[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102923761B - Method for synthesizing silver indium sulfide heterojunction structure nano material through hydro-thermal mode - Google Patents

Method for synthesizing silver indium sulfide heterojunction structure nano material through hydro-thermal mode Download PDF

Info

Publication number
CN102923761B
CN102923761B CN201210439520.3A CN201210439520A CN102923761B CN 102923761 B CN102923761 B CN 102923761B CN 201210439520 A CN201210439520 A CN 201210439520A CN 102923761 B CN102923761 B CN 102923761B
Authority
CN
China
Prior art keywords
indium sulfide
nano
silver
indium
nano material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210439520.3A
Other languages
Chinese (zh)
Other versions
CN102923761A (en
Inventor
蒋建中
叶方敏
姜清奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201210439520.3A priority Critical patent/CN102923761B/en
Publication of CN102923761A publication Critical patent/CN102923761A/en
Application granted granted Critical
Publication of CN102923761B publication Critical patent/CN102923761B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention discloses a method for synthesizing a silver indium sulfide heterojunction structure nano material through a hydro-thermal mode. The method comprises steps of dissolving an alcoholic suspension of silver nanowires in de-ionized water, stirring the alcoholic suspension, adding indium trichloride tetrahydrate crystal to the mixing liquid, conducting magetic stirring, adding a certain amount of surface active agent cetyl trimethyl ammonium bromide, stirring the surface active agent cetyl trimethyl ammonium bromide till the surface active agent cetyl trimethyl ammonium bromide is dissolved completely, adding a certain amount of thiacetamide, stirring the thiacetamide till the thiacetamide is dissolved completely, regarding the formed mixing liquid as a precursor solution of the silver indium sulfide heterojunction structure nano material, refluxing and heating the precursor solution in a round bottom flask with three necks by using a hydro-thermal method, changing conditions, and obtaining nano structure materials with different shapes. The reaction system is simple, the reaction temperature is low, the synthesized silver indium sulfide structure is novel, the synthesized composite material yield is high, and the reverse specific discharge capacity of the material is high when the material serves as a lithium material cathode. Besides, the method has good repeatability and operability.

