CN101858750A - Intelligent positioning and navigation system for rescue assistance in large buildings - Google Patents
Intelligent positioning and navigation system for rescue assistance in large buildings Download PDFInfo
- Publication number
- CN101858750A CN101858750A CN 200910068385 CN200910068385A CN101858750A CN 101858750 A CN101858750 A CN 101858750A CN 200910068385 CN200910068385 CN 200910068385 CN 200910068385 A CN200910068385 A CN 200910068385A CN 101858750 A CN101858750 A CN 101858750A
- Authority
- CN
- China
- Prior art keywords
- positioning
- distance
- information
- node
- ranging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004891 communication Methods 0.000 claims abstract description 10
- 238000005516 engineering process Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000007726 management method Methods 0.000 claims description 8
- 230000006870 function Effects 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 4
- 230000003993 interaction Effects 0.000 abstract description 2
- 230000010354 integration Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 12
- 238000013461 design Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000008676 import Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 2
- 206010003591 Ataxia Diseases 0.000 description 1
- 206010010947 Coordination abnormal Diseases 0.000 description 1
- 208000016290 incoordination Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Navigation (AREA)
Abstract
本发明基于融合了射频通信和超声波测距技术的无线测距传感器,构造出了具备精确定位、信息交互功能、信息记录、路径规划、集视频音频于一体等多功能,用于大型建筑物内救援辅助的智能定位导航系统以应对大型建筑内可能发生的恐怖袭击、火灾等突发事件,在尽可能短的时间内解救受困人群。系统包含预置在楼内的无线测距传感器节点阵列、移动终端、远程服务器端三部分。移动终端接收传感器节点阵列的测距信息,只要得到与三个以上定位节点之间的测距数据,就能够通过三角定位法实现对终端的精确定位,迅速为用户规划最优路径,并将相关信息发送给服务器供监控中心察看。对于硬件软件设计方面,我们实现了小耗电、距离位置精确计算、冲突避免算法等。
The present invention is based on a wireless ranging sensor that combines radio frequency communication and ultrasonic ranging technology, and constructs a multifunctional sensor with precise positioning, information interaction function, information recording, path planning, video and audio integration, etc., which is used in large buildings. Rescue-assisted intelligent positioning and navigation system is used to deal with emergencies such as terrorist attacks and fires that may occur in large buildings, and rescue trapped people in the shortest possible time. The system consists of three parts: a wireless ranging sensor node array, a mobile terminal, and a remote server end, which are preset in the building. The mobile terminal receives the ranging information of the sensor node array, and as long as it obtains the ranging data between three or more positioning nodes, it can realize the precise positioning of the terminal through the triangulation method, quickly plan the optimal path for the user, and send the relevant The information is sent to the server for viewing by the monitoring center. In terms of hardware and software design, we have implemented small power consumption, accurate calculation of distance and position, and conflict avoidance algorithms.
Description
技术领域technical field
技术领域涉及到无线通信、射频通信技术和超声波测距技术,以及Dijkstra算法来实现路径规划与导航和适当的数学建模思想The technical field involves wireless communication, radio frequency communication technology and ultrasonic ranging technology, as well as Dijkstra algorithm to realize path planning and navigation and appropriate mathematical modeling ideas
背景技术Background technique
目前,为了应对各种人为、自然的突发事件,维护社会安定和人们生命财产的安全,迫切需要一种能够在室内条件下进行实时精确定位、导航及信息服务的设备,以支持建筑物内部的搜索、救援等活动。GPS系统是目前最常用的无线定位系统,但是GPS信号不能覆盖到楼宇内部。而基于移动通信网络的无线定位方式分辨率低,定位误差大。超声波是传统的测距用传感器,可以用于定位,但是超声波获取的信息比较单一,不便于识别目标,难以支持较大区域的连续高精度定位。为了解决目标识别问题,把射频通信技术和超声波测距技术集成起来是一种可能的方案。本设计就是基于这样一种思路,为智能化建筑设计一种内部定位和导航系统,以提高智能化大厦的安保水平,并为智能化大厦提供更好的管理平台,并可以在特殊情况下供公安、消防、救援等使用。以下是作品与现有技术相比只有突出的技术特点和显著进步。At present, in order to deal with various man-made and natural emergencies, maintain social stability and the safety of people's lives and properties, there is an urgent need for a device that can perform real-time precise positioning, navigation and information services under indoor conditions to support building interiors. search and rescue activities. The GPS system is currently the most commonly used wireless positioning system, but the GPS signal cannot cover the inside of the building. However, the wireless positioning method based on the mobile communication network has low resolution and large positioning error. Ultrasonic is a traditional ranging sensor that can be used for positioning, but the information obtained by ultrasonic is relatively simple, which is not easy to identify targets, and it is difficult to support continuous high-precision positioning in large areas. In order to solve the problem of target recognition, it is a possible solution to integrate radio frequency communication technology and ultrasonic ranging technology. This design is based on such an idea, to design an internal positioning and navigation system for intelligent buildings, to improve the security level of intelligent buildings, and to provide a better management platform for intelligent buildings, and to provide Public security, firefighting, rescue, etc. The following are only outstanding technical features and significant progress compared with the prior art.
