-band light and heat detector manufactured by obliquely cutting gallium arsenide single crystal slices, and belongs to the technical field of light and heat detector preparation.
背景技术Background technique
当用光源或热源加热斜切砷化镓单晶薄片的上表面时,薄片的上下表面就会产生一个纵向的温度差ΔT,由于横向热电效应,则会在斜切砷化镓单晶薄片上表面的左右两端产生一个横向电压信号且电压信号的幅值和砷化镓ab轴方向和c轴方向的塞贝克系数的差值ΔS、温度差ΔT及斜切角度α成正比。近年来,利用材料的横向热电效应制作的新型光、热探测器备受关注。与传统的光子型光探测器相比,基于横向热电效应制备的光、热探测器价格低廉、信噪比好、不需要制冷、不需要偏压、可以实现全光谱探测及各种热辐射探测。When the upper surface of the beveled gallium arsenide single crystal slice is heated by a light source or a heat source, a longitudinal temperature difference ΔT will be generated on the upper and lower surfaces of the slice. A transverse voltage signal is generated at the left and right ends of the surface, and the amplitude of the voltage signal is proportional to the difference ΔS of the Seebeck coefficients in the ab-axis and c-axis directions of gallium arsenide, the temperature difference ΔT and the bevel angle α. In recent years, new photo-thermal detectors made by using the transverse pyroelectric effect of materials have attracted much attention. Compared with traditional photonic photodetectors, optical and thermal detectors based on the transverse pyroelectric effect are cheap, have good signal-to-noise ratios, do not require refrigeration, do not require bias voltage, and can realize full-spectrum detection and various thermal radiation detection. .
目前用于制备此类新型光、热探测器的材料常选用以钙钴氧为代表的层状钴氧化物薄膜、以钇钡铜氧为代表的高温超导薄膜、以镧钙锰氧为代表的巨磁阻薄膜及以钛酸锶、铝酸镧为代表的钙钛矿结构的氧化物单晶材料。但以上所述的薄膜探测器对连续光及热辐射的探测灵敏度非常低且制备工艺复杂,成本昂贵、破坏阈值低,不适于大范围商业推广。而钙钛矿结构的氧化物单晶材料只能探测紫外波段的辐射光且无法对热辐射进行探测,而且其成本也偏高。因此非常有必要发明一种成本低廉、制备工艺简单、破坏阈值高、探测灵敏度高且同时能实现光和热探测的新型探测器。At present, the materials used to prepare such new types of photo-thermal detectors often use layered cobalt oxide films represented by calcium cobalt oxide, high-temperature superconducting films represented by yttrium barium copper oxide, and lanthanum calcium manganese oxide films. giant magnetoresistive films and oxide single crystal materials with perovskite structures represented by strontium titanate and lanthanum aluminate. However, the detection sensitivity of the above-mentioned thin film detectors to continuous light and thermal radiation is very low, the preparation process is complicated, the cost is high, and the damage threshold is low, so it is not suitable for large-scale commercial promotion. However, the perovskite oxide single crystal material can only detect radiation in the ultraviolet band and cannot detect thermal radiation, and its cost is also high. Therefore, it is very necessary to invent a new type of detector with low cost, simple preparation process, high damage threshold, high detection sensitivity, and can realize both light and heat detection.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种成本低廉、制备工艺简单、破坏阈值高、探测灵敏度高且同时能实现光和热探测的新型斜切砷化镓单晶光、热探测器。The technical problem to be solved by the present invention is to provide a novel oblique-cut gallium arsenide single crystal optical and thermal detector with low cost, simple preparation process, high damage threshold, high detection sensitivity and capable of both optical and thermal detection.
解决上述技术问题的技术方案是:The technical scheme that solves the above-mentioned technical problem is:
这种斜切砷化镓单晶光、热探测器,依次由导热胶粘结的斜切砷化镓单晶薄片,金属铜热沉和金属支架组成,在斜切砷化镓单晶薄片上表面设置两个对称的金属电极作为电压信号输出端,用电极引线将斜切砷化镓单晶薄片电压信号输出端与电压表输入端相连接。This oblique-cut gallium arsenide single crystal optical and thermal detector is composed of oblique-cut gallium arsenide single-crystal slices bonded with heat-conducting adhesive, metal copper heat sink and metal support in turn, on the bevel-cut gallium arsenide single-crystal thin slices Two symmetrical metal electrodes are arranged on the surface as voltage signal output terminals, and the voltage signal output terminals of the beveled gallium arsenide single crystal slice are connected with the input terminals of the voltmeter by electrode leads.
所述的斜切砷化镓单晶光、热探测器,所述的斜切砷化镓单晶薄片的斜切角度α的范围为0°<α<90°,α为薄片c轴方向和薄片平面法线方向的夹角。For the beveled gallium arsenide single crystal photo-thermal detector, the range of the bevel angle α of the beveled gallium arsenide single crystal sheet is 0°<α<90°, where α is the c-axis direction of the sheet and The angle between the normal direction of the slice plane.
所述的斜切砷化镓单晶光、热探测器,所述的斜切砷化镓单晶薄片(2)大小为5×3mm2、5×5mm2或10×5mm2,厚度为0.2-2mm,导电类型为N型或P型,载流子浓度为1016-1019/cm3。For the obliquely cut gallium arsenide single crystal photo-thermal detector, the size of the obliquely cut gallium arsenide single crystal sheet (2) is 5×3mm 2 , 5×5mm 2 or 10×5mm 2 , and the thickness is 0.2 -2mm, the conductivity type is N-type or P-type, and the carrier concentration is 10 16 -10 19 /cm 3 .
所述的斜切砷化镓单晶光、热探测器,所述的两个金属电极的形状为长方形或圆形,电极之间的间距为3-8mm,电极材料为金属Pt、Au、Ag、Al或In,采用热蒸发、磁控溅射或脉冲激光沉积方法制备于斜切砷化镓单晶薄片斜切方向上表面。In the obliquely cut gallium arsenide single crystal light and heat detector, the shape of the two metal electrodes is rectangular or circular, the distance between the electrodes is 3-8 mm, and the electrode materials are metal Pt, Au, Ag , Al or In, prepared by thermal evaporation, magnetron sputtering or pulsed laser deposition on the upper surface of the chamfered gallium arsenide single crystal slice in the chamfering direction.
所述的斜切砷化镓单晶光、热探测器,所述的导热胶的热导率应大于0.6W/mK。For the obliquely cut gallium arsenide single crystal photo-thermal detector, the thermal conductivity of the heat-conducting adhesive should be greater than 0.6W/mK.
所述的斜切砷化镓单晶光、热探测器,所述的金属铜热沉为热导率大于400W/mK的无氧铜片。In the obliquely cut gallium arsenide single crystal light and heat detector, the metal copper heat sink is an oxygen-free copper sheet with a thermal conductivity greater than 400W/mK.
所述的斜切砷化镓单晶光、热探测器,所述的电极引线为Au、Ag或Cu材质的细导线,直径为0.01-0.2mm。In the obliquely cut gallium arsenide single crystal light and heat detector, the electrode leads are thin wires made of Au, Ag or Cu, with a diameter of 0.01-0.2mm.
本发明提供的砷化镓单晶光、热探测器的优点在于制备简单、成本低廉、破坏阈值高、探测灵敏度高、能实现全波段光谱探测和各种热辐射探测。The gallium arsenide single crystal optical and thermal detector provided by the invention has the advantages of simple preparation, low cost, high damage threshold, high detection sensitivity, and can realize full-band spectral detection and various thermal radiation detections.
附图说明Description of drawings
图1为:本发明斜切砷化镓单晶光、热探测器的结构示意图。Fig. 1 is a schematic diagram of the structure of the obliquely cut gallium arsenide single crystal photo-thermal detector of the present invention.
图中标号如下:1、金属铜热沉2、斜切砷化镓单晶薄片The numbers in the figure are as follows: 1. Metal
3、第一电极4、第二电极5、第一电极引线6、第二电极引线3.
7、电压表8、光源或热源9、金属支架10、薄片的斜切角度α7.
图2、3为图1的两种电极设置方式俯视结构示意图。2 and 3 are schematic top view structural diagrams of the two electrode arrangement methods in FIG. 1 .
图4为:斜切砷化镓单晶光、热探测器对连续激光器输出激光(波长:405nm,光斑半径:1mm)的电压信号响应图。Figure 4 is the voltage signal response diagram of the obliquely cut GaAs single crystal photo-thermal detector to the output laser (wavelength: 405nm, spot radius: 1mm) of the CW laser.
