CN102591359B - Solar tracking controller - Google Patents
Solar tracking controller Download PDFInfo
- Publication number
- CN102591359B CN102591359B CN201210042875.9A CN201210042875A CN102591359B CN 102591359 B CN102591359 B CN 102591359B CN 201210042875 A CN201210042875 A CN 201210042875A CN 102591359 B CN102591359 B CN 102591359B
- Authority
- CN
- China
- Prior art keywords
- main controller
- register
- sun
- east
- analog
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 238000004891 communication Methods 0.000 claims abstract description 13
- 238000009434 installation Methods 0.000 claims abstract description 5
- 238000012423 maintenance Methods 0.000 claims abstract description 5
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 238000010248 power generation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种太阳跟踪控制器,所述阳光传感器输出端连接有模数装换装置输入端,所述模数装换装置输出端连接有主控制器输入端,所述主控制器输出端连接驱动电路,驱动电路输出端再连接有云台控制装置,所述主控制器还连接有电源输入接口,按键显示接口和串口通信接口;阳光传感器采集太阳光位置并将其转换为电信号,通过模数转换后,将数字信号送入Atmega32单片机,单片机根据偏差信号计算出太阳位置,并输出相应的控制信号,经过驱动电路控制云台,保证云台面板始终与太阳光垂直,从而实现太阳跟踪目的,蓄电池储存太阳能电池板发出的电能,晚上为整个系统提供电力,按键显示接口连接按键调试模块,用于安装、调试、维修。
The invention discloses a sun tracking controller. The output end of the sunlight sensor is connected to the input end of a modulus replacement device, the output end of the modulus replacement device is connected to the input end of a main controller, and the main controller outputs The terminal is connected to the driving circuit, and the output terminal of the driving circuit is connected to the pan-tilt control device, and the main controller is also connected to a power input interface, a button display interface and a serial communication interface; the sunlight sensor collects the sunlight position and converts it into an electrical signal , after analog-to-digital conversion, the digital signal is sent to the Atmega32 single-chip microcomputer, the single-chip microcomputer calculates the sun position according to the deviation signal, and outputs the corresponding control signal, and controls the pan-tilt through the driving circuit to ensure that the pan-tilt panel is always perpendicular to the sun, thus realizing For the purpose of sun tracking, the battery stores the electric energy generated by the solar panel, and provides power for the whole system at night, and the button display interface is connected to the button debugging module for installation, debugging and maintenance.
Description
技术领域 technical field
本发明涉及控制器,具体涉及一种太阳跟踪控制器。 The invention relates to a controller, in particular to a sun tracking controller. the
背景技术 Background technique
太阳能是一种可再生清洁能源,目前,我国对太阳能的利用主要停留在非跟踪式太阳能发电、太阳能电池、太阳能热水器的初级应用阶段,太阳能发电站中采用的单晶硅电池的太阳能转换效率仅为12%左右,并没有将太阳能发电的优势体现出来。 Solar energy is a renewable and clean energy. At present, the utilization of solar energy in my country is mainly in the primary application stage of non-tracking solar power generation, solar cells, and solar water heaters. The solar conversion efficiency of monocrystalline silicon cells used in solar power stations is only It is about 12%, which does not reflect the advantages of solar power generation. the
提高太阳能发电效率的有效途径就是采用跟踪式聚光发电——即配备太阳跟踪系统,配备太阳跟踪系统可以直接将太阳能发电的效率提高92.2%;对于新型太阳能发电材料砷化镓来说,采用跟踪聚光发电,太阳能发电效率更能提高到36%以上,然而,目前市场上的太阳跟踪系统存在价格昂贵、跟踪精度仅为0.3°、可靠性较差等缺点,制约了太阳跟踪系统在实际应用中的推广。 An effective way to improve the efficiency of solar power generation is to use tracking concentrating power generation - that is, equipped with a sun tracking system, which can directly increase the efficiency of solar power generation by 92.2%; for the new solar power generation material gallium arsenide, using tracking Concentrating power generation, solar power generation efficiency can be increased to more than 36%. However, the sun tracking system currently on the market has disadvantages such as high price, tracking accuracy of only 0.3°, and poor reliability, which restricts the practical application of the sun tracking system. Promotion in . the
发明内容 Contents of the invention
为了克服上述现有技术的缺点,提供了一种太阳跟踪控制器,结合阳光传感器,该系统跟踪精度可达0.1°,该控制器以ATmega32芯片为处理器,能够控制云台实时跟踪太阳,保证云台与太阳光的角度为90°,从而增加云台的有效受光面积,提升太阳能的利用效率,成本低、稳定性较好,可应用于光伏产业中太阳能聚光发电、太阳能热发电、太阳能海水淡化、阳光输送机等需要采用太阳跟踪尤其是需要高精度跟踪太阳的场合。 In order to overcome the above-mentioned shortcoming of the prior art, a kind of solar tracking controller is provided, combined with the sunlight sensor, the tracking accuracy of the system can reach 0.1°. The angle between the cloud platform and the sunlight is 90°, so as to increase the effective light-receiving area of the platform and improve the utilization efficiency of solar energy. It has low cost and good stability. It can be applied to solar concentrated power generation, solar thermal power generation, and solar energy in the photovoltaic industry. Seawater desalination, sunlight conveyors, etc. need to use sun tracking, especially the occasions that require high-precision tracking of the sun. the
为了实现上述目的,本发明的技术方案是: In order to achieve the above object, technical scheme of the present invention is:
一种太阳跟踪控制器,由阳光传感器、模数转换装置、主控制器、驱动电路、按键显示接口、串口通信接口、电源输入接口组成,所述阳光传感器输出端连接有模数装换装置输入端,所述模数装换装置输出端连接有主控制器输入端,所述主控制器输出端连接驱动电路,驱动电路输出端再连接有云台控制装置,所述主控制器还连接有电源输入接口,按键显示接口和串口通信接口; A sun tracking controller, which is composed of a sunlight sensor, an analog-to-digital conversion device, a main controller, a drive circuit, a key display interface, a serial communication interface, and a power input interface, and the output end of the sunlight sensor is connected to the input of an analog-to-digital replacement device end, the output end of the modulus replacement device is connected to the input end of the main controller, the output end of the main controller is connected to the drive circuit, and the output end of the drive circuit is connected to the pan-tilt control device, and the main controller is also connected to the Power input interface, key display interface and serial communication interface;
所述阳光传感器用于采集阳光信号; The sunlight sensor is used to collect sunlight signals;
所述模数转换转换装置用于完成对阳光传感器电压信号的模数转换; The analog-to-digital conversion conversion device is used to complete the analog-to-digital conversion of the sunlight sensor voltage signal;
所述的主控制器电路用于完成输入、输出控制和数据运算; The main controller circuit is used to complete input and output control and data calculation;
所述的驱动电路用于增加输出信号的驱动能力; The drive circuit is used to increase the drive capability of the output signal;
所述的按键显示接口连接按键显示模块,用于安装、调试、维修; The key display interface is connected to the key display module for installation, debugging and maintenance;
所述的串口通信接口连接到上位机,实现串口通信功能; The serial port communication interface is connected to the host computer to realize the serial port communication function;
所述的电源输入接口用于连接电源,为系统提供电力; The power input interface is used to connect the power supply to provide power for the system;
所述主控制器采用Atmega32单片机; Described master controller adopts Atmega32 single-chip microcomputer;
阳光传感器采集太阳光位置并将其转换为电信号,通过模数转换后,将数字信号送入Atmega32单片机,单片机根据偏差信号计算出太阳位置,并输出相应的控制信号,经过驱动电路控制云台,保证云台面板始终与太阳光垂直,从而实现太阳跟踪目的,电源部分由蓄电池和太阳能电池板组成,蓄电池储存太阳能电池板发出的电能,晚上为整个系统提供电力,按键显示接口连接按键调试模块,用于安装、调试、维修。 The sunlight sensor collects the position of the sun and converts it into an electrical signal. After the analog-to-digital conversion, the digital signal is sent to the Atmega32 single-chip microcomputer. The single-chip microcomputer calculates the sun position according to the deviation signal, and outputs the corresponding control signal, which is controlled by the drive circuit. , to ensure that the gimbal panel is always perpendicular to the sunlight, so as to achieve the purpose of sun tracking. The power supply part is composed of a battery and a solar panel. The battery stores the electric energy generated by the solar panel and provides power for the entire system at night. The button display interface is connected to the button debugging module. , for installation, commissioning and maintenance.
附图说明 Description of drawings
图1为本发明的结构原理图。 Fig. 1 is the structure schematic diagram of the present invention. the
图2(a)为阳光传感器的主视图,图2(b)为阳光传感器的俯视图。 Figure 2(a) is the front view of the sunlight sensor, and Figure 2(b) is the top view of the sunlight sensor. the
图3为模数转换装置连接图。 Figure 3 is a connection diagram of the analog-to-digital conversion device. the
图4为主控器连接图。 Figure 4 is the main controller connection diagram. the
图5为驱动电路的电路连接原理图。 FIG. 5 is a schematic diagram of the circuit connection of the drive circuit. the
图6为系统软件流程图。 Figure 6 is a flow chart of the system software. the
图7为跟踪太阳核心算法软件流程图。 Figure 7 is a flow chart of the core algorithm software for tracking the sun. the
具体实施方式 Detailed ways
下面结合附图对本发明的结构原理和工作原理作简要说明。 The structural principle and working principle of the present invention will be briefly described below in conjunction with the accompanying drawings. the
下面结合附图2对阳光传感器进行说明,该阳光传感器由8个参数基本一致的光敏电阻和带有凸透镜的黑色圆筒组成;
The sunlight sensor is described below in conjunction with the accompanying
阳光传感器具体设计如下:实现“粗调”阳光信号采集部分的1 4号四个光敏电阻分别与半径为R1的圆周外切并对称分布,分别代表“北、东、南、西”四个方向;而实现“细调” 信号采集部分58号四个光敏电阻的1/4~1/3,在半径为R2圆周内并对称分布,螺纹连接管10上端通过与透镜固定台12以螺纹方式将平凸透镜9水平固定,下端通过与基准板11一体的调节内螺母连接于基准板11上,因为螺纹连接管10通过与透镜固定台12以螺纹方式将平凸透镜9水平固定后成为一个整体部件,所以还能够通过在内螺母11中旋转螺纹连接管10达到调节焦点的位置。
The specific design of the sunlight sensor is as follows: to realize the "coarse adjustment" of the sunlight
实际上半径为R2的圆周就是平凸透镜9汇聚太阳光的圆形区域,而且在5-8四个光电传感器安装固定后,通过在内螺母11中旋转螺纹连接管10就可以改变R2的大小,从而实现根据需要调整四个光电传感器受光面积的目的。
In fact, the circumference whose radius is R2 is exactly the circular area where the plano-
阳光传感器上面的8个光敏电阻的电路连接如图2(a)所示,图中R1~R8为光敏电阻,Rf为可变电阻;当太阳光照射光敏电阻时,AIN0~AIN7点得电压会发生改变,该点的电位满足如下关系: The circuit connection of the 8 photoresistors on the sunlight sensor is shown in Figure 2(a). In the figure, R1~R8 are photoresistors, and Rf is a variable resistor; when the sun shines on the photoresistors, the voltage at AIN0~AIN7 will changes, the potential at this point satisfies the following relationship:
将这8个信号分别连接至模数转换芯片的8个模数转换通道就完成了信号的输入,由于光敏电阻的参数不完全相同,采用可变电阻Rf是为了保证在相同的光照条件下保证8个光敏电阻参数一致。 Connect these 8 signals to the 8 analog-to-digital conversion channels of the analog-to-digital conversion chip to complete the signal input. Since the parameters of the photoresistors are not completely the same, the variable resistor Rf is used to ensure that under the same lighting conditions The parameters of the 8 photoresistors are consistent.