发明内容Contents of the invention
基于无线传感器网络,把射频通信技术和超声波测距技术集成起来是我们的方案。本项目就是基于这样一种思路,为智能化建筑设计一种内部定位和导航系统,以提高智能化大厦的安保水平。,并为智能化大厦提供更好的管理平台,并可以在特殊情况下供公安、消防、救援等使用。本设计设计并实现了一个用于局域环境中的精确定位系统,包括移动终端和一个为终端提供服务的服务器以及布置在室内的若干传感器节点。Based on wireless sensor network, it is our solution to integrate radio frequency communication technology and ultrasonic ranging technology. This project is based on such an idea to design an internal positioning and navigation system for intelligent buildings to improve the security level of intelligent buildings. , and provide a better management platform for intelligent buildings, and can be used by public security, firefighting, and rescue under special circumstances. This design designs and implements a precise positioning system for local environment, including mobile terminals, a server that provides services for the terminals, and several sensor nodes arranged indoors.
该系统可以为终端持有者提供移动的精确定位、导航和及时信息交互等服务。终端可以实时定位并为用户导航;终端和服务器可以通过消息进行信息交互;终端可以通过摄像头采集视频并压缩通过无线网络发送到服务器端以便指示、调度;服务器端为终端提供信息服务、用户管理等功能。传感器节点用于接收和发送射频超声信号,以实现定位功能。以下是项目创新技术及技术难点:The system can provide terminal holders with services such as precise mobile positioning, navigation and timely information interaction. The terminal can locate and navigate for the user in real time; the terminal and the server can exchange information through messages; the terminal can collect video through the camera and compress it and send it to the server through the wireless network for instructions and scheduling; the server provides information services for the terminal, user management, etc. Function. The sensor nodes are used to receive and send radio frequency ultrasonic signals to realize the positioning function. The following are the innovative technologies and technical difficulties of the project:
(1)冲突避免算法(1) Conflict avoidance algorithm
若射频信号RF1、RF2和超声信号US1、US2分别代表路标1和2在同一个探测路标接收的信息,RF携带者路标ID信息,探测节点可以识别RF1和RF2,而US不携带任何信息,探测节点无法区分US1和US2,所以由于路标1、2不协调,会出现如图7所示冲突干扰,这里US2接收在RF1后在US1前,由于探测器无法识别US1和US2,探测节点把RF1和US2的时间间隔t错误当作RF1和US1的时间间隔,从而导致测量距离不正确。If the radio frequency signals RF 1 , RF 2 and ultrasonic signals US 1 , US 2 respectively represent the information received by
上述冲突分可分为两种,一种是同一探测路标发射RF和US中间出现外来RF信号冲突,如图1所示;另一种是同一探测路标发射RF和US中间出现外来US信号冲突,如图2所示。The above-mentioned conflicts can be divided into two types. One is that there is an external RF signal conflict between the transmitting RF and US of the same detection landmark, as shown in Figure 1; the other is that there is an external US signal conflict between the transmitting RF and US of the same detection landmark. as shown in
为了应对图1所示冲突,由于探测路标发出的射频和超声信号在Dus时间内会消失,每个探测路标首先空闲r随机时间段,然后,打开射频并接收外界射频信号,若Dus时间内没有接收到任何信号,且射频装载空闲,开始发送自身射频和超声信号。In order to deal with the conflict shown in Figure 1, since the radio frequency and ultrasonic signals sent by the detection road signs will disappear within the Dus time, each detection road sign is first idle for a random period of time, and then turns on the radio frequency and receives external radio frequency signals. When any signal is received and the RF load is idle, it starts sending its own RF and ultrasonic signals.
为了应对图2所示冲突,探测节点内部维护有最近两个射频信息的接收时间,当探测节点接收到超声信号,判断是否在Dus时间内接收到多于一个射频信息,若多于一个丢弃,否则计算距离。In order to cope with the conflict shown in Figure 2, the detection node internally maintains the receiving time of the latest two radio frequency information. When the detection node receives the ultrasonic signal, it judges whether more than one radio frequency information is received within the Dus time. If more than one is discarded, Otherwise compute the distance.
(2)传感器休眠机制(2) Sensor sleep mechanism
每个传感器节点再全工作模式下的工作电流为20mA,在节电模式下的工作电流为40uA,及工作电流的正常取值范围为40uA——20mA之间,正常工作电流为2mA,传感器节点在大多数时间处于节电模式,此模式下只保留一个串行外围接口SPI(Serial Peripheral Interface)用于射频信号的发送。The working current of each sensor node is 20mA in full working mode, and 40uA in power-saving mode, and the normal range of working current is between 40uA and 20mA, and the normal working current is 2mA. In power-saving mode most of the time, only one serial peripheral interface SPI (Serial Peripheral Interface) is reserved for sending radio frequency signals in this mode.
(3)距离精确计算(3) Accurate calculation of distance
基于TDOA(The Differential time Of Arrival)的定位是基于距离定位技术的一种,典型代表是Active Bat、AHLos,这些系统都是通过公式S=V*ΔT以射频信号和超声波的到达时间差计算指引节点与接收器之间的距离,在正常室温和湿度下,声音的速度V1约为344m/s,光的速度V2约为3×108m/s。由于V2远远大于V1,所以有
(4)移动目标的精确定位问题(4) Accurate positioning of moving targets
结合测量领域的专业知识,利用三角定位法的原理,一旦收到三个以上指引节点的有效信息(包含节点的位置坐标、ID编号等内容),就可以计算出移动目标的当前位置。Combining professional knowledge in the field of measurement and using the principle of triangulation, once the effective information of more than three guiding nodes (including the node's position coordinates, ID number, etc.) is received, the current position of the moving target can be calculated.
每个指引节点和接收器之间的关系算式:
定位依据:
三角定位法定位计算公式:Triangulation positioning calculation formula:
(5)路径规划与导航(5) Path planning and navigation
移动终端在定位信息的辅助下确定从当前位置到目标位置的最佳路径。结合所设计地图的数据结构,应用改进的Dijistra算法,搜索到达各个位置的最短路径,根据搜索记录的路径,获得最短路径。(效果如图4)The mobile terminal determines the best path from the current location to the target location with the aid of positioning information. Combined with the data structure of the designed map, the improved Dijistra algorithm is applied to search for the shortest path to each location, and the shortest path is obtained according to the path recorded by the search. (The effect is shown in Figure 4)
(6)地图设计;(6) map design;
移动终端的电子地图应该为持有者提供一个友好的界面以辅助定位和导航,现有的电子地图在显示风格和存储格式方面并不适于室内的三维立体应用,因此计划自定义XML格式的电子地图,存储在XML格式的文件中,用户可以选择不同文件以应用于不同地图,通过XML读取器(自定义类)读入内存,并将地图显示在移动终端。The electronic map of the mobile terminal should provide the holder with a friendly interface to assist positioning and navigation. The existing electronic map is not suitable for indoor three-dimensional applications in terms of display style and storage format. Therefore, it is planned to customize the electronic map in XML format. The map is stored in a file in XML format. Users can select different files to apply to different maps, read them into memory through an XML reader (custom class), and display the map on the mobile terminal.
(7)视频采集及传输(7) Video collection and transmission
摄像头收集移动终端周围的数据,然后在移动终端显示,再压缩,通过802.11无线传输给远程服务器,服务器再解压数据,再现视频。压缩算法采用h263,把数据从RGB格式压缩成YUV格式。实际传输前后效果如图5图6。The camera collects the data around the mobile terminal, then displays it on the mobile terminal, compresses it, and transmits it to the remote server through 802.11 wireless, and the server decompresses the data and reproduces the video. The compression algorithm uses h263 to compress the data from RGB format to YUV format. The actual before and after transmission effects are shown in Figure 5 and Figure 6.
附图说明Description of drawings
图1同一探测路标发射RF和US中间出现外来RF信号冲突Figure 1 An external RF signal conflict occurs between the transmitting RF of the same detection road sign and the US
图2同一探测路标发射RF和US中间出现外来US信号冲突Figure 2 There is an external US signal conflict in the middle of transmitting RF and US on the same detection road sign
图3测距散点曲线对比图Figure 3 Comparison chart of ranging scatter curves
图4路径规划结果图Figure 4 Path planning result map
图5压缩前视频截图Figure 5 video screenshot before compression
图6压缩后视频截图Figure 6 video screenshot after compression
图7移动终端实际效果图Figure 7 Actual Effect Diagram of Mobile Terminal
图8系统定位原理图Figure 8 Schematic diagram of system positioning
图9指引节点和接收器的信息传递示意图Figure 9 Schematic diagram of information transfer between guidance nodes and receivers
图10移动终端软件流程图Figure 10 Mobile Terminal Software Flowchart
图11服务器端软件流程图Figure 11 Server-side software flow chart
图12传感器节点布置模型Figure 12 sensor node layout model
具体实施方式Detailed ways
(1)实时高精度室内定位的实现原理(1) Realization principle of real-time high-precision indoor positioning
如图8所示,在室内环境中按照一定的规律布置若干个无线传感器节点作为指引器(Beacon),每个指引节点都具有射频通信功能和发送、接收超声波信号的功能,具有唯一的ID编号,节点内部存储了相应的位置信息和其ID号。As shown in Figure 8, several wireless sensor nodes are arranged according to certain rules in the indoor environment as guides (Beacon). Each guide node has the function of radio frequency communication and the function of sending and receiving ultrasonic signals, and has a unique ID number. , the corresponding location information and its ID number are stored inside the node.
如图9所示,移动目标进入该区域后,自身携带的接收器(Listener)可以通过射频通信的方式获取到邻近的指引节点的ID号、位置信息,并可以通过超声测距的方式得到接收器和指引节点之间的直线距离,一旦得到邻近的3个以上的指引节点信息,根据每个指引节点的位置、每个指引节点和接收器之间的距离,利用三角定位原理,就可以计算出接收器也就是移动目标的当前位置。接收器负责识别指引节点和测距,然后把这些信息传送到与之相连的移动终端设备,由计算能力较强的移动终端完成比较复杂的定位计算。As shown in Figure 9, after the moving target enters the area, the receiver (Listener) carried by itself can obtain the ID number and location information of the adjacent guidance node through radio frequency communication, and can obtain the received information through ultrasonic ranging. Once the information of more than 3 adjacent guidance nodes is obtained, according to the position of each guidance node and the distance between each guidance node and the receiver, it can be calculated by using the principle of triangulation Out of the receiver is the current position of the moving object. The receiver is responsible for identifying the guidance node and measuring the distance, and then transmits the information to the mobile terminal equipment connected to it, and the mobile terminal with strong computing ability completes the more complex positioning calculation.