图5为:斜切砷化镓单晶光、热探测器对连续激光器输出激光(波长:532nm,光斑半径:1mm)的电压信号响应图。Figure 5 is the voltage signal response diagram of the obliquely cut GaAs single crystal photo-thermal detector to the output laser (wavelength: 532nm, spot radius: 1mm) of the CW laser.
图6为:斜切砷化镓单晶光、热探测器对连续激光器输出激光(波长:980nm,光斑半径:1mm)的电压信号响应图。Figure 6 is the voltage signal response diagram of the obliquely cut GaAs single crystal photo-thermal detector to the output laser (wavelength: 980nm, spot radius: 1mm) of the continuous laser.
图7为:斜切砷化镓单晶光、热探测器对连续激光器输出激光(波长:10.6μm,光斑半径:1mm)的电压信号响应图。Figure 7 is the voltage signal response diagram of the obliquely cut GaAs single crystal photo-thermal detector to the output laser (wavelength: 10.6 μm, spot radius: 1 mm) of the continuous laser.
图8为:斜切砷化镓单晶光、热探测器对太阳光模拟器输出太阳光(波长:400nm-1100nm,功率密度1000W/cm2)的电压信号响应图。Figure 8 is the voltage signal response diagram of the oblique-cut GaAs single crystal photo-thermal detector to the output sunlight (wavelength: 400nm-1100nm, power density 1000W/cm 2 ) of the solar simulator.
图9为:斜切砷化镓单晶光、热探测器对200℃恒温热源输出热量(热源距离探测器5mm)的电压信号响应图。Figure 9 is the voltage signal response graph of the obliquely cut GaAs single crystal photo-thermal detector to the output heat of a constant temperature heat source at 200°C (the distance from the heat source to the detector is 5mm).
具体实施方式Detailed ways
图1中显示,本发明由斜切砷化镓单晶薄片、金属电极、金属铜热沉、导热胶和金属导线组成。As shown in Fig. 1, the present invention consists of chamfered gallium arsenide single crystal slices, metal electrodes, metal copper heat sinks, thermal conductive glue and metal wires.
金属铜热沉1为长宽为15×15mm2,厚度为1mm的无氧金属铜板,斜切砷化镓单晶薄片2的斜切角度α的范围为0°<α<90°。斜切砷化镓单晶薄片2用导热硅胶黏贴在金属铜热沉1的中心位置,再将铜热沉1物理固定或黏贴在金属支架9上。The metal
在单晶薄片表面有两个金属电极作为电压信号输出端,分别为第一电极3和第二电极4,可以用常规的热蒸发、磁控溅射或脉冲激光沉积技术制备。两电极位置相对于薄片中心线严格左右对称,间距为3-8mm,形状为长方形或圆形。电极材料可以选用金属Pt、Au、Ag、Al或In等。两个电极电压信号输出端分别通过电极引线与电压表7的输入端相连接,电极引线可以选用Au、Ag或Cu的细导线,直径为0.01-0.2mm。There are two metal electrodes on the surface of the single crystal sheet as voltage signal output terminals, which are respectively the
以下是本发明的6个实施例:Below are 6 embodiments of the present invention:
实施例1:斜切砷化镓单晶光、热探测器对405nm连续光探测。Embodiment 1: Oblique-cut gallium arsenide single crystal optical and thermal detector detects 405nm continuous light.
1.利用已知的热蒸发的方法在10度斜切的N型掺硅砷化镓单晶薄片(大小为10×5mm2,厚度为0.3mm,载流子浓度为1018/cm3)表面制备两个银电极,电极为长方形(1×5mm2),电极间距离为8mm;1. N-type silicon-doped gallium arsenide single crystal slices (
2.用导电银胶将直径为0.1mm的两根铜导线分别粘在两个银电极上作为两个电极的引线;2. Use conductive silver glue to stick two copper wires with a diameter of 0.1mm on the two silver electrodes respectively as the lead wires of the two electrodes;
3.将两根电极引线的另一端接在作为输出电压信号测试端的电压表上;3. Connect the other end of the two electrode leads to the voltmeter as the output voltage signal test end;
4.选用精度为0.012%的电压表,用上述砷化镓单晶光、热探测器,测量连续激光器(输出波长为405nm,光斑半径为1mm)照射在探测器上的电压信号输出。4. Select a voltmeter with an accuracy of 0.012%, and use the above-mentioned gallium arsenide single crystal photothermal detector to measure the voltage signal output of the continuous laser (output wavelength is 405nm, spot radius is 1mm) irradiated on the detector.