Description

A kind of method of Hydrothermal Synthesis silver indium sulfide heterogeneous structural nano material
Technical field
The present invention relates to preparation method of nano material, especially relate to a kind of method of Hydrothermal Synthesis silver indium sulfide heterogeneous structural nano material.
Background technology
Nano material and nanostructure be the most dynamic in current novel material research field, the future economy and social development are had to the very research object of material impact, be also the most active in nanosecond science and technology, to approach application most important component part.In actual application aspect, because of the semiconductor material such as nano-oxide and sulfide, specific surface area is large, nanostructure is unique, particularly the theoretical specific capacity of lithium cell is large, the advantages such as specific energy density is large, are considered to 21 century be most possibly applied in lithium cell equal energy source memory device as electrode materials.Therefore, the electrochemical research of nano semiconductor material becomes a current very hot research field.In recent years, the oxide compound of various different structures and kind and sulfide nano-material, as nano-electrode materials such as stannic oxide, ferric oxide, moly-sulfide, silicon nanowires and tin, obtain more and more deep research, had very large breakthrough in the performance that discharges and recharges the aspects such as stability, specific storage, high current charge-discharge of lithium cell.But due to nano structural material large volumetric expansion in electrochemical charge and discharge process, the disintegrating of nanostructure, electroconductibility declines, and the existence of initial non-reversible process has seriously hindered the practical application of semiconductor nano material in lithium cell field.Therefore, the exploitation of the electrode materials of new texture is still the interest place of researcher.
Indium trisulfide is very important one in metallic sulfide material, in luminescent material, gas sensitive, solar cell, is studied widely and applies, and it is environmental friendliness thereby the focus that becomes research simultaneously.Existing research is by sonochemistry method, the photochemistry precipitator method, chemical Vapor deposition process at present, hydrothermal method, template etc. have been prepared indium trisulfide nano rod, nanotube and nano-hollow ball etc., specifically can reference: Chem. Mater. 2001,13,2195; J. Mater. Chem. 2002,12,98; Journal of Crystal Growth 2010,312,656; CrystEngComm 2011,13,182 etc.Meanwhile, high (the about 710 mAh g of the lithium cell theoretical capacity of indium sulfide -1), aspect lithium cell research, indium sulfide also becomes attention (the Cryst. Growth Des. of many seminars, 2009,9,113, J. Mater. Chem., 2011,21,17063, J. Mater. Chem., 2011,21,18398, J. Mater. Chem., 2012,22,11107), but the synthetic of indium sulfide nano material is reaction conditions relative complex mostly, long reaction time, some is the too high security hidden danger of bringing of temperature of reaction, meanwhile, lithium electrical property also remains to be further improved.Therefore the synthetic method of simplicity of design and obtain the more excellent indium sulfide nano structural material of lithium electrical property be still power institute to.
Summary of the invention
A kind of method that the object of this invention is to provide Hydrothermal Synthesis silver indium sulfide heterogeneous structural nano material, adopts hydro-thermal to prepare the hetero nano structure material of the structure uniqueness forming by nano silver wire and around the indium sulfide sheet of nano silver wire growth.
In order to achieve the above object, the step of the technical solution used in the present invention is as follows:
(1) nano silver wire alcohol suspension is added in water solvent, and stirs.
(2) four hydration Indium-111 chloride crystal are joined in (1) step gained mixed solution, be stirred to four hydration Indium-111 chloride solids and fully dissolve.
(3) to the cetyl trimethylammonium bromide powder that adds certain mass in (2) step gained mixed solution, be stirred to powdered and dissolve completely.
(4) in the mixed solution obtaining to (3) step, add a certain amount of thioacetamide, magnetic agitation is to thioacetamide, using gained mixed solution as the precursor of synthesizing silver-colored indium sulfide heterogeneous structure material.
(5) adopt hydrothermal method, by the precursor of (4) step gained reflux in three mouthfuls of round-bottomed flasks, by changing, if do not used nano-silver thread or without conditions such as tensio-active agents, can obtain the nano structural material of different-shape, the product of gained after hydro-thermal is obtained to pistac powder through centrifuge washing, after dry, and this powder is final silver-colored indium sulfide heterogeneous structural nano material.
At the nano silver wire alcohol suspension described in (1) step, the density of this suspension is for being controlled at 0.030g/ml (be in every 1ml nano silver wire alcohol suspension containing the quality control of nano silver wire in 0.030g), and the ratio of nano silver wire alcohol suspension vol used and water solvent volume is 2ml/23ml.
At the add-on 0~0.462g/25ml (not comprising 0 this point) of four hydration Indium-111 chloride crystal described in (2) step.
At the add-on 0~0.520g/25ml of the cetyl trimethylammonium bromide described in (3) step.
At the add-on 0.178g/25ml of the thioacetamide described in (4) step.