(2)传感器节点布置模型(2) Sensor node layout model
预先在建筑物内部按照L=H·tanθ(L为相邻两个指引节点间的距离,H为房间的高度,θ为超声波的波束角)布置无线测距传感器节点阵列,待无线传感器网络部署完毕后,打开服务器端整个系统即可正常运作。如图12所示。Arrange the wireless ranging sensor node array in advance in the building according to L=H tanθ (L is the distance between two adjacent guidance nodes, H is the height of the room, θ is the beam angle of ultrasonic waves), and the wireless sensor network is to be deployed. After finishing, turn on the server side and the whole system can work normally. As shown in Figure 12.
(3)移动终端软件流程(3) Mobile terminal software process
移动终端软件运行时首先进行基本的初始化,尤其是相关硬件模块的初始化与参数设置。然后进入主程序循环。接下来启动相应的模块。移动终端软件的主流程图如图10所示,说明如下:When the mobile terminal software is running, the basic initialization is performed first, especially the initialization and parameter setting of the relevant hardware modules. Then enter the main program loop. Next start the corresponding module. The main flowchart of the mobile terminal software is shown in Figure 10, and the description is as follows:
系统初始化:初始化基本显示信息以及程序基本控件的显示模型。System initialization: Initialize the basic display information and the display model of the basic controls of the program.
主程序入口:程序初始化后等待用户进行操作。Main program entry: After the program is initialized, it waits for the user to operate.
主界面模块:把地图文件信息导入并存储在自定义结构中并显示;等待用户的输入命令。Main interface module: import and store map file information in a custom structure and display it; wait for user input commands.
导航模块:负责接收周围Beacon传来的位置信息,然后读取Listener串口数据,转换成地图坐标。Navigation module: responsible for receiving the location information from the surrounding Beacon, and then read the Listener serial port data and convert it into map coordinates.
视频模块:负责采集现场图像,并进行压缩,传给网络模块。Video module: responsible for collecting on-site images, compressing them, and transmitting them to the network module.
网络模块:负责发送压缩后的视频图像到服务器端,服务器和移动终端之间信息的交换。Network module: responsible for sending compressed video images to the server, and exchanging information between the server and the mobile terminal.
(4)服务器端软件流程(4) Server-side software process
根据管理员的命令而进行导入地图、用户管理、地图管理、信息服务。在完成相应服务后判断是否退出,如果确认退出则退出,否则返回至初始化后的状态。如图11Map import, user management, map management, and information service are performed according to the administrator's command. After completing the corresponding service, judge whether to exit, if it is confirmed to exit, then exit, otherwise return to the state after initialization. Figure 11
启动服务器,用户打开移动终端后需向服务器端发送消息请求,验证成功后为其提供相关服务,否则给出出错原因。Start the server. After the user opens the mobile terminal, he needs to send a message request to the server. After the verification is successful, provide relevant services for him, otherwise give the reason for the error.
用户管理:验证用户,管理申请用户等。User management: verify users, manage application users, etc.
信息服务:接收消息和发送消息,回复。Information service: receive messages and send messages, reply.
定位用户:显示指定用户的位置。根据用户发送来的位置信息进行定位,并在服务器端界面上标记出来。支持地图显示的缩放。Locate User: Display the location of the specified user. Position according to the location information sent by the user, and mark it on the server-side interface. Supports zooming of the map display.
地图管理:下载地图,导入地图,支持对指定地图的导入。Map management: download maps, import maps, and support the import of specified maps.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910068385 CN101858750A (en) | 2009-04-07 | 2009-04-07 | Intelligent positioning and navigation system for rescue assistance in large buildings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910068385 CN101858750A (en) | 2009-04-07 | 2009-04-07 | Intelligent positioning and navigation system for rescue assistance in large buildings |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101858750A true CN101858750A (en) | 2010-10-13 |
Family
ID=42944791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910068385 Pending CN101858750A (en) | 2009-04-07 | 2009-04-07 | Intelligent positioning and navigation system for rescue assistance in large buildings |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101858750A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103546739A (en) * | 2012-07-10 | 2014-01-29 | 联想(北京)有限公司 | Electronic device and object identification method |
CN103776452A (en) * | 2014-01-13 | 2014-05-07 | 华中科技大学 | Personnel characteristic-based fire evacuation path navigation method |
CN103791898A (en) * | 2012-10-30 | 2014-05-14 | 联想(北京)有限公司 | Method and electronic equipment for navigation in building |
CN103929807A (en) * | 2014-04-28 | 2014-07-16 | 上海和视环境艺术工程有限公司 | Method for precisely positioning device coordinate based on low power consumption |
CN104678355A (en) * | 2013-11-28 | 2015-06-03 | 国民技术股份有限公司 | Multipoint positioning method and positioning system |
CN104811497A (en) * | 2015-05-04 | 2015-07-29 | 苏州触达信息技术有限公司 | Ultrasonic positioning based interaction method and system |
CN104995988A (en) * | 2013-02-05 | 2015-10-21 | 张江红 | Method and apparatus for positioning mobile device |
CN105183955A (en) * | 2015-08-21 | 2015-12-23 | 林浩嘉 | Method for planning optimal path in multistory building |
CN105278533A (en) * | 2015-11-10 | 2016-01-27 | 北京特种机械研究所 | Omnidirectional moving platform navigation method |
CN106004931A (en) * | 2016-06-07 | 2016-10-12 | 深圳航天科技创新研究院 | Train approach warning system and method based on wireless distance measurement technique |
CN106970405A (en) * | 2017-05-05 | 2017-07-21 | 南京理工大学 | A kind of high speed and precision meridian tyre method and alignment system |
CN107588767A (en) * | 2012-04-18 | 2018-01-16 | 知谷(上海)网络科技有限公司 | A kind of indoor intelligent positioning navigation method |
CN108955647A (en) * | 2018-07-25 | 2018-12-07 | 暨南大学 | Scene of a fire localization method and system based on unmanned plane |
CN109459034A (en) * | 2018-07-05 | 2019-03-12 | 北京中广通业信息科技股份有限公司 | A kind of indoor bootstrap technique and system based on wireless network |
CN109697820A (en) * | 2018-12-25 | 2019-04-30 | 无锡格跃科技有限公司 | A kind of distribution forest fire early warning bootstrap technique and system |
CN117973989A (en) * | 2024-04-02 | 2024-05-03 | 安徽轩创智能科技有限公司 | Intelligent manufacturing industrial park management system based on 5G technology |
-
2009
- 2009-04-07 CN CN 200910068385 patent/CN101858750A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107588767A (en) * | 2012-04-18 | 2018-01-16 | 知谷(上海)网络科技有限公司 | A kind of indoor intelligent positioning navigation method |
CN103546739A (en) * | 2012-07-10 | 2014-01-29 | 联想(北京)有限公司 | Electronic device and object identification method |
CN103791898A (en) * | 2012-10-30 | 2014-05-14 | 联想(北京)有限公司 | Method and electronic equipment for navigation in building |
CN104995988A (en) * | 2013-02-05 | 2015-10-21 | 张江红 | Method and apparatus for positioning mobile device |
CN104678355A (en) * | 2013-11-28 | 2015-06-03 | 国民技术股份有限公司 | Multipoint positioning method and positioning system |
CN103776452A (en) * | 2014-01-13 | 2014-05-07 | 华中科技大学 | Personnel characteristic-based fire evacuation path navigation method |
CN103929807A (en) * | 2014-04-28 | 2014-07-16 | 上海和视环境艺术工程有限公司 | Method for precisely positioning device coordinate based on low power consumption |
CN104811497A (en) * | 2015-05-04 | 2015-07-29 | 苏州触达信息技术有限公司 | Ultrasonic positioning based interaction method and system |
CN104811497B (en) * | 2015-05-04 | 2018-05-18 | 苏州触达信息技术有限公司 | A kind of exchange method and system based on ultrasonic wave positioning |
CN105183955B (en) * | 2015-08-21 | 2018-10-30 | 林浩嘉 | A kind of tier building optimum path planning method |
CN105183955A (en) * | 2015-08-21 | 2015-12-23 | 林浩嘉 | Method for planning optimal path in multistory building |
CN105278533B (en) * | 2015-11-10 | 2018-05-18 | 北京特种机械研究所 | A kind of Omni-mobile platform navigation method |
CN105278533A (en) * | 2015-11-10 | 2016-01-27 | 北京特种机械研究所 | Omnidirectional moving platform navigation method |
CN106004931A (en) * | 2016-06-07 | 2016-10-12 | 深圳航天科技创新研究院 | Train approach warning system and method based on wireless distance measurement technique |
CN106004931B (en) * | 2016-06-07 | 2018-02-09 | 深圳航天科技创新研究院 | A kind of Train Approaching warning system and method based on wireless distance finding technology |
CN106970405A (en) * | 2017-05-05 | 2017-07-21 | 南京理工大学 | A kind of high speed and precision meridian tyre method and alignment system |
CN109459034A (en) * | 2018-07-05 | 2019-03-12 | 北京中广通业信息科技股份有限公司 | A kind of indoor bootstrap technique and system based on wireless network |
CN108955647A (en) * | 2018-07-25 | 2018-12-07 | 暨南大学 | Scene of a fire localization method and system based on unmanned plane |
CN108955647B (en) * | 2018-07-25 | 2021-06-11 | 暨南大学 | Fire scene positioning method and system based on unmanned aerial vehicle |
CN109697820A (en) * | 2018-12-25 | 2019-04-30 | 无锡格跃科技有限公司 | A kind of distribution forest fire early warning bootstrap technique and system |
CN109697820B (en) * | 2018-12-25 | 2021-01-15 | 无锡格跃科技有限公司 | Distributed forest fire early warning guiding method and system |
CN117973989A (en) * | 2024-04-02 | 2024-05-03 | 安徽轩创智能科技有限公司 | Intelligent manufacturing industrial park management system based on 5G technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101858750A (en) | Intelligent positioning and navigation system for rescue assistance in large buildings | |
CN104849740B (en) | Integrated satellite navigation and the indoor and outdoor seamless positioning system and method for Bluetooth technology | |
US8504288B2 (en) | Quality control of mapping data | |
US7764574B2 (en) | Positioning system using ultrasonic waves and method for operating the same | |
KR101785161B1 (en) | System and method for determining indoor position | |
CN104457750B (en) | The personnel location system and method for a kind of emergency management and rescue | |
CN104284419A (en) | An iBeacon-based indoor positioning and auxiliary navigation method, device and system | |
US8412183B1 (en) | Automatically constructing paths | |
KR101087725B1 (en) | Real-time traffic information measurement and road information guidance device and method | |
CN104507161B (en) | A kind of indoor corridor localization method based on zigbee network | |
JP2003111128A (en) | Current position specifying method, current position information providing method, travel route guidance method, position information management system, and information communication terminal | |
CN111506645A (en) | Three-dimensional visual management platform based on GIS | |
CN112308998A (en) | Indoor positioning intelligent inspection system and method based on Bluetooth | |
CN104237846B (en) | Three-dimensional localization tracking system and method in autonomous type mobile object room | |
CN106604236A (en) | Indoor positioning system | |
US20170374526A1 (en) | Position calculation using bluetooth low energy | |
Patel | Augmented reality based indoor navigation using point cloud localization | |
CN114708668A (en) | Firefighter tracking monitoring system and method | |
CN109387200A (en) | A kind of indoor inertial navigation locating personnel location monitoring system based on ad hoc network | |
Aman et al. | Sensing and classifying indoor environments: An Iot based portable tour guide system | |
Berka et al. | Optimizing the number of bluetooth beacons with proximity approach at decision points for intermodal navigation of blind pedestrians | |
Korbel et al. | A radio network for guidance and public transport assistance of the visually impaired | |
CN211375797U (en) | Parking space monitoring device and system capable of assisting in positioning | |
JP4152799B2 (en) | Wireless base station, mobile device and information providing system | |
CN202995406U (en) | Ground mobile workstation device for dynamic supervising and managing of newly-added construction land |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20101013 |