图4是电压表记录下来的405nm的连续激光器照射到该探测器表面上时产生的输出电压信号的波形图。可以看出,当照射在薄片上的激光功率为50mW时,输出电压信号的幅值为4.3mV,探测灵敏度高达0.086mV/mW。Fig. 4 is a waveform diagram of the output voltage signal generated when the 405nm continuous laser is irradiated on the surface of the detector recorded by the voltmeter. It can be seen that when the laser power irradiated on the sheet is 50mW, the amplitude of the output voltage signal is 4.3mV, and the detection sensitivity is as high as 0.086mV/mW.
实施例2:斜切砷化镓单晶光、热探测器对532nm连续光探测。Embodiment 2: Oblique-cut gallium arsenide single crystal optical and thermal detector detects 532nm continuous light.
1.同实施例1中步骤1-4;1. With step 1-4 in
图5是电压表记录下来的532nm连续激光器照射到该探测器表面上时产生的输出电压信号的波形图。可以看出,当照射薄片上的激光能量为50mW时,输出电压信号的幅值高达2.8mV,该光、热探测器对可见光具有很高的探测灵敏度。Fig. 5 is a waveform diagram of the output voltage signal generated when the 532nm continuous laser is irradiated on the surface of the detector recorded by the voltmeter. It can be seen that when the laser energy irradiated on the sheet is 50mW, the amplitude of the output voltage signal is as high as 2.8mV, and the light and heat detector has high detection sensitivity to visible light.
实施例3:斜切砷化镓单晶光、热探测器对980nm红外连续光探测。Embodiment 3: Oblique-cut gallium arsenide single crystal optical and thermal detector detects 980nm infrared continuous light.
1.利用已知的热蒸发的方法在5度斜切N型掺硅砷化镓单晶薄片(大小为10×5mm2,厚度为0.3mm,载流子浓度为1018/cm3)表面制备两个In电极,电极为长方形(1×5mm2),电极间距离为8mm;1. Use the known thermal evaporation method to obliquely cut the surface of N-type silicon-doped GaAs single crystal wafer (
2.用焊锡将直径为0.1mm的两根铜导线分别焊接在两个In电极上作为两个电极的引线;2. Use solder to weld two copper wires with a diameter of 0.1mm on the two In electrodes respectively as the leads of the two electrodes;
3.将两根电极引线的另一端接在作为输出电压信号测试端的电压表上;3. Connect the other end of the two electrode leads to the voltmeter as the output voltage signal test end;
4.选用精度为0.012%的电压表,用上述斜切砷化镓单晶光、热探测器,测量连续激光器(输出波长为980nm,光斑半径为1mm)照射在探测器上的电压信号输出。4. Select a voltmeter with an accuracy of 0.012%, and use the above-mentioned obliquely cut gallium arsenide single crystal photothermal detector to measure the voltage signal output of the continuous laser (output wavelength is 980nm, spot radius is 1mm) irradiated on the detector.
图6是电压表记录下来的980nm的连续激光器照射到该探测器表面上时产生的输出电压信号的波形图。可以看出,当照射到薄片表面上的激光功率为50mW时,输出电压信号达到了7.9mV,该光、热探测器对近红外具有很高的探测灵敏度。Fig. 6 is a waveform chart of the output voltage signal generated when the 980nm continuous laser is irradiated on the surface of the detector recorded by the voltmeter. It can be seen that when the laser power irradiated on the surface of the sheet is 50mW, the output voltage signal reaches 7.9mV, and the light and heat detector has high detection sensitivity to near-infrared.
实施例4:斜切砷化镓单晶光、热探测器对10.6μm远红外连续光探测。Embodiment 4: Oblique-cut gallium arsenide single crystal optical and thermal detectors detect 10.6 μm far-infrared continuous light.
1.利用已知的热蒸发的方法在10度斜切N型掺硅砷化镓单晶薄片(大小为5×3mm2,厚度为0.3mm,载流子浓度为1018/cm3)表面制备两个Au电极,电极为长方形(1×3mm2),电极间距离为3mm;1. Use the known thermal evaporation method to obliquely cut the surface of N-type silicon-doped GaAs single crystal wafer (
2.用焊锡将直径为0.05mm的两根银导线分别焊接在两个Au电极上作为两个电极的引线;2. Use solder to weld two silver wires with a diameter of 0.05mm on the two Au electrodes respectively as the lead wires of the two electrodes;
3.将两根电极引线的另一端接在作为输出电压信号测试端的电压表上;3. Connect the other end of the two electrode leads to the voltmeter as the output voltage signal test end;
4.选用精度为0.012%电压表,用上述斜切砷化镓单晶光、热探测器,测量连续激光器(输出波长为10.6μm,光斑半径为1mm)照射在探测器上的电压信号输出。4. Select a voltmeter with an accuracy of 0.012%, and use the above-mentioned obliquely cut gallium arsenide single crystal photothermal detector to measure the voltage signal output of the continuous laser (output wavelength is 10.6μm, spot radius is 1mm) irradiated on the detector.
图7是电压表记录下来的10.6μm的连续激光器照射到该探测器表面上时产生的输出电压信号的波形图。可以看出当照射在薄片表面的激光功率为150mW时,在薄片两端产生的输出电压为36.2mV,该光、热探测器对远红外光具有很高的探测灵敏度。Fig. 7 is a waveform chart of the output voltage signal generated when the 10.6 μm continuous laser is irradiated on the surface of the detector recorded by the voltmeter. It can be seen that when the laser power irradiated on the surface of the sheet is 150mW, the output voltage generated at both ends of the sheet is 36.2mV, and the optical and thermal detector has high detection sensitivity to far-infrared light.
实施例5:斜切砷化镓单晶光、热探测器对太阳光模拟器输出复色光探测。Embodiment 5: Oblique-cut gallium arsenide single crystal optical and thermal detectors detect polychromatic light output from a solar simulator.
1.利用已知的热蒸发的方法在10度斜切N型掺硅砷化镓单晶薄片(大小为10×5mm2,厚度为0.5mm,载流子浓度为1018/cm3)表面制备两个Al电极,电极为长方形(1×5mm2),电极间距离为8mm;1. Use the known thermal evaporation method to obliquely cut the surface of N-type silicon-doped GaAs single crystal wafer (
2.用焊锡将直径为0.05mm的两根银导线分别焊接在两个Al电极上作为两个电极的引线;2. Use solder to weld two silver wires with a diameter of 0.05mm on the two Al electrodes as the lead wires of the two electrodes;
3.将两根电极引线的另一端接在作为输出电压信号测试端的电压表上;3. Connect the other end of the two electrode leads to the voltmeter as the output voltage signal test end;
4.选用精度为0.012%电压表,用上述砷化镓单晶光、热探测器,测量太阳光模拟器(输出波长段为400nm-1100nm,功率密度为1000W/cm2)输出的复色光照射在探测器上的电压信号输出。4. Select a voltmeter with an accuracy of 0.012%, and use the above-mentioned gallium arsenide single crystal light and heat detectors to measure the polychromatic light irradiation output by the solar simulator (the output wavelength range is 400nm-1100nm, and the power density is 1000W/cm 2 ). Voltage signal output on the detector.
图8是电压表记录下来的太阳光模拟器输出的复色光照射到该探测器表面上时产生的输出电压信号的波形图。可以看出当模拟太阳光照射在薄片表面时,在薄片两端产生的输出电压为9.1mV,该光、热探测器对太阳光具有很高的探测灵敏度。Fig. 8 is a waveform diagram of the output voltage signal generated when the polychromatic light output by the solar simulator is irradiated on the surface of the detector recorded by the voltmeter. It can be seen that when the simulated sunlight shines on the surface of the sheet, the output voltage generated at both ends of the sheet is 9.1mV, and the light and heat detector has high detection sensitivity to sunlight.
实施例6:斜切砷化镓单晶光、热探测器对热辐射进行探测。Embodiment 6: Oblique cut gallium arsenide single crystal optical and thermal detectors detect thermal radiation.