所述的模数转换装置采用的模数转换芯片为12位并行高速模数转换芯片MAX197,该芯片有8个模拟输入通道。 The analog-to-digital conversion chip used by the analog-to-digital conversion device is a 12-bit parallel high-speed analog-to-digital conversion chip MAX197, which has 8 analog input channels. the
模数转换芯片MAX197进行一次模数转换的时间仅为5us,能够满足系统设计中对于实时性的要求,如果对于成本比较敏感场合,可以不使用该芯片而直接使用ATmega32中的模数转换模块,此时只需要将AIN0~AIN7与PA0~PA7分别短接即可。 The analog-to-digital conversion chip MAX197 takes only 5us to perform an analog-to-digital conversion, which can meet the real-time requirements in system design. If the cost is sensitive, you can directly use the analog-to-digital conversion module in ATmega32 without using this chip. At this time, you only need to short-circuit AIN0~AIN7 and PA0~PA7 respectively. the
所述的主控器完成信号的输入、输出控制以及数据运算,处理器采用低功耗、单指令周期的ATmega32单片机,附图4为主控器的信号输入输出连接图,包括模拟信号数据输入通道(PA0~PA7)为其电路连接图、模数转换芯片控制线(PD4~PD7)、串口通信线(PD0、PD1)、ISP程序下载线(PB5、PB6、PB7)、JTAG调试口(TDI、TDO、TMS、TCK)、驱动控制线(PB4、PB5、PB6、PB7)等;此外该主控器还包括振荡电路和复位电路,振荡电路由12MHz晶振和两个20pF电容连接组成。 Described master controller finishes the input of signal, output control and data operation, and processor adopts the ATmega32 single-chip microcomputer of low power consumption, single instruction cycle, and accompanying drawing 4 is the signal input and output connection diagram of master controller, including analog signal data input The channel (PA0~PA7) is its circuit connection diagram, the analog-to-digital conversion chip control line (PD4~PD7), the serial port communication line (PD0, PD1), the ISP program download line (PB5, PB6, PB7), the JTAG debugging port (TDI , TDO, TMS, TCK), drive control lines (PB4, PB5, PB6, PB7), etc.; in addition, the main controller also includes an oscillation circuit and a reset circuit. The oscillation circuit is composed of a 12MHz crystal oscillator and two 20pF capacitor connections. the
所述的驱动路用于增加信号的驱动能力,驱动芯片采用集成芯片L298,L298可以驱动两个二相电机,也可以驱动继电器动作,输出电压最高可达50V,输出电压大小由输入电源决定; L298的单相输出电流可达2.5 A,可驱动电感性负载。 The driving circuit is used to increase the driving ability of the signal. The driving chip adopts the integrated chip L298. The L298 can drive two two-phase motors, and can also drive a relay. The output voltage can reach up to 50V, and the output voltage is determined by the input power supply; The single-phase output current of the L298 can reach 2.5 A, which can drive inductive loads. the
表1 L298N逻辑控制表 Table 1 L298N logic control table
ATmega32单片机与L298的驱动电路原理为,单片机的PB4、PB5、PB6、 PB7分别连接L298N的5(IN1)、7(IN2)、10(IN3)、12(IN4)引脚,为控制信号,控制水平方向和垂直方向电机的工作于停止。L298N的4脚(Vss)直接接太阳能电池板的正极。2(OUT1)、3(OUT2)、13(OUT3)、14(OUT4)引脚为输出端,分别接两个电机的正负极。二极管D6~D9、D13~D16为续流二极管,发光二极管D10、D11、D12、D17用于显示电机的正反转情况,P4为输出接口,输出接口为两路,P4的1引脚和2引脚为一路,3引脚和4引脚为一路,分别驱动云台的东西方向和南北方向电机,这两路都可以直接电机功率在10W以下的直流电机;如果需要应用于更大功率的电机,可以讲这两路信号控制继电器,然后再由继电器连接大功率电机。
The driving circuit principle of ATmega32 single-chip microcomputer and L298 is that PB4, PB5, PB6 and PB7 of the single-chip microcomputer are respectively connected to pins 5 (IN1), 7 (IN2), 10 (IN3), and 12 (IN4) of L298N, which are control signals. The work of the motors in the horizontal direction and the vertical direction is stopped. Pin 4 (Vss) of L298N is directly connected to the positive pole of the solar panel. Pins 2 (OUT1), 3 (OUT2), 13 (OUT3), and 14 (OUT4) are output terminals, which are respectively connected to the positive and negative poles of the two motors. Diodes D6~D9, D13~D16 are freewheeling diodes, light emitting diodes D10, D11, D12, D17 are used to display the forward and reverse of the motor, P4 is the output interface, the output interface is two-way,
所述的按键显示接口连接至特定的按键显示模块,用于系统的安装、调试、维修。按键显示模块包括了12864液晶显示以及键盘控制两部分。 The key display interface is connected to a specific key display module for installation, debugging and maintenance of the system. The button display module includes two parts: 12864 liquid crystal display and keyboard control. the
所述的串口通信模块可以连接到上位机,实现串口通信功能;为了使得系统易于升级,系统配备了串口通信模块,通过该模块,该系统可以通过电脑直接控制、监测。另外,该模块可以实现某些特定场合的集中管理,通过协议转换可以形成具有一定形成具有一定规范的现场总线(例如Profibus、Interbus、P-NET),实现系统的数字化监控与管理。 The serial communication module can be connected to the upper computer to realize the serial communication function; in order to make the system easy to upgrade, the system is equipped with a serial communication module, through which the system can be directly controlled and monitored by the computer. In addition, this module can realize the centralized management of some specific occasions, and can form a field bus (such as Profibus, Interbus, P-NET) with certain specifications through protocol conversion, so as to realize the digital monitoring and management of the system. the
此外,在太阳跟踪控制器中,还增加了其它模块,主要有:①增加了EEPROM芯片AT24C02,用于保存设定的相关参数;②此外还增加了时钟芯片DS1302,这样可以使得系统采用两种模式实现跟踪,即:传感器模式和传感器与时钟结合模式;③预留有4路限位开关信号接口,用于特定应用场合;④留有风速传感器接口,接入风速传感器可以实现强风保护功能。 In addition, in the sun tracking controller, other modules are added, mainly: ① EEPROM chip AT24C02 is added to save the relevant parameters set; ② clock chip DS1302 is also added, so that the system can use two Modes to realize tracking, namely: sensor mode and sensor and clock combination mode; ③ 4 limit switch signal interfaces are reserved for specific applications; ④ wind speed sensor interfaces are reserved, and the wind speed sensor can be connected to realize the strong wind protection function. the
以上部分为系统的硬件设计部分,下面阐述一种高精度太阳跟踪控制器的软件设计。该系统设计采用C语言编写,编程环境为ICCAVR,调试环境为AVR studio。系统软件的总体流程如附图7所示。单片机上电复位后,首先进行参数设定并初始化,系统在进行AD转化,紧接着单片机通过传感器检测当前情况光照情况,之后按照程序进行外部调节、强风保护、异常检测、内部调节等过程。 The above part is the hardware design part of the system, and the software design of a high-precision sun tracking controller is described below. The system design is written in C language, the programming environment is ICCAVR, and the debugging environment is AVR studio. The overall flow of the system software is shown in Figure 7. After the single-chip microcomputer is powered on and reset, the parameters are set and initialized first, and the system is performing AD conversion, and then the single-chip microcomputer detects the current lighting conditions through the sensor, and then performs external adjustment, strong wind protection, abnormal detection, and internal adjustment according to the program. the
太阳跟踪核心算法控制程序包括外部粗调程序和内部精调程序组成,程序流程如附图7,结合附图7说明程序具体工作流程如下: The sun tracking core algorithm control program consists of an external rough adjustment program and an internal fine adjustment program. The program flow is shown in Figure 7. The specific workflow of the program is as follows in conjunction with Figure 7:
1.ATmega32输出相应控制信号启动模数转换芯片MAX197开始采集阳光传感器8路AD输入信号; 1. ATmega32 outputs the corresponding control signal to start the analog-to-digital conversion chip MAX197 and starts to collect the 8-way AD input signal of the sunlight sensor;
2.将8路输入信号对应的AD值分别存入8个寄存器中,第1个寄存器存储的数据代表传感器阳光传感器黑筒内部东方向(以下简称内东,南、西、北方向的光敏电阻与东方向类似)光敏电阻对应的AD值,第2个寄存器存储数据代表阳光传感器黑筒内部南方向光敏电阻对应的AD值,第3个寄存器和第4个寄存器存储数据分别代表内西方向、内北方向光敏电阻的AD值;第5、第6、第7、第8个寄存器存储数据分别代表阳光传感器黑筒外部东方向、外部南方向、外部西方向、外部北方向的光敏电阻AD值; 2. Store the AD values corresponding to the 8 input signals into 8 registers respectively. The data stored in the first register represents the east direction inside the black tube of the sensor sunlight sensor (hereinafter referred to as the photoresistor in the east, south, west and north directions) Similar to the east direction) the AD value corresponding to the photoresistor, the data stored in the second register represents the AD value corresponding to the photoresistor in the south direction inside the black tube of the sunlight sensor, the data stored in the third register and the fourth register represent the inner west direction, The AD value of the photoresistor in the inner north direction; the data stored in the 5th, 6th, 7th, and 8th registers respectively represent the AD value of the photoresistor in the external east direction, external south direction, external west direction, and external north direction of the sunlight sensor black tube ;
3.ATmega32处理器比较第5个和第7个寄存器的值,假如第5个寄存器的值比第7个大,说明太阳大致位置在东方向;再比较第6个和第8个寄存器的值,假如第6个寄存器的值比第8个大,说明太阳大致位置在南方向;结合这二者,就可以确定太阳大致在东南方向。同理,当第5个寄存器比第7个寄存器小时,第6个寄存器数值比第8个寄存器数值小时可以确定出另外的几种状态,即:东、南、西南、西、西北、北、东北; 3. The ATmega32 processor compares the values of the 5th and 7th registers. If the value of the 5th register is larger than the 7th, it means that the approximate position of the sun is in the east direction; then compare the values of the 6th and 8th registers , if the value of the 6th register is greater than the 8th, it means that the sun is roughly in the south direction; combining these two, it can be determined that the sun is roughly in the southeast direction. Similarly, when the fifth register is smaller than the seventh register, and the value of the sixth register is smaller than the value of the eighth register, several other states can be determined, namely: east, south, southwest, west, northwest, north, northeast;
4.当确定大致方向以后,判断第5个与第7个寄存器的差值,即外东与外西,如果差值大于15,则ATmega32单片机通过驱动电机芯片L298使得电机向东运动;具体给出的信号为单片机的PB4引脚为高电平1,PB5为低电平0;
4. After confirming the general direction, judge the difference between the fifth register and the seventh register, that is, outer east and outer west. If the difference is greater than 15, the ATmega32 single-chip microcomputer will drive the motor chip L298 to make the motor move eastward; The output signal is that the PB4 pin of the microcontroller is
其它情况参照流程图7;
For other situations, refer to
5.当外部调节好以后,转内部调节,内部调节和外部调节类似,不过由于聚光作用和精调效果,内部调节驱动电机的方向与外部是相反的,差值也改为8; 5. After the external adjustment is completed, turn to the internal adjustment. The internal adjustment is similar to the external adjustment, but due to the effect of light concentration and fine adjustment, the direction of the internal adjustment drive motor is opposite to the external one, and the difference is also changed to 8;
6. 判断第1个与第3个寄存器的差值,即内东与内西,如果差值大于8,则ATmega32单片机通过驱动电机芯片L298使得电机向西运动;具体给出的信号为单片机的PB4引脚为低电平0,PB5为高电平1;
6. Judge the difference between the first register and the third register, that is, inner east and inner west. If the difference is greater than 8, the ATmega32 microcontroller will drive the motor chip L298 to make the motor move westward; the specific signal given is the microcontroller's PB4 pin is low level 0, PB5 is
其它情况参照流程图7;
For other situations, refer to
7.重复上述1~6步骤,直到系统调节到对准太阳为止。 7. Repeat steps 1 to 6 above until the system is adjusted to align with the sun.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210042875.9A CN102591359B (en) | 2012-02-24 | 2012-02-24 | Solar tracking controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210042875.9A CN102591359B (en) | 2012-02-24 | 2012-02-24 | Solar tracking controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102591359A CN102591359A (en) | 2012-07-18 |
CN102591359B true CN102591359B (en) | 2014-04-16 |
Family
ID=46480178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210042875.9A Expired - Fee Related CN102591359B (en) | 2012-02-24 | 2012-02-24 | Solar tracking controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102591359B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103078557A (en) * | 2013-02-04 | 2013-05-01 | 江苏科技大学 | Multifunctional portable solar tracking power generation device and method |
CN103235603A (en) * | 2013-05-03 | 2013-08-07 | 沈阳航空航天大学 | Automatic sun tracking device and control method |
CN105302165A (en) * | 2015-11-27 | 2016-02-03 | 胡国旺 | Photovoltaic power generation automatic tracking system |
CN105717950A (en) * | 2015-12-21 | 2016-06-29 | 南宁学院 | Light source tracking system |
DE102018002404A1 (en) * | 2018-03-23 | 2019-09-26 | Azur Space Solar Power Gmbh | Sonnennachführeinheit |
CN108646792A (en) * | 2018-05-29 | 2018-10-12 | 西安理工大学 | Control device and control method of the photovoltaic generation holder group from motion tracking |
CN114355990A (en) * | 2021-12-28 | 2022-04-15 | 广西壮族自治区公众信息产业有限公司 | Solar tracking servo device based on photosensitive resistor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201716597U (en) * | 2010-06-29 | 2011-01-19 | 苏州市职业大学 | Digital solar automatic tracking controller |
CN102156482A (en) * | 2011-04-11 | 2011-08-17 | 京信通信技术(广州)有限公司 | Solar azimuth angle tracking controller and tracking method thereof |
CN102221837A (en) * | 2011-06-21 | 2011-10-19 | 梁幸平 | Automatic steering control system of solar cell panel |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006017955A1 (en) * | 2004-08-17 | 2006-02-23 | Yaoming Zhang | A detecting solar lighting mirrors apparatus |
WO2011085557A1 (en) * | 2010-01-15 | 2011-07-21 | 苏州恒阳新能源科技有限公司 | Light signal sensor |
-
2012
- 2012-02-24 CN CN201210042875.9A patent/CN102591359B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201716597U (en) * | 2010-06-29 | 2011-01-19 | 苏州市职业大学 | Digital solar automatic tracking controller |
CN102156482A (en) * | 2011-04-11 | 2011-08-17 | 京信通信技术(广州)有限公司 | Solar azimuth angle tracking controller and tracking method thereof |
CN102221837A (en) * | 2011-06-21 | 2011-10-19 | 梁幸平 | Automatic steering control system of solar cell panel |
Also Published As
Publication number | Publication date |
---|---|
CN102591359A (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102591359B (en) | Solar tracking controller | |
CN103926937B (en) | A kind of high-efficiency solar method for automatic tracking and device | |
CN203759552U (en) | Efficient solar automatic tracking device | |
CN102929325A (en) | Method for tracking maximum power of high-accuracy single-stage photovoltaic power generation system | |
CN101859152A (en) | Solar panel solar tracking system and control method thereof | |
CN101728976A (en) | Photovoltaic power generating device | |
CN101237199A (en) | Solar thermal wind power generation system combined with photovoltaic technology | |
CN105575236B (en) | Wind light mutual complementing power generation lecture experiment system | |
CN203070107U (en) | Control circuit of twin axle sun tracking system | |
CN204887541U (en) | A Single-chip Microcomputer-Based Solar Street Lighting Control System | |
CN203444340U (en) | Dual-shaft automatic sun tracking controller | |
CN201638832U (en) | a solar panel | |
CN103855785A (en) | Design of high-efficiency solar lamp source | |
CN201865263U (en) | Solar photovoltaic roof system based on GPS tracking positioning system | |
Xing et al. | Design of the solar photovoltaic system data acquisition board | |
CN204089217U (en) | A kind of photovoltaic power generation grid-connecting apparatus | |
CN202120128U (en) | Solar photoelectric sensor capable of automatic tracking | |
CN202975827U (en) | Control system for solar azimuth measuring instrument | |
CN202257287U (en) | Energy saving automatic solar tracker | |
CN202257286U (en) | Solar tracking device | |
CN206193544U (en) | Low energy consumption photovoltaic power generation automatic tracking apparatus | |
Wang | Design of electric vehicle charging station based on wind and solar complementary power supply | |
CN204886843U (en) | A photovoltaic power generation system | |
CN204180015U (en) | A kind of low-power consumption solar power generation amount supervisory control system | |
CN204386804U (en) | By solar energy and the wind-driven generator unit of strong magnetic alternation coupling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140416 Termination date: 20210224 |
|
CF01 | Termination of patent right due to non-payment of annual fee |