Be the wet chemical method heating in a kind of reflux at there-necked flask in the hydrothermal method described in (5) step, Heating temperature is 95 DEG C, and be 80min heat-up time; The pattern of gained silver indium sulfide nanostructure dissimilar materials is the linear structure of nano silver wire and indium sulfide sheet composition; The product obtaining is through high speed centrifugation, and then cleans, obtains pistac powder after dry with analytical pure dehydrated alcohol.
In said process, nano silver wire is bought from Zhejiang Kechuang New Material Technology Co., Ltd., and four hydration Indium-111 chlorides of purity >=97% provide indium ion; Thioacetamide provides sulphur source; Deionization water as solvent; Cetyl trimethylammonium bromide is tensio-active agent.
The beneficial effect that the present invention has is:
1) preparation method is simple, can reach a large amount of preparations, and productive rate exceedes 90%.
2) this is prepared scheme and forms in solution and carry out at water solvent, and raw material is simple, does not introduce any other impurity metal ion, and product purity is high.
3) the silver-colored indium sulfide heterogeneous structural nano material structure novelty preparing, because of the effect of nano-silver thread, the electroconductibility of electrode materials and the stability of structure have had the large material that improves, thereby effectively improve the lithium electrical property of indium sulfide.
Brief description of the drawings
Fig. 1 is the transmission electron microscope photo of the nano silver wire prepared of embodiment 1.
Fig. 2 is the transmission electron microscope photo of the silver-colored indium sulfide heterogeneous structural nano material prepared of embodiment 1.
Fig. 3 is the stereoscan photograph of the silver-colored indium sulfide heterogeneous structural nano material prepared of embodiment 1.
Fig. 4 is the XRD phenogram of the silver-colored indium sulfide heterogeneous structural nano material prepared of embodiment 1.
Fig. 5 is specific surface area and the aperture phenogram of the silver-colored indium sulfide heterogeneous structural nano material prepared of embodiment 1.
Fig. 6 is that the lithium electrical performance data of the silver-colored indium sulfide heterogeneous structural nano material prepared of embodiment 1 characterizes.
Fig. 7 is the stereoscan photograph of the pure indium trisulfide nano structured material prepared of embodiment 2.
Fig. 8 is the stereoscan photograph of the silver-colored indium sulfide hetero nano structure material of the specific morphology prepared of embodiment 3.
Fig. 9 is the synthetic product scanning electron microscope (SEM) photograph of embodiment 4.
Figure 10 is the synthetic product scanning electron microscope (SEM) photograph of example 5.
Embodiment
Embodiment 1:
Carry out according to preparation process.First the alcohol suspension of 2mL nano silver wire is splashed in 23ml deionized water, and magnetic agitation 5 minutes, after 0.231g tetra-hydration Indium-111 chloride solids are added above in mixed solution, magnetic agitation 7 minutes, obtains new mixed solution; Separately add 260mg cetyl trimethylammonium bromide, continue to stir 10 minutes; Finally add 178mg thioacetamide, magnetic agitation 10 minutes, obtains the first body reacting.Mixed solution is injected to three mouthfuls of round-bottomed flasks of 100ml, and be placed in backflow limit, the reaction heated reaction system limit constant temperature of reflux, reaction conditions is: 95 DEG C, and 80min.Solution centrifugal 15min under 10000r/min centrifugation rate after reaction.The solid normal-temperature vacuum repeatedly obtaining after centrifugal 5 times is dried to powder.Transmissioning electric mirror test sample is that the pressed powder obtaining after dry is taken out and is again dispersed on a small quantity in dehydrated alcohol, draws two drop in the clean copper mesh surface that is coated with one deck carbon film with liquid-transfering gun.Sem test sample be by sample drop on silicon chip and stick in aluminium base sample table.Fig. 1 is the transmission electron microscope photo of the nano silver wire bought of embodiment 1, and Fig. 2 has provided the transmission electron microscope photo of the silver-colored indium sulfide heterogeneous structural nano material obtaining according to embodiment 1.Fig. 3 has provided the stereoscan photograph of the silver-colored indium sulfide heterogeneous structural nano material obtaining according to embodiment 1.The pattern of the nano silver wire that used as can be seen from Figure 1, the silver-colored indium sulfide heterogeneous structural nano material of wire is made up of nanometer sheet as can be seen from Figure 2; Can obviously find out that from Fig. 3 silver-colored indium sulfide heterogeneous structural nano material is along the nano silver wire overall pattern forming of growing by indium sulfide sheet.Fig. 4 is that the XRD of the silver-colored indium sulfide heterogeneous structural nano material that obtains according to embodiment 1 characterizes, and as can be seen from the figure matrix material only comprises silver and indium sulfide, and not containing other impurity.Specific surface area and aperture that Fig. 5 has provided the silver-colored indium sulfide heterogeneous structural nano material obtaining according to embodiment 1 characterize, and can show that the specific surface area (BET) of sandwich is up to 31 m from figure 2/ g, aperture mean size is 40 nm.Fig. 6 has provided silver-colored indium sulfide heterogeneous structural nano material that embodiment 1 the obtains lithium electrical property result as negative material, in the time that electrode is worked with the charging and discharging currents of 700 mA/g, its specific storage still has 548 mAh/g after 100 circulations, and the lithium electrical capacity of pure sheet indium sulfide (Fig. 7) is measured as 348 mAh/g in identical conditions, from data, after compound, the lithium electricity specific storage of material has improved nearly 60%.