1.利用已知的热蒸发的方法在5度斜切N型掺硅砷化镓单晶薄片(大小为10×5mm2,厚度为0.3mm,载流子浓度为1018/cm3)表面制备两个Pt电极,电极为长方形(1×5mm2),电极间距离为8mm;1. Use the known thermal evaporation method to obliquely cut the surface of N-type silicon-doped GaAs single crystal wafer (
2.用焊锡将直径为0.05mm的两根银导线分别焊接在两个Pt电极上作为两个电极的引线;2. Use solder to weld two silver wires with a diameter of 0.05mm on the two Pt electrodes respectively as the lead wires of the two electrodes;
3.将两根电极引线的另一端接在作为输出电压信号测试端的电压表上;3. Connect the other end of the two electrode leads to the voltmeter as the output voltage signal test end;
4.选用精度为0.012%电压表,用上述斜切砷化镓单晶光、热探测器,测量200℃恒温热源垂直放在(热源距离薄片5mm)探测器表面上方的电压信号输出。4. Select a voltmeter with an accuracy of 0.012%, and use the above-mentioned obliquely cut gallium arsenide single crystal light and heat detector to measure the voltage signal output of a 200°C constant temperature heat source placed vertically above the detector surface (the distance from the heat source is 5mm).
图9是电压表记录下来的恒温热源垂直放在该探测器表面上时产生的输出电压信号的波形图。可以看出当热源放在薄片上方时,在薄片两端产生的输出电压为2.1mV,该光、热探测器对热辐射具有很高的探测灵敏度。Fig. 9 is a waveform diagram of the output voltage signal generated when the constant temperature heat source is vertically placed on the surface of the detector recorded by the voltmeter. It can be seen that when the heat source is placed above the sheet, the output voltage generated at both ends of the sheet is 2.1mV, and the light and heat detector has high detection sensitivity to thermal radiation.
本发明列举的实施例旨在更进一步地阐明这种斜切砷化镓单晶光、热探测器及制备方法,而不对本发明的范围构成任何限制。The examples listed in the present invention are intended to further illustrate the off-cut GaAs single crystal photo-thermal detector and its preparation method, without any limitation to the scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310300137.4A CN103367625B (en) | 2013-07-15 | 2013-07-15 | A Beveled Gallium Arsenide Single Crystal Optical and Thermal Detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310300137.4A CN103367625B (en) | 2013-07-15 | 2013-07-15 | A Beveled Gallium Arsenide Single Crystal Optical and Thermal Detector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103367625A true CN103367625A (en) | 2013-10-23 |
CN103367625B CN103367625B (en) | 2015-09-09 |
Family
ID=49368539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310300137.4A Expired - Fee Related CN103367625B (en) | 2013-07-15 | 2013-07-15 | A Beveled Gallium Arsenide Single Crystal Optical and Thermal Detector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103367625B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104900670A (en) * | 2015-05-21 | 2015-09-09 | 河北大学 | Optical detector based on BiCuSeO thermoelectric thin-film transverse thermoelectric effect |
CN107634138A (en) * | 2017-09-08 | 2018-01-26 | 河北大学 | A kind of light, thermal detector based on selenizing tin thin film transverse direction pyroelectric effect |
CN110164989A (en) * | 2019-06-03 | 2019-08-23 | 长春理工大学 | N-type AlxGa1-xAs material system semiconductor surface Ohm contact electrode and preparation method thereof |
CN110763344A (en) * | 2019-10-30 | 2020-02-07 | 广东先导稀材股份有限公司 | A GaN-based photothermal detection thin film element |
CN110890434A (en) * | 2019-10-31 | 2020-03-17 | 山东大学 | A kind of copper oxide high temperature superconducting single photon detector and preparation method thereof |
CN112201704A (en) * | 2019-06-19 | 2021-01-08 | 中国科学院物理研究所 | Anti-interference high sensitivity UV light detector |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272957A (en) * | 2009-01-02 | 2011-12-07 | 坦普罗尼克斯公司 | Device for energy conversion, electrical switching, and thermal switching |
CN102738321A (en) * | 2011-04-01 | 2012-10-17 | 天空公司 | Method and system for expitaxial processing of miscut block substrate |
US20130174884A1 (en) * | 2012-01-06 | 2013-07-11 | Northwestern University | Anisotropic ambipolar transverse thermoelectrics and methods for manufacturing the same |
-
2013
- 2013-07-15 CN CN201310300137.4A patent/CN103367625B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272957A (en) * | 2009-01-02 | 2011-12-07 | 坦普罗尼克斯公司 | Device for energy conversion, electrical switching, and thermal switching |
CN102738321A (en) * | 2011-04-01 | 2012-10-17 | 天空公司 | Method and system for expitaxial processing of miscut block substrate |
