[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN100550996C - Image processing apparatus, imaging device and image processing method - Google Patents

Image processing apparatus, imaging device and image processing method Download PDF

Info

Publication number
CN100550996C
CN100550996C CNB2007101397583A CN200710139758A CN100550996C CN 100550996 C CN100550996 C CN 100550996C CN B2007101397583 A CNB2007101397583 A CN B2007101397583A CN 200710139758 A CN200710139758 A CN 200710139758A CN 100550996 C CN100550996 C CN 100550996C
Authority
CN
China
Prior art keywords
unit
information
image information
filter
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2007101397583A
Other languages
Chinese (zh)
Other versions
CN101119448A (en
Inventor
关海克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of CN101119448A publication Critical patent/CN101119448A/en
Application granted granted Critical
Publication of CN100550996C publication Critical patent/CN100550996C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

Image information acquisition unit (101) obtains image information.Picture content separative element (102) is separated into monochrome information and color information with the image information that image information acquisition unit (101) obtain.Edge extracting unit (110) extracts marginal information from the monochrome information that picture content separative element (102) separates.Brightness noise is removed unit (105) and is removed noise from the monochrome information that picture content separative element (102) separates.Color noise removing unit (106) is removed noise from the color information that picture content separative element (102) separates.The marginal information that image information assembled unit (107) extracts based on edge extracting unit (110) is removed the color information composograph information that unit (105) has been removed the monochrome information of noise and removed noise by color noise removing unit (106) by brightness noise.

Description

图像处理装置,成像装置以及图像处理方法 Image processing device, imaging device and image processing method

技术领域 technical field

本发明涉及一种图像处理装置,成像装置以及图像处理方法。The invention relates to an image processing device, an imaging device and an image processing method.

背景技术 Background technique

本申请通过引用结合2006年7月31日在日本提交的日本优先权申请2006-208063和2007年2月15日在日本提交的日本优先权申请2007-034532的全部内容。This application incorporates by reference the entire contents of Japanese Priority Application No. 2006-208063 filed in Japan on July 31, 2006 and Japanese Priority Application No. 2007-034532 filed in Japan on February 15, 2007.

近年来,在数字静态摄像机(此后称为“数字照相机”)领域,实现了电荷耦合器件(CCD)或者成像器件的像素数量的增加。另一方面,这种CCD像素数量的增加引起了CCD感光度下降的问题。In recent years, in the field of digital still cameras (hereinafter referred to as "digital cameras"), an increase in the number of pixels of charge-coupled devices (CCDs) or imaging devices has been achieved. On the other hand, such an increase in the number of CCD pixels causes a problem of a decrease in the sensitivity of the CCD.

为了解决这种问题,揭示了一种成像装置,其中增加了多个图像的像素(参见日本专利申请公开No.2005-44915)。在这种成像装置中,增加图像的像素来增加感光度。In order to solve such a problem, an imaging device is disclosed in which pixels of a plurality of images are added (see Japanese Patent Application Laid-Open No. 2005-44915). In such an imaging device, pixels of an image are increased to increase light sensitivity.

还有,揭示了另一种成像装置,其中输出用于将相邻像素的像素值加在一起的像素信号来增加感光度(参见日本专利申请公开No.2005-303519)。Also, another imaging device is disclosed in which a pixel signal for adding together pixel values of adjacent pixels is output to increase sensitivity (see Japanese Patent Application Laid-Open No. 2005-303519).

此外,还揭示了一种技术,其中尽管当以增加的感光度拍摄图像时增强了噪声,根据成像感光度设置低通滤波器的截止频率来去除噪声(参见日本专利申请公开No.2004-297731)。In addition, there is also disclosed a technique in which although noise is enhanced when an image is captured with increased sensitivity, the cutoff frequency of the low-pass filter is set according to the imaging sensitivity to remove noise (see Japanese Patent Application Laid-Open No. 2004-297731 ).

然而,在日本专利申请公开No.2005-44915中揭示的技术中,在增加图像的像素的情况下,增加了曝光时间。在相机固定并且目标不移动的情况下没有问题。然而,如果相机或者目标中的任何一个移动,将不利地发生位置偏差。However, in the technique disclosed in Japanese Patent Application Laid-Open No. 2005-44915, in the case of increasing the pixels of an image, the exposure time is increased. No problem with the camera fixed and the target not moving. However, if either the camera or the target moves, a positional deviation will disadvantageously occur.

还有,在日本专利申请公开No.2005-303519中揭示的技术中,将相邻像素的像素值加在一起,从而引起降低分辨率的问题。Also, in the technique disclosed in Japanese Patent Application Laid-Open No. 2005-303519, pixel values of adjacent pixels are added together, thereby causing a problem of lowering resolution.

此外,在日本专利申请公开No.2004-297731中揭示的技术中,尽管可以根据成像感光度去除噪声,图像的边缘变得模糊。例如,如果在灯光照亮的位置进行成像时将感光度设为高,即使噪声较少,模糊化处理对于图像也有明显置进行成像时将感光度设为高,即使噪声较少,模糊化处理对于图像也有明显的影响,从而引起图像不必要的模糊化。Furthermore, in the technique disclosed in Japanese Patent Application Laid-Open No. 2004-297731, although noise can be removed according to the imaging sensitivity, the edges of the image become blurred. For example, if you image at a location lit by a light with the ISO set to high, blurring will be noticeable to the image even if there is less noise. It also has a noticeable effect on the image, causing unnecessary blurring of the image.

更进一步地,在日本专利申请公开No.2004-297731中揭示的技术中,当在成像时曝光时间短时,色彩再现性和白平衡恶化,并且即使去除了噪声也没有提高图像的色彩和亮度之间的平衡。Furthermore, in the technique disclosed in Japanese Patent Application Laid-Open No. 2004-297731, when the exposure time is short in imaging, color reproducibility and white balance deteriorate, and the color and brightness of the image are not improved even if noise is removed balance between.

发明内容 Contents of the invention

本发明的一个目的是至少部分地解决现有技术中的上述问题。It is an object of the present invention to at least partly solve the above-mentioned problems of the prior art.

根据本发明一个方面的图像处理装置,包括:获取图像信息的图像信息获取单元;图像分量分离单元,将图像信息获取单元获取的图像信息分离为亮度信息和色彩信息;边缘提取单元,从图像分量分离单元分离的亮度信息提取边缘信息;亮度噪声去除单元,从图像分量分离单元分离的亮度信息去除噪声;色彩噪声去除单元,从图像分量分离单元分离的色彩信息去除噪声;以及图像信息合成单元,基于边缘提取单元提取的边缘信息,由亮度噪声去除单元去除了噪声的亮度信息,和由色彩噪声去除单元去除了噪声的色彩信息合成图像信息。An image processing device according to one aspect of the present invention includes: an image information acquisition unit for acquiring image information; an image component separation unit that separates the image information acquired by the image information acquisition unit into brightness information and color information; an edge extraction unit that extracts the image information from the image components the luminance information separated by the separation unit extracts edge information; the luminance noise removal unit removes noise from the luminance information separated by the image component separation unit; the color noise removal unit removes noise from the color information separated by the image component separation unit; and the image information synthesis unit, Based on the edge information extracted by the edge extracting unit, the luminance information from which noise has been removed by the luminance noise removing unit, and the color information from which noise has been removed by the color noise removing unit synthesize image information.

根据本发明另一个方面的图像处理装置,包括:获取图像信息的图像信息获取单元;高感光度低分辨率图像生成单元,通过将图像信息获取单元获取的图像信息中多个相邻像素值相加产生一个像素值,来生成高感光度低分辨率图像;缩放单元放大或者缩小高感光度低分辨率图像生成单元生成的高感光度低分辨率图像信息;以及图像信息组合单元,从图像信息获取单元获取的图像信息,和缩放单元放大或者缩小的高感光度低分辨率图像信息来合成图像信息。An image processing device according to another aspect of the present invention includes: an image information acquisition unit for acquiring image information; a high-sensitivity low-resolution image generation unit that compares a plurality of adjacent pixel values in the image information acquired by the image information acquisition unit A pixel value is added to generate a high-sensitivity low-resolution image; the scaling unit enlarges or reduces the high-sensitivity low-resolution image information generated by the high-sensitivity low-resolution image generation unit; and the image information combination unit, from the image information The image information acquired by the acquisition unit and the high-sensitivity low-resolution image information enlarged or reduced by the scaling unit are used to synthesize the image information.

根据本发明另一个方面的图像处理方法,包括:获取图像信息;将获取步骤中获取的图像信息分离为亮度信息和色彩信息;从分离步骤中分离的亮度信息提取边缘信息;亮度噪声去除,包括从分离步骤中分离的亮度信息去除噪声;色彩噪声去除,包括从分离步骤中分离的色彩信息去除噪声;以及基于提取步骤中提取的边缘信息,亮度噪声去除步骤中去除了噪声的亮度信息,和色彩噪声去除步骤中去除了噪声的色彩信息生成图像信息。An image processing method according to another aspect of the present invention, comprising: acquiring image information; separating the image information acquired in the acquiring step into luminance information and color information; extracting edge information from the luminance information separated in the separating step; and removing luminance noise, including noise removal from the luminance information separated in the separation step; color noise removal comprising removing noise from the color information separated in the separation step; and based on the edge information extracted in the extraction step, the luminance information from which the noise was removed in the luminance noise removal step, and The color information from which noise has been removed in the color noise removal step generates image information.

根据本发明另一个方面的图像处理方法,包括:获取图像信息;将获取步骤中获取的图像信息分离为亮度信息和色彩信息;从分离步骤中分离的亮度信息提取边缘信息;对分离步骤中分离的亮度信息和色彩信息进行缩放;亮度噪声去除包括从缩放步骤中进行了缩放的亮度信息去除噪声;色彩噪声去除包括从缩放步骤中进行了缩放的色彩信息去除噪声,基于提取步骤中提取的边缘信息,亮度噪声去除步骤中去除了噪声的亮度信息,和色彩噪声去除步骤中去除了噪声的色彩信息生成图像信息。An image processing method according to another aspect of the present invention, comprising: acquiring image information; separating the image information acquired in the acquiring step into brightness information and color information; extracting edge information from the brightness information separated in the separating step; The luminance information and color information of the scaling step are scaled; the luminance noise removal includes removing noise from the luminance information scaled in the scaling step; the color noise removal includes removing noise from the color information scaled in the scaling step, based on the edges extracted in the extraction step information, the luminance information from which noise has been removed in the luminance noise removal step, and the color information from which noise has been removed in the color noise removal step to generate image information.

根据本发明另一个方面的图像处理方法,包括:获取图像信息;通过将获取步骤中获取的图像信息中多个相邻像素值相加产生一个像素值,来生成高感光度低分辨率图像;放大或者缩小生成步骤中生成的高感光度低分辨率图像信息;以及从获取步骤中获取的图像信息,和缩放步骤中放大或者缩小的高感光度低分辨率图像信息来合成图像信息。The image processing method according to another aspect of the present invention includes: obtaining image information; generating a high-sensitivity low-resolution image by adding a plurality of adjacent pixel values in the image information obtained in the obtaining step to generate a pixel value; enlarging or reducing the high-sensitivity and low-resolution image information generated in the generating step; and synthesizing the image information from the image information obtained in the obtaining step and the enlarged or reduced high-sensitivity and low-resolution image information in the scaling step.

当结合附图考虑,通过阅读本发明当前优选实施例的下列详细描述,将更好地理解本发明的上述和其他目标,特征,优点和技术和工业重要性。The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in conjunction with the accompanying drawings.

附图说明 Description of drawings

图1是根据本发明第一实施例的图像处理单元的结构的框图;1 is a block diagram of the structure of an image processing unit according to a first embodiment of the present invention;

图2是用于说明边缘提取滤波器尺寸数据库的数据结构的示例的表格;2 is a table for explaining an example of a data structure of an edge extraction filter size database;

图3是用于说明参数数据库的数据结构的示例的表格;FIG. 3 is a table for illustrating an example of a data structure of a parameter database;

图4是用于说明噪声去除滤波器尺寸数据库的数据结构的示例的表格;4 is a table for illustrating an example of a data structure of a noise removal filter size database;

图5是用于说明高斯σ值数据库的数据结构的示例的表格;5 is a table for illustrating an example of a data structure of a Gaussian sigma value database;

图6A是图像信息获取单元,分量分离单元,成像条件获取单元,滤波器确定单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,图像信息合成单元,图像信息压缩单元,以及图像信息输出单元进行的图像处理过程的流程图;Fig. 6A is an image information acquisition unit, a component separation unit, an imaging condition acquisition unit, a filter determination unit, a brightness component edge extraction unit, a brightness component noise removal unit, a color component noise removal unit, an image information synthesis unit, and an image information compression unit, and a flowchart of the image processing process performed by the image information output unit;

图6B是图像信息获取单元,分量分离单元,成像条件获取单元,滤波器确定单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,图像信息合成单元,图像信息压缩单元,以及图像信息输出单元进行的图像处理过程的流程图;Fig. 6B is an image information acquisition unit, a component separation unit, an imaging condition acquisition unit, a filter determination unit, a brightness component edge extraction unit, a brightness component noise removal unit, a color component noise removal unit, an image information synthesis unit, and an image information compression unit, and a flowchart of the image processing process performed by the image information output unit;

图7是用于说明具有5×5的滤波器尺寸的边缘提取滤波器的示例的图示;7 is a diagram for explaining an example of an edge extraction filter having a filter size of 5×5;

图8是用于说明使用边缘提取滤波器的边缘提取的结果的示例的图示;FIG. 8 is a diagram for explaining an example of a result of edge extraction using an edge extraction filter;

图9是用于说明使用亮度滤波器的噪声去除的结果的图示;FIG. 9 is a diagram for explaining the result of noise removal using a luma filter;

图10是用于说明通过组合边缘信息和去除了噪声的亮度信息得到的结果的图示;FIG. 10 is a diagram for explaining a result obtained by combining edge information and noise-removed luminance information;

图11是根据第一实施例的数字照相机的硬件结构的框图;11 is a block diagram of a hardware configuration of a digital camera according to the first embodiment;

图12是根据本发明第二实施例的图像处理单元的结构的框图;12 is a block diagram of a structure of an image processing unit according to a second embodiment of the present invention;

图13是用于说明根据第二实施例的缩放因子数据库的数据结构的示例的表格;13 is a table for explaining an example of a data structure of a scaling factor database according to a second embodiment;

图14A是图像信息获取单元,分量分离单元,成像条件获取单元,滤波器确定单元,缩放单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,反向缩放单元,图像信息合成单元,图像信息压缩单元,以及图像信息输出单元进行的图像处理过程的流程图;Figure 14A is an image information acquisition unit, component separation unit, imaging condition acquisition unit, filter determination unit, scaling unit, brightness component edge extraction unit, brightness component noise removal unit, color component noise removal unit, reverse scaling unit, image information A flowchart of the image processing process performed by the synthesis unit, the image information compression unit, and the image information output unit;

图14B是图像信息获取单元,分量分离单元,成像条件获取单元,滤波器确定单元,缩放单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,反向缩放单元,图像信息合成单元,图像信息压缩单元,以及图像信息输出单元进行的图像处理过程的流程图;Figure 14B is an image information acquisition unit, component separation unit, imaging condition acquisition unit, filter determination unit, scaling unit, