CN101434974B - Method for preparing soluble beta-1,3-oligoglucoside by using yeast - Google Patents
Method for preparing soluble beta-1,3-oligoglucoside by using yeast Download PDFInfo
- Publication number
- CN101434974B CN101434974B CN200810238547XA CN200810238547A CN101434974B CN 101434974 B CN101434974 B CN 101434974B CN 200810238547X A CN200810238547X A CN 200810238547XA CN 200810238547 A CN200810238547 A CN 200810238547A CN 101434974 B CN101434974 B CN 101434974B
- Authority
- CN
- China
- Prior art keywords
- chromatography column
- bio
- gel
- ligoglucoside
- solubility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 240000004808 Saccharomyces cerevisiae Species 0.000 title claims abstract description 16
- 238000004587 chromatography analysis Methods 0.000 claims abstract description 45
- 238000000926 separation method Methods 0.000 claims abstract description 15
- 238000005903 acid hydrolysis reaction Methods 0.000 claims abstract description 12
- 238000000746 purification Methods 0.000 claims abstract description 12
- 239000003513 alkali Substances 0.000 claims abstract description 10
- 239000002808 molecular sieve Substances 0.000 claims abstract description 8
- 238000002360 preparation method Methods 0.000 claims abstract description 8
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 14
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 12
- 239000002244 precipitate Substances 0.000 claims description 12
- 235000000346 sugar Nutrition 0.000 claims description 10
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 239000012153 distilled water Substances 0.000 claims description 6
- 235000019253 formic acid Nutrition 0.000 claims description 6
- 239000006228 supernatant Substances 0.000 claims description 6
- 229920002307 Dextran Polymers 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000012141 concentrate Substances 0.000 claims description 3
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 230000014759 maintenance of location Effects 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 238000004108 freeze drying Methods 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims 5
- 238000002203 pretreatment Methods 0.000 claims 3
- 238000004458 analytical method Methods 0.000 claims 2
- 239000002002 slurry Substances 0.000 claims 2
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 238000002390 rotary evaporation Methods 0.000 claims 1
- 229920002498 Beta-glucan Polymers 0.000 abstract description 35
- 229920001542 oligosaccharide Polymers 0.000 abstract description 35
- 150000002482 oligosaccharides Chemical class 0.000 abstract description 33
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 5
- 235000013305 food Nutrition 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 4
- 239000003814 drug Substances 0.000 abstract description 3
- 231100000481 chemical toxicant Toxicity 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000003440 toxic substance Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 10
- DBTMGCOVALSLOR-DEVYUCJPSA-N (2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](CO)O[C@H](O)[C@@H]2O)O)O[C@H](CO)[C@H]1O DBTMGCOVALSLOR-DEVYUCJPSA-N 0.000 description 6
- 229920001543 Laminarin Polymers 0.000 description 6
- 239000005717 Laminarin Substances 0.000 description 6
- 229920001503 Glucan Polymers 0.000 description 5
- 210000005253 yeast cell Anatomy 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- OQUKIQWCVTZJAF-UHFFFAOYSA-N phenol;sulfuric acid Chemical compound OS(O)(=O)=O.OC1=CC=CC=C1 OQUKIQWCVTZJAF-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- PKAUICCNAWQPAU-UHFFFAOYSA-N 2-(4-chloro-2-methylphenoxy)acetic acid;n-methylmethanamine Chemical compound CNC.CC1=CC(Cl)=CC=C1OCC(O)=O PKAUICCNAWQPAU-UHFFFAOYSA-N 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229920000392 Zymosan Polymers 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 1
- 239000012501 chromatography medium Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 208000010643 digestive system disease Diseases 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 150000004666 short chain fatty acids Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明涉及一种利用酵母制备可溶性β-1,3-葡聚寡糖的方法。该方法包括碱预处理、酸水解和分离纯化,其中所述的分离纯化是将酸水解中制得的可溶性β-1,3-葡聚寡糖溶解 后,经过由AG50W-X4层析柱与Bio-Gel P4层析柱串联而成的分子筛层析系统进行分离纯化。本发明提供的β-1,3-葡聚寡糖制备方法操作较简单,所得寡糖种类较多,制备量较大,可以重复操作,因此适合于工业化大规模生产;并且由于本方法的原料来自于酵母,且生产过程中未添加有毒的化学试剂,因此用该方法生产出的产品可应用于食品、医药等领域。
The invention relates to a method for preparing soluble beta-1,3-glucan oligosaccharides by using yeast. The method includes alkali pretreatment, acid hydrolysis and separation and purification, wherein the separation and purification is to dissolve the soluble β-1,3-glucan oligosaccharide obtained in the acid hydrolysis, and pass through the AG50W-X4 chromatographic column and A molecular sieve chromatography system composed of Bio-Gel P4 chromatography columns connected in series for separation and purification. The method for preparing β-1,3-glucan oligosaccharides provided by the present invention is relatively simple to operate, and the obtained oligosaccharides are of more types, the preparation amount is larger, and the operation can be repeated, so it is suitable for large-scale industrial production; and because the raw materials of the method It comes from yeast, and no toxic chemical reagents are added in the production process, so the products produced by this method can be used in food, medicine and other fields.
Description
技术领域 technical field
本发明涉及一种β-1,3-葡聚寡糖的制备方法,特别是一种利用酵母制备可溶性β-1,3-葡聚寡糖的方法,属于生物技术技术领域。The invention relates to a preparation method of β-1, 3-glucan oligosaccharides, in particular to a method of using yeast to prepare soluble β-1, 3-glucan oligosaccharides, which belongs to the technical field of biotechnology.
背景技术 Background technique
β-1,3-葡聚糖可以增强生物体抵抗由细菌,真菌,病毒和寄生生物引起的感染性疾病的能力,还具有抗肿瘤活性。β-葡聚糖在食品行业用作食品添加剂,用来提供纤维和短链脂肪酸,可以抑制肠道细菌,保证蠕动肌的正常工作,降低血清胆固醇和甘油三酸酯水平,从而起到降低肠癌和消化疾病病发几率的作用。β-1,3-glucan can enhance the ability of organisms to resist infectious diseases caused by bacteria, fungi, viruses and parasites, and also has anti-tumor activity. β-glucan is used as a food additive in the food industry to provide fiber and short-chain fatty acids, which can inhibit intestinal bacteria, ensure the normal work of peristaltic muscles, reduce serum cholesterol and triglyceride levels, thereby reducing intestinal The role of cancer and digestive disease incidence.
酵母细胞壁的主要成分为β-1,3-葡聚糖,通过碱抽提的方法可以从酵母细胞壁得到不溶性β-1,3-葡聚糖(Zymosan)。这种葡聚糖具有上述生物活性,但研究发现,不溶性β-1,3-葡聚糖可以对生物体产生一定的毒性,容易引发炎症,而可溶性β-1,3-葡聚糖在保持生物活性的同时相对更加安全。因此可溶性β-1,3-葡聚糖具有很好的应用前景。The main component of the yeast cell wall is β-1,3-glucan, and the insoluble β-1,3-glucan (Zymosan) can be obtained from the yeast cell wall by alkaline extraction. This glucan has the above-mentioned biological activity, but studies have found that insoluble β-1, 3-glucan can produce certain toxicity to organisms and easily cause inflammation, while soluble β-1, 3-glucan maintains It is relatively safer while being biologically active. So soluble β-1,3-glucan has a good application prospect.
公开号为CN1373134的中国专利,公开了β-1,3葡聚寡糖素及制备方法与应用,它利用葡萄糖为原料,通过化学合成步骤制得β-1,3葡聚寡糖。但由于化工合成过程中需要加入多种化学合成试剂,因此,制得的产品中含有部分有毒的危害生物体的成分,无法应用于医药、食品等领域。The Chinese patent with the publication number CN1373134 discloses β-1,3 oligoglucan and its preparation method and application. It uses glucose as a raw material to prepare β-1,3 oligoglucan through chemical synthesis steps. However, since a variety of chemical synthesis reagents need to be added in the chemical synthesis process, the prepared product contains some toxic and harmful components to organisms, which cannot be applied to fields such as medicine and food.
Jamas等人采用部分酸水解法从酵母细胞壁制备了可溶性β-1,3-葡聚糖,然后通过膜分离技术将其分离得到不同分子量范围的可溶性葡聚糖;Micheal等人也采用部分酸水解法从酵母细胞壁制备了可溶性寡糖,通过Bio-Gel P4和P2层析介质在不同温度条件下分两步对其进行了分离。但上述可溶性糖的分离纯化方法操作相对复杂,所得寡糖种类较少,并且制备量较低,难以大规模生产应用。Jamas et al. used partial acid hydrolysis to prepare soluble β-1,3-glucan from yeast cell walls, and then separated it by membrane separation technology to obtain soluble glucans in different molecular weight ranges; Micheal et al. also used partial acid water Soluble oligosaccharides were prepared from yeast cell walls and separated in two steps by Bio-Gel P4 and P2 chromatography media at different temperatures. However, the above-mentioned separation and purification method for soluble sugars is relatively complicated to operate, and the types of oligosaccharides obtained are relatively small, and the preparation amount is low, so it is difficult to apply in large-scale production.
发明内容 Contents of the invention
本发明针对现有技术的不足,提供一种利用酵母制备可溶性β-1,3-葡聚寡糖的方法。Aiming at the deficiencies of the prior art, the invention provides a method for preparing soluble β-1,3-glucan oligosaccharides by using yeast.
发明概述Summary of the invention
本发明通过部分酸水解法从不溶性葡聚糖制备可溶性葡聚糖,主要成分为β-1,3-葡聚寡糖,然后通过串联的AG50W-X4和Bio-Gel P4层析柱实现了一步分离纯化。The present invention prepares soluble glucan from insoluble glucan by partial acid hydrolysis, the main component is β-1,3-dextran oligosaccharide, and then realizes a one-step process by connecting AG50W-X4 and Bio-Gel P4 chromatography columns in series Isolation and Purification.
发明详述Detailed description of the invention
一种利用酵母制备可溶性β-1,3-葡聚寡糖的方法,包括酵母泥碱预处理、碱不溶性β-1,3-葡聚糖酸水解和可溶性β-1,3-葡聚寡糖分离纯化。其特征是所述的分离纯化是将干燥的可溶性β-1,3-葡聚寡糖溶解后,经过分子筛层析系统进行分离纯化,所述的分子筛层析系统主要由AG50W-X4层析柱与Bio-Gel P4层析柱串联而成,可溶性β-1,3-葡聚寡糖溶液先进入AG50W-X4层析柱,由流动相带进Bio-Gel P4层析柱,从Bio-Gel P4层析柱顶部收集组分。A method for preparing soluble β-1,3-glucan oligosaccharides by using yeast, comprising alkali pretreatment of yeast sludge, acid hydrolysis of alkali-insoluble β-1,3-glucan and soluble β-1,3-glucan oligosaccharides Sugar separation and purification. It is characterized in that the separation and purification is to dissolve the dried soluble β-1,3-glucan oligosaccharides, and then carry out separation and purification through a molecular sieve chromatography system. The molecular sieve chromatography system is mainly composed of an AG50W-X4 chromatography column It is connected in series with the Bio-Gel P4 chromatography column. The soluble β-1,3-dextran oligosaccharide solution first enters the AG50W-X4 chromatography column, and is carried into the Bio-Gel P4 chromatography column by the mobile phase. From the Bio-Gel Fractions were collected from the top of the P4 chromatography column.
所述的AG50W-X4层析柱和Bio-Gel P4层析柱均带有夹套,夹套中通入循环热水用来维持柱温65-75℃,以保证分离效果。流动相为蒸馏水,先从AG50W-X4层析柱顶部进入,从AG50W-X4层析柱底部流出,再从Bio-Gel P4层析柱底部进入Bio-Gel P4层析柱,从Bio-Gel P4层析柱顶部流出。流动相温度为65-75℃,流动相流速为1~2ml/min,每5~8min从Bio-GelP4层析柱顶部收集一管组分,收集保留时间为3~24h的组分。The AG50W-X4 chromatographic column and the Bio-Gel P4 chromatographic column both have jackets, and circulating hot water is introduced into the jackets to maintain the column temperature at 65-75°C to ensure the separation effect. The mobile phase is distilled water, which first enters from the top of the AG50W-X4 chromatography column, flows out from the bottom of the AG50W-X4 chromatography column, then enters the Bio-Gel P4 chromatography column from the bottom of the Bio-Gel P4 chromatography column, and flows out from the bottom of the Bio-Gel P4 chromatography column. The top of the chromatography column flows out. The temperature of the mobile phase is 65-75°C, the flow rate of the mobile phase is 1-2ml/min, and a tube of components is collected from the top of the Bio-GelP4 chromatography column every 5-8 minutes, and the components with a retention time of 3-24 hours are collected.
所述的碱预处理步骤具体操作如下:Described alkali pretreatment step concrete operation is as follows:
(1)将酵母泥过滤除杂水洗后,悬于4wt%的NaOH溶液中,90~100℃水浴中剧烈搅拌0.75~1h,2000~5000转/分钟离心,去上清液,取沉淀;(1) After filtering the yeast sludge to remove impurities and washing it with water, suspend it in 4wt% NaOH solution, stir vigorously in a water bath at 90-100°C for 0.75-1h, centrifuge at 2000-5000 rpm, remove the supernatant, and take the precipitate;
(2)将步骤(1)制得的沉淀悬于3wt%NaOH溶液中,75~80℃水浴搅拌2.5~3.5h,用浓盐酸将溶液pH调至3.5~5.5,75~80℃水浴搅拌1~2h,冷却至室温,继续搅拌抽提14~16h,离心得到沉淀;(2) Suspend the precipitate obtained in step (1) in 3wt% NaOH solution, stir in a water bath at 75 to 80°C for 2.5 to 3.5 hours, adjust the pH of the solution to 3.5 to 5.5 with concentrated hydrochloric acid, and stir in a water bath at 75 to 80°C for 1 hour ~2h, cooled to room temperature, continued to stir and extract for 14~16h, centrifuged to obtain precipitate;
(3)将步骤(2)得到的沉淀分别用水和无水乙醇洗涤,干燥后得到粉末状碱不溶性β-1,3-葡聚糖。(3) The precipitate obtained in step (2) is washed with water and absolute ethanol respectively, and dried to obtain powdered alkali-insoluble β-1,3-glucan.
所述的酸水解步骤具体操作如下:Described acid hydrolysis step concrete operation is as follows:
(1)将由碱预处理步骤获得的碱不溶性β-1,3-葡聚糖溶于无水甲酸,置于80~90℃水浴,搅拌20~60min,用1~3倍体积无水乙醇将溶解在甲酸中的糖沉淀下来,离心得到沉淀;(1) Dissolve the alkali-insoluble β-1,3-glucan obtained from the alkali pretreatment step in anhydrous formic acid, place it in a water bath at 80-90°C, stir for 20-60 minutes, and dissolve it with 1-3 times the volume of absolute ethanol The sugar dissolved in formic acid precipitates and is centrifuged to obtain the precipitate;
(2)将步骤(1)获得的沉淀溶解于蒸馏水,离心取上清得到可溶性β-1,3-葡聚寡糖溶液,干燥,得到可溶性β-1,3-葡聚寡糖。(2) Dissolving the precipitate obtained in step (1) in distilled water, centrifuging to obtain a supernatant to obtain a soluble β-1,3-glucan oligosaccharide solution, and drying to obtain a soluble β-1,3-glucan oligosaccharide.
优选的,酸水解步骤(2)中的干燥为真空旋转蒸发仪浓缩可溶性β-1,3-葡聚寡糖溶液后,再通过冻干步骤获得可溶性β-1,3-葡聚寡糖。Preferably, the drying in the acid hydrolysis step (2) is to concentrate the soluble β-1,3-glucan oligosaccharide solution by a vacuum rotary evaporator, and then obtain the soluble β-1,3-glucan oligosaccharide through a freeze-drying step.
上述原料及化学试剂如无特别说明,均为市售产品。本发明未加详细限定的均按本领域现有常规操作。The above-mentioned raw materials and chemical reagents are all commercially available products unless otherwise specified. All the operations of the present invention that are not limited in detail are performed according to existing routines in the art.
本发明有益效果如下:The beneficial effects of the present invention are as follows:
本发明提供的β-1,3-葡聚寡糖制备方法操作较简单,所得寡糖种类较多,制备量较大,可以重复操作,因此适合于工业化大规模生产;并且由于本方法的原料来自于酵母,且生产过程中未添加有毒的化学试剂,因此用该方法生产出的产品可应用于食品、医药等领域。本发明在利用啤酒厂废弃酵母制备高值化寡糖产品方面具有应用前景。The method for preparing β-1,3-glucan oligosaccharides provided by the present invention is relatively simple to operate, and the obtained oligosaccharides have more types, a larger amount of preparation, and can be repeatedly operated, so it is suitable for large-scale industrial production; and because the raw materials of the method It comes from yeast, and no toxic chemical reagents are added in the production process, so the products produced by this method can be used in food, medicine and other fields. The invention has application prospect in preparing high-value oligosaccharide products by using waste yeast in breweries.
附图说明 Description of drawings
图1是分子筛层析系统的结构示意图;其中:1、层析柱(AG50W-X4),2、层析柱(Bio-Gel P4),3、夹套,4、恒温水浴槽,5、流动相,6、蠕动泵,7、循环热水管道,8、流动相管道,9、自动收集器Fig. 1 is the structure diagram of molecular sieve chromatography system; Wherein: 1, chromatography column (AG50W-X4), 2, chromatography column (Bio-Gel P4), 3, jacket, 4, constant temperature water bath, 5, flow Phase, 6. Peristaltic pump, 7. Circulating hot water pipeline, 8. Mobile phase pipeline, 9. Automatic collector
图2是高效液相色谱检测寡糖混合物成分;其中:曲线1是昆布多糖(Laminarin,购于Sigma公司)部分酸水解得到的β-1,3-葡聚寡糖标准品;曲线2是酵母细胞壁制备得到的可溶性β-1,3-葡聚寡糖样品。Fig. 2 is the composition of oligosaccharide mixture detected by high performance liquid chromatography; wherein: curve 1 is the β-1,3-glucan oligosaccharide standard obtained by partial acid hydrolysis of laminarin (Laminarin, purchased from Sigma);
图3是采用苯酚硫酸法检测所收集组分中的总糖含量。Figure 3 is the detection of the total sugar content in the collected fractions by the phenol-sulfuric acid method.
图4是高效液相色谱检测所得部分组分纯度;其中:曲线1~5是分子筛层析分离组分(对应于图3中峰1至峰5);曲线6是酵母细胞壁制备得到的可溶性β-1,3-葡聚寡糖样品。Fig. 4 is the purity of some components obtained by high performance liquid chromatography detection; wherein: curves 1 to 5 are molecular sieve chromatography separation components (corresponding to peaks 1 to 5 in Fig. 3);
图5是红外光谱分析所分离寡糖糖苷键类型。Figure 5 shows the types of glycosidic bonds in oligosaccharides separated by infrared spectroscopic analysis.
具体实施方式 Detailed ways
下面结合说明书附图对本发明做进一步阐述,但本发明所保护范围不仅限于此。The present invention will be further described below in conjunction with the accompanying drawings, but the protection scope of the present invention is not limited thereto.
试剂与仪器:Reagents and instruments:
昆布多糖(Laminarin,购于Sigma公司)Laminarin (Laminarin, purchased from Sigma)
高效液相色谱柱(Aminex HPX-42A Carbohydrate Column,购于Bio-Rad公司)High performance liquid chromatography column (Aminex HPX-42A Carbohydrate Column, purchased from Bio-Rad company)
AG50W-X4层析柱(层析柱型号:XK50/30,购于Pharmacia公司;填料型号:AG50W-X4,购于Bio-Rad公司)AG50W-X4 chromatographic column (chromatographic column model: XK50/30, purchased from Pharmacia Company; filler model: AG50W-X4, purchased from Bio-Rad Company)
Bio-Gel P4层析柱(层析柱型号:XK50/30,购于Pharmacia公司;填料型号:Bio-GelP4,购于Bio-Rad公司)Bio-Gel P4 chromatographic column (column model: XK50/30, purchased from Pharmacia Company; filling material model: Bio-GelP4, purchased from Bio-Rad Company)
实施例1Example 1
本发明利用酵母制备可溶性β-1,3-葡聚寡糖的方法,将啤酒厂废弃酵母泥,经6~8层纱布过滤除杂和水洗后,悬于4wt%NaOH溶液中,100℃水浴中剧烈搅拌1h,离心去上清,沉淀悬于3wt%NaOH溶液中,75℃水浴搅拌3h,用浓盐酸将pH调至4.5,75℃水浴搅拌1h,冷却至室温,继续搅拌抽提15h,离心得到沉淀,分别用水和无水乙醇洗涤,干燥后得到粉末状碱不溶性β-1,3-葡聚糖。The method of the present invention utilizes yeast to prepare soluble β-1,3-glucan oligosaccharides, the waste yeast mud of the brewery is filtered through 6 to 8 layers of gauze to remove impurities and washed with water, suspended in 4wt% NaOH solution, and placed in a water bath at 100°C Stir vigorously in the medium for 1 h, centrifuge to remove the supernatant, suspend the precipitate in 3wt% NaOH solution, stir in a 75°C water bath for 3 h, adjust the pH to 4.5 with concentrated hydrochloric acid, stir in a 75°C water bath for 1 h, cool to room temperature, continue stirring and extracting for 15 h, The precipitate was obtained by centrifugation, washed with water and absolute ethanol respectively, and dried to obtain powdered alkali-insoluble β-1,3-glucan.
将上述碱不溶性β-1,3-葡聚糖溶于无水甲酸,置于80℃水浴,搅拌30min,用1.5倍体积无水乙醇将溶解在甲酸中的糖沉淀下来,离心得到沉淀,加入适量蒸馏水,充分溶解可溶性寡糖,离心取上清得到可溶性β-1,3-葡聚寡糖溶液,真空旋转蒸发仪浓缩寡糖溶液后冻干即得到可溶性β-1,3-葡聚寡糖。已知昆布多糖为β-1,3-葡聚糖,采用上述部分酸水解法从昆布多糖制备得到可溶性β-1,3-葡聚寡糖标准品,通过高效液相色谱柱(AminexHPX-42A Carbohydrate Column,Bio-Rad)对该标准品和所制备的酵母细胞壁寡糖进行分析(如图2所示),发现二者所含组分出峰时间相同,说明二者成分相同。Dissolve the above-mentioned alkali-insoluble β-1,3-glucan in anhydrous formic acid, place in a water bath at 80°C, stir for 30 minutes, use 1.5 times the volume of absolute ethanol to precipitate the sugar dissolved in formic acid, centrifuge to obtain the precipitate, add Appropriate amount of distilled water, fully dissolve soluble oligosaccharides, centrifuge and take the supernatant to obtain soluble β-1,3-glucan oligosaccharide solution, concentrate the oligosaccharide solution by vacuum rotary evaporator and freeze-dry to obtain soluble β-1,3-glucan oligosaccharides sugar. It is known that laminarin is β-1,3-glucan, and the soluble β-1,3-glucan oligosaccharide standard substance is prepared from laminarin by the above-mentioned partial acid hydrolysis method. Carbohydrate Column, Bio-Rad) analyzed the standard substance and the prepared yeast cell wall oligosaccharides (as shown in Figure 2), and found that the components contained in the two had the same peak time, indicating that the two components were the same.
将制备的β-1,3-葡聚寡糖配制成一定浓度的水溶液,采用图1所示分子筛层析系统进行分离纯化。该系统由高30cm,直径5cm的AG50W-X4层析柱(XK50/30)和高100cm,直径5cm的Bio-Gel P4(XK50/100)层析柱串联而成,所用层析柱均带有夹套,夹套中的循环热水用来维持适当的柱温,以保证分离效果。样品先从AG50W-X4层析柱顶部进入,从AG50W-X4层析柱底部流出,再从Bio-Gel P4层析柱底部进入Bio-Gel P4层析柱,从Bio-Gel P4层析柱顶部流出。流动相为蒸馏水,流动相温度和柱温均为70℃,流动相流速为1.5ml/min,每6min从Bio-Gel P4层析柱顶部收集一管组分,收集保留层析时间为3~24h的组分。采用苯酚硫酸法检测所收集组分中的总糖含量(如图3所示),所得二糖至六糖单一纯组分的得率分别为2.9%,6.3%,4.4%,5.3%,3.8%。通过高效液相色谱仪对分离得到的部分组分进行分析,可以得到与混合寡糖样品相对应的单峰(如图4所示),说明混合样品已经成功分离。通过化学法测定了部分组分的平均聚合度(表1),结果显示这些相邻组分之间相差一个葡萄糖单位。对所分离的寡糖组分进行了红外光谱分析(如图5所示),发现样品在890cm-1处有明显的特征吸收峰,表明为β构型;在2920cm-1和1370cm-1处有特征吸收峰表明样品是具有β-1,3-糖苷键的葡聚糖。The prepared β-1,3-glucan oligosaccharide was formulated into an aqueous solution with a certain concentration, and the molecular sieve chromatography system shown in Figure 1 was used for separation and purification. The system consists of an AG50W-X4 chromatography column (XK50/30) with a height of 30 cm and a diameter of 5 cm and a Bio-Gel P4 (XK50/100) chromatography column with a height of 100 cm and a diameter of 5 cm in series. The jacket, the circulating hot water in the jacket is used to maintain the proper column temperature to ensure the separation effect. The sample first enters from the top of the AG50W-X4 chromatography column, flows out from the bottom of the AG50W-X4 chromatography column, then enters the Bio-Gel P4 chromatography column from the bottom of the Bio-Gel P4 chromatography column, and flows out from the top of the Bio-Gel P4 chromatography column flow out. The mobile phase is distilled water, the temperature of the mobile phase and the column are both 70°C, the flow rate of the mobile phase is 1.5ml/min, and a tube of components is collected from the top of the Bio-Gel P4 chromatography column every 6 minutes, and the collection and retention chromatography time is 3~ 24h composition. Adopt phenol sulfuric acid method to detect the total sugar content in the collected fraction (as shown in Figure 3), the yield of gained disaccharide to hexasaccharide single pure fraction is respectively 2.9%, 6.3%, 4.4%, 5.3%, 3.8% %. Part of the separated components were analyzed by high performance liquid chromatography, and a single peak corresponding to the mixed oligosaccharide sample (as shown in Figure 4 ) could be obtained, indicating that the mixed sample had been successfully separated. The average degree of polymerization of some components was determined by chemical method (Table 1), and the results showed that there was a difference of one glucose unit between these adjacent components. The separated oligosaccharide components were analyzed by infrared spectroscopy (as shown in Figure 5), and it was found that the sample had an obvious characteristic absorption peak at 890cm-1, indicating that it was a β configuration; at 2920cm-1 and 1370cm-1 A characteristic absorption peak indicates that the sample is glucan with β-1,3-glucosidic bonds.
表1Table 1
说明:聚合度(DP)=总糖浓度(μM)/还原端浓度(μM),Note: degree of polymerization (DP) = total sugar concentration (μM) / reducing end concentration (μM),
总糖浓度测定采用苯酚硫酸法;还原端浓度测定采用二喹啉甲酸(BCA)检测法。The total sugar concentration was determined by the phenol-sulfuric acid method; the reducing end concentration was determined by the biquinolinecarboxylic acid (BCA) detection method.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810238547XA CN101434974B (en) | 2008-12-18 | 2008-12-18 | Method for preparing soluble beta-1,3-oligoglucoside by using yeast |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810238547XA CN101434974B (en) | 2008-12-18 | 2008-12-18 | Method for preparing soluble beta-1,3-oligoglucoside by using yeast |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101434974A CN101434974A (en) | 2009-05-20 |
CN101434974B true CN101434974B (en) | 2011-11-09 |
Family
ID=40709612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810238547XA Expired - Fee Related CN101434974B (en) | 2008-12-18 | 2008-12-18 | Method for preparing soluble beta-1,3-oligoglucoside by using yeast |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101434974B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5028703A (en) * | 1988-03-11 | 1991-07-02 | Massachusetts Institute Of Technology | Glucan composition and process for preparation thereof |
US5817643A (en) * | 1992-08-21 | 1998-10-06 | Alpha-Beta Technology, Inc. | Underivatized, aqueous soluable β(1-3) glucan, composition and method of making same |
CN1583802A (en) * | 2004-06-02 | 2005-02-23 | 中国农业大学 | Method for extracting beta-1,3-dextran |
CN101012468A (en) * | 2007-02-07 | 2007-08-08 | 天津科技大学 | A kind of extraction process of yeast glucan |
CN101205552A (en) * | 2006-12-20 | 2008-06-25 | 天津市工业微生物研究所 | Method for preparing yeast cell wall beta-1,3-dextran |
-
2008
- 2008-12-18 CN CN200810238547XA patent/CN101434974B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5028703A (en) * | 1988-03-11 | 1991-07-02 | Massachusetts Institute Of Technology | Glucan composition and process for preparation thereof |
US5817643A (en) * | 1992-08-21 | 1998-10-06 | Alpha-Beta Technology, Inc. | Underivatized, aqueous soluable β(1-3) glucan, composition and method of making same |
CN1583802A (en) * | 2004-06-02 | 2005-02-23 | 中国农业大学 | Method for extracting beta-1,3-dextran |
CN101205552A (en) * | 2006-12-20 | 2008-06-25 | 天津市工业微生物研究所 | Method for preparing yeast cell wall beta-1,3-dextran |
CN101012468A (en) * | 2007-02-07 | 2007-08-08 | 天津科技大学 | A kind of extraction process of yeast glucan |
Non-Patent Citations (3)
Title |
---|
MICHAEL J. JANUSZ et al.ISOLATION OF A YEAST HEPTAGLUCOSIDE THAT INHIBITS MONOCYTE PHAGOCYTOSIS OF ZYMOSAN PARTICLES.《THE JOURNAL OF IMMUNOLOGY》.1989,第142卷(第3期),959-965. |
MICHAEL J. JANUSZ et al.ISOLATION OF A YEAST HEPTAGLUCOSIDE THAT INHIBITS MONOCYTE PHAGOCYTOSIS OF ZYMOSAN PARTICLES.《THE JOURNAL OF IMMUNOLOGY》.1989,第142卷(第3期),959-965. * |
宫艳艳等.不同提取方法对酵母葡聚糖性质的影响.《食品工业科技》.2008,第29卷(第9期),162-165. * |
Also Published As
Publication number | Publication date |
---|---|
CN101434974A (en) | 2009-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103435714B (en) | The preparation of the thick polysaccharide of a kind of fig and purification process and purposes | |
CN108727509B (en) | A kind of bamboo shoot shell arabinogalactan and its preparation and use | |
CN100510094C (en) | Production method of konjak mannose using cellulase | |
CN105294874B (en) | A kind of method for efficiently separating Black Ganoderma immunocompetence polysaccharide | |
CN114591448B (en) | Mannogalactan of Phellinus mulberry fruiting body and its preparation and application | |
CN103604884A (en) | Method for detecting reducing saccharide substances in seaweed biomass | |
CN102633900A (en) | Method for extracting and purifying polysaccharide from Cordyceps militaris | |
CN108014143B (en) | Method for synchronously extracting total triterpenoids and polysaccharides of antrodia camphorata | |
CN101434974B (en) | Method for preparing soluble beta-1,3-oligoglucoside by using yeast | |
CN118440218A (en) | Novel acidic pumpkin seed polysaccharide, and preparation method and application thereof | |
CN112552424A (en) | Cordyceps sobolifera sporophore polysaccharide and preparation and application thereof | |
CN112175111A (en) | Method for efficiently separating wood fiber material to obtain high-purity components | |
CN103275237A (en) | Preparation method and application of eggplant branch polysaccharide | |
CN115057949B (en) | Active polysaccharide compound extracted from dragon fruit stem and its preparation method and application | |
CN107236054B (en) | A kind of preparation method and application of low molecular weight alveoli | |
CN113817073A (en) | A kind of method, sulfated polysaccharide and application of extracting sulfated polysaccharide by taking salt-making brine as raw material | |
CN114805624A (en) | Moutan bark polysaccharide and preparation method and application thereof | |
CN107936133B (en) | A kind of evening primrose leaf polysaccharide and preparation method thereof | |
CN101824059A (en) | Low-sugar-chain high-activity new tea saponin and biotransformation method thereof | |
CN105223062B (en) | Method for purifying galactooligosaccharide in infant formula milk powder | |
CN116284490B (en) | A kind of wild silkworm pupa polysaccharide and its preparation method and application | |
CN112094955A (en) | Method for preparing oligosaccharide from pure polysaccharide | |
CN115975069B (en) | A high-purity water-soluble yeast beta-glucan and preparation method thereof | |
CN106519057A (en) | Method for simultaneously preparing helicteres angustifolia polysaccharides and helicteres angustifolia oligosaccharide | |
CN1724995A (en) | Determination method of bitter melon saponin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111109 Termination date: 20141218 |
|
EXPY | Termination of patent right or utility model |