US20130174884A1 (en) * | 2012-01-06 | 2013-07-11 | Northwestern University | Anisotropic ambipolar transverse thermoelectrics and methods for manufacturing the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104900670A (en) * | 2015-05-21 | 2015-09-09 | 河北大学 | Optical detector based on BiCuSeO thermoelectric thin-film transverse thermoelectric effect |
CN104900670B (en) * | 2015-05-21 | 2018-07-17 | 河北大学 | A kind of optical detector based on bismuth copper selenolite thermal electric film transverse direction pyroelectric effect |
CN107634138A (en) * | 2017-09-08 | 2018-01-26 | 河北大学 | A kind of light, thermal detector based on selenizing tin thin film transverse direction pyroelectric effect |
CN107634138B (en) * | 2017-09-08 | 2019-12-13 | 河北大学 | Optical and thermal detector based on transverse thermoelectric effect of tin selenide film |
CN110164989A (en) * | 2019-06-03 | 2019-08-23 | 长春理工大学 | N-type AlxGa1-xAs material system semiconductor surface Ohm contact electrode and preparation method thereof |
CN112201704A (en) * | 2019-06-19 | 2021-01-08 | 中国科学院物理研究所 | Anti-interference high sensitivity UV light detector |
CN110763344A (en) * | 2019-10-30 | 2020-02-07 | 广东先导稀材股份有限公司 | A GaN-based photothermal detection thin film element |
CN110763344B (en) * | 2019-10-30 | 2021-04-09 | 广东先导稀材股份有限公司 | A GaN-based photothermal detection thin film element |
CN110890434A (en) * | 2019-10-31 | 2020-03-17 | 山东大学 | A kind of copper oxide high temperature superconducting single photon detector and preparation method thereof |
CN110890434B (en) * | 2019-10-31 | 2021-05-25 | 山东大学 | Copper-oxygen-based high-temperature superconducting single photon detector and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103367625B (en) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103367625B (en) | A Beveled Gallium Arsenide Single Crystal Optical and Thermal Detector | |
CN103344328B (en) | A Multilayer Structure Lateral Pyroelectric Photodetector | |
CN101826594B (en) | Misfit-layered cobalt oxide pyroelectric thin-film photodetector | |
CN104900670B (en) | A kind of optical detector based on bismuth copper selenolite thermal electric film transverse direction pyroelectric effect | |
CN103560203B (en) | A kind of simple efficient thin-film thermoelectric pool structure and preparation method thereof | |
CN101170146A (en) | A photodetector with full wavelength and its preparation method | |
CN103956402B (en) | A kind of self-driven high speed schottky junction near infrared photodetector and preparation method thereof | |
CN103855228A (en) | Terahertz detector based on optical antenna | |
CN110763344A (en) | A GaN-based photothermal detection thin film element | |
CN101826570B (en) | A p-n heterojunction photodetector | |
CN110473955B (en) | Application of perovskite type composite oxide in ultra-wideband photothermal detector | |
CN111403585B (en) | A light and heat detector based on bismuth selenium tellurium thin film material and its preparation method | |
CN112201704B (en) | Anti-interference high-sensitivity ultraviolet light detector | |
CN102231403B (en) | Ultraviolet detector | |
CN107634138B (en) | Optical and thermal detector based on transverse thermoelectric effect of tin selenide film | |
CN109103324A (en) | A kind of hot induced voltage material and its application | |
CN105552203B (en) | A kind of light, thermal detector based on doping bismuth copper selenolite film | |
KR102613786B1 (en) | electromagnetic radiation detector | |
CN101261157B (en) | A fast-response infrared photodetector and its preparation method | |
CN106206829B (en) | A kind of visible-light detector based on additive Mn copper nitride film | |
CN108155108A (en) | A kind of encapsulating method and structure of zinc oxide ultraviolet detector | |
CN107808908A (en) | Heterojunction material and its transducer production method and application based on rare earth nickelate niobium strontium titanate doping | |
CN113206184B (en) | Self-driven ultraviolet detector based on lead selenide film | |
CN101261158B (en) | Photodetector | |
CN103928561A (en) | Photoelectric response detector based on a single zinc oxide nanowire and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150909 Termination date: 20210715 |
|
CF01 | Termination of patent right due to non-payment of annual fee |