Embodiment 2:
Carry out according to preparation process.0.231g tetra-hydration Indium-111 chlorides are added in the beaker that fills 25ml deionized water, and magnetic agitation 7 minutes, obtains transparent settled solution; Separately add 260mg cetyl trimethylammonium bromide, continue to stir 10 minutes; Now solution is still clarified, and finally adds 178mg thioacetamide, and magnetic agitation 10 minutes, obtains flaxen solution, and this solution is as the first body of reaction.Solution is injected to three mouthfuls of round-bottomed flasks of 100ml, and as for there being backflow limit, limit constant temperature in the reaction heated reaction system of reflux, reaction conditions is: 95 DEG C, 80min.Solution centrifugal 15min under 10000r/min centrifugation rate after reaction.The solid normal-temperature vacuum repeatedly obtaining after centrifugal 5 times is dried to powder.Sem test sample is that the pressed powder obtaining after dry is taken out and is again dispersed on a small quantity in dehydrated alcohol, draws two drop on clean silicon chip and stick in aluminium base sample table with liquid-transfering gun.Fig. 7 shows that product is sheet indium trisulfide flake nano structure.From scheming, silver-colored line is not participated in when reaction, synthesized sample be the sheet indium sulfide of free accumulation.
Embodiment 3:
Carry out according to preparation process.Carry out according to preparation process.First the alcohol suspension of 2mL nano silver wire is splashed in 23ml deionized water, and magnetic agitation 10 minutes, after 0.231g tetra-hydration Indium-111 chloride solids are added above in mixed solution, magnetic agitation 7 minutes, obtains new mixed solution; Finally add 178mg thioacetamide, magnetic agitation 10 minutes, obtains the first body reacting.Mixed solution is injected to three mouthfuls of round-bottomed flasks of 100ml, and as for there being backflow limit, limit constant temperature in the reaction heated reaction system of reflux, reaction conditions is: 95 DEG C, 80min.Solution centrifugal 15min under 10000r/min centrifugation rate after reaction.The solid normal-temperature vacuum repeatedly obtaining after centrifugal 5 times is dried to powder.Sem test sample is that the pressed powder obtaining after dry is taken out and is again dispersed on a small quantity in dehydrated alcohol, draws two drop on clean silicon chip and stick in aluminium base sample table with liquid-transfering gun.As can be seen from Figure 8, in the time not adding Surfactant CTAB, the sample topography of gained is very inhomogeneous.
Embodiment 4:
Carry out according to preparation process.First, by 2mL, density is that the alcohol suspension of 0.030g/ml nano silver wire splashes in 23ml deionized water, and magnetic agitation 5 minutes, after 0.231g tetra-hydration Indium-111 chloride solids are added above in mixed solution, magnetic agitation 7 minutes, obtains new mixed solution; Separately add 260mg cetyl trimethylammonium bromide, continue to stir 10 minutes; Finally add 178mg thioacetamide, magnetic agitation 10 minutes, obtains the first body reacting.Mixed solution is injected to three mouthfuls of round-bottomed flasks of 100ml, and be placed in backflow limit, the reaction heated reaction system limit constant temperature of reflux, reaction conditions is: 95 DEG C, and 80min.Solution centrifugal 15min under 10000r/min centrifugation rate after reaction.The solid normal-temperature vacuum repeatedly obtaining after centrifugal 5 times is dried to powder.Transmissioning electric mirror test sample is that the pressed powder obtaining after dry is taken out and is again dispersed on a small quantity in dehydrated alcohol, draws two drop in the clean copper mesh surface that is coated with one deck carbon film with liquid-transfering gun.Sem test sample be by sample drop on silicon chip and stick in aluminium base sample table.Fig. 9 shows the product scanning electron microscope (SEM) photograph that this example is synthetic.From scheming, when the amount of silver-colored line doubles, the sheet indium sulfide that is still silver-colored line and free accumulation of synthesized sample.But because silver-colored line amount doubles, the indium sulfide sheet of piling up on silver-colored line seems loose.
Embodiment 5:
Carry out according to preparation process.First the alcohol suspension of 2mL nano silver wire is splashed in 23ml deionized water, and magnetic agitation 5 minutes, after 0.231g tetra-hydration Indium-111 chloride solids are added above in mixed solution, magnetic agitation 7 minutes, obtains new mixed solution; Separately add 520mg cetyl trimethylammonium bromide, continue to stir 10 minutes; Finally add 178mg thioacetamide, magnetic agitation 10 minutes, obtains the first body reacting.Mixed solution is injected to three mouthfuls of round-bottomed flasks of 100ml, and be placed in backflow limit, the reaction heated reaction system limit constant temperature of reflux, reaction conditions is: 95 DEG C, and 80min.Solution centrifugal 15min under 10000r/min centrifugation rate after reaction.The solid normal-temperature vacuum repeatedly obtaining after centrifugal 5 times is dried to powder.Transmissioning electric mirror test sample is that the pressed powder obtaining after dry is taken out and is again dispersed on a small quantity in dehydrated alcohol, draws two drop in the clean copper mesh surface that is coated with one deck carbon film with liquid-transfering gun.Sem test sample be by sample drop on silicon chip and stick in aluminium base sample table.Figure 10 shows the product scanning electron microscope (SEM) photograph synthetic according to example 5.From scheming, when tensio-active agent doubles, the indium sulfide pattern of silver-colored line surface attachment is substantially constant.

Claims (1)

1. a method for Hydrothermal Synthesis silver indium sulfide heterogeneous structural nano material, is characterized in that the step of the method is as follows:
(1) nano silver wire alcohol suspension is added in water solvent, and stirs;
(2) four hydration Indium-111 chloride crystal are joined in (1) step gained mixed solution, be stirred to four hydration Indium-111 chloride solids and fully dissolve;
(3) to the cetyl trimethylammonium bromide powder that adds certain mass in (2) step gained mixed solution, be stirred to powdered and dissolve completely;
(4) in the mixed solution obtaining to (3) step, add a certain amount of thioacetamide, magnetic agitation is to thioacetyl amine solvent, using gained mixed solution as the precursor of synthesizing silver-colored indium sulfide heterogeneous structure material;
(5) adopt hydrothermal method, by the precursor of (4) step gained reflux in three mouthfuls of round-bottomed flasks, by change condition, can obtain the nano material of different-shape, the product of gained after hydro-thermal is obtained to pistac powder through centrifuge washing, after dry, this powder is final silver-colored indium sulfide heterogeneous structural nano material, and described condition is: plus nano silver line;
At the nano silver wire alcohol suspension described in (1) step, the density of this suspension is for being controlled at 0.030g/mL, be in every 1mL nano silver wire alcohol suspension containing the quality of nano silver wire at 0.030g, the ratio of the suspension vol of described nano silver wire and water solvent volume is 2mL/23mL;
Add-on at four hydration Indium-111 chloride crystal described in (2) step is controlled at 0.231g/25mL;
Add-on at the tensio-active agent cetyl trimethylammonium bromide described in (3) step is 0~0.520g/25mL;
Add-on at the thioacetamide described in (4) step is 0.178g/25mL;
Be the wet chemical method heating in a kind of reflux at there-necked flask in the hydrothermal method described in (5) step, Heating temperature is 95 DEG C, and be 80min heat-up time; The pattern of gained silver indium sulfide nanostructure dissimilar materials is the linear structure of nano silver wire and indium sulfide sheet composition; The product obtaining is through high speed centrifugation, and then cleans, obtains pistac powder after dry with analytical pure dehydrated alcohol.
CN201210439520.3A 2012-11-06 2012-11-06 Method for synthesizing silver indium sulfide heterojunction structure nano material through hydro-thermal mode Expired - Fee Related CN102923761B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210439520.3A CN102923761B (en) 2012-11-06 2012-11-06 Method for synthesizing silver indium sulfide heterojunction structure nano material through hydro-thermal mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210439520.3A CN102923761B (en) 2012-11-06 2012-11-06 Method for synthesizing silver indium sulfide heterojunction structure nano material through hydro-thermal mode

Publications (2)

Publication Number Publication Date
CN102923761A CN102923761A (en) 2013-02-13
CN102923761B true CN102923761B (en) 2014-07-23

Family

ID=47638725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210439520.3A Expired - Fee Related CN102923761B (en) 2012-11-06 2012-11-06 Method for synthesizing silver indium sulfide heterojunction structure nano material through hydro-thermal mode

Country Status (1)

Country Link
CN (1) CN102923761B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843769B (en) * 2015-04-09 2016-08-17 首都师范大学 By the controlled method preparing indium sulfide ultra-thin two-dimension nano material of metal ion and the purposes of this material
CN116351438B (en) * 2023-04-28 2024-09-10 齐鲁工业大学(山东省科学院) Cerium oxide indium sulfide photocatalytic material and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054200A (en) * 2007-05-17 2007-10-17 上海交通大学 Method of preparing monodisperse ternary sulfide CuInS2
CN102303900A (en) * 2011-08-18 2012-01-04 浙江大学 Hydrothermal synthesizing method of sheet-formed diindium trisulphide nano-structured material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462653B1 (en) * 2008-05-20 2014-11-17 삼성전자 주식회사 Preparing Method of Nano particle using Carbene derivative
US20120066956A1 (en) * 2009-05-29 2012-03-22 Abobelo Da Terminal fly fishing tackle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054200A (en) * 2007-05-17 2007-10-17 上海交通大学 Method of preparing monodisperse ternary sulfide CuInS2
CN102303900A (en) * 2011-08-18 2012-01-04 浙江大学 Hydrothermal synthesizing method of sheet-formed diindium trisulphide nano-structured material

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
《Fabrication of indium sulfide nanofibers via a hydrothermal method assisted by AAO template》;Xiaoyi Zhu et al.;《Materials Research Bulletin》;20060310;第41卷;第1584–1588页 *
《Single-source precursors to ternary silver indium sulfide materials》;Theivanayagam C. Deivaraj et al.;《Chem. Commun.》;20011024;第2304–2305页 *
《The physical properties and photoresponse of AgIn5S8 polycrystalline》;Kong-Wei Cheng et al.;《Journal of Photochemistry and Photobiology A: Chemistry》;20070323;第190卷;第77-87页 *
Fangmin Ye et al..《A heterostructured Ag@In2S3 composite with enhanced lithium storage capacity》.《Journal of Materials Chemistry A》.2013,第1卷第5208–5211页.
Fangmin Ye et al..《A heterostructured AgIn2S3 composite with enhanced lithium storage capacity》.《Journal of Materials Chemistry A》.2013,第1卷第5208–5211页. *
Kong-Wei Cheng et al..《The physical properties and photoresponse of AgIn5S8 polycrystalline》.《Journal of Photochemistry and Photobiology A: Chemistry》.2007,第190卷第77-87页.
Theivanayagam C. Deivaraj et al..《Single-source precursors to ternary silver indium sulfide materials》.《Chem. Commun.》.2001,第2304–2305页.
Xiaoyi Zhu et al..《Fabrication of indium sulfide nanofibers via a hydrothermal method assisted by AAO template》.《Materials Research Bulletin》.2006,第41卷第1584–1588页.

Also Published As

Publication number Publication date
CN102923761A (en) 2013-02-13

Similar Documents

Publication Publication Date Title
Lu et al. Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes
CN109553779B (en) Preparation method and application of three-dimensional nanoflower metal organic framework material
CN108417404B (en) A kind of preparation method of electrode material for super capacitor
CN104134783B (en) Nano nickel sulphide/grapheme composite positive electrode material and preparation method thereof
CN103326007B (en) The preparation method of three-dimensional graphite thiazolinyl tin dioxide composite material and application thereof
CN106450205A (en) Two-dimensional transition metal carbide (nitride) and nano sulfur particle composite material and preparation and application thereof
CN105742602A (en) Sn/MoS<2>/C composite material for sodium ion battery negative electrode and preparation method therefor
CN107452951B (en) XS2@YSe2The preparation method of the anode material of lithium-ion battery of core-shell structure
CN108855145B (en) Two-step method for preparing cobalt sulfide/molybdenum sulfide composite material and application of cobalt sulfide/molybdenum sulfide composite material in hydrogen evolution reaction
CN105883940B (en) Preparation method of block NiS2 and application of block NiS2 to sodium-ion battery
Chen et al. MOF-derived Mo-CoP@ NiFe LDH hierarchical nanosheets for high-performance hybrid supercapacitors
CN102910615A (en) Preparation method of graphene oxide/iron disulfide composite nano particles
Ahmad et al. Graphene oxide selenium nanorod composite as a stable electrode material for energy storage devices
CN106952737A (en) A kind of preparation method of tungsten disulfide flake nano material
CN111921529A (en) Preparation method and application of nickel-cobalt metal organic framework/nickel-cobalt metal hydroxide heterogeneous material
CN106847530A (en) A kind of nickel cobalt base-carbon nano tube combination electrode material and preparation method thereof
CN104658771B (en) A kind of preparation method and application of sea urchin shape vanadium base nano-electrode material
Khan et al. Engineering N-reduced graphene oxide wrapped Co3O4@ f-MWCNT hybrid for enhance performance dye-sensitized solar cells
Liu et al. Microwave synthesis of NiSe/NiTe2 nanocomposite grown in situ on Ni foam for all-solid-state asymmetric supercapacitors
Chen et al. Interface regulation strategy in constructing ZnS@ MoS2 heterostructure with enhanced surface reaction dynamics for robust lithium-ion storage
Liu et al. A novel propeller-like Si@ WO3@ C with boosted electrochemical properties as anode material for lithium-ion batteries
CN109065874A (en) A kind of MoO3/ rGO-N nanocomposite and its preparation method and application
Zhang et al. Urchin-like alkaline nickel–cobalt carbonate derived Ni3S4/Co3S4 nanoparticles anchored on rGO for lithium/sodium-ion batteries with enhanced capacity
CN102923761B (en) Method for synthesizing silver indium sulfide heterojunction structure nano material through hydro-thermal mode
CN105206816A (en) Preparation method of nickel sulfide-graphene nano composite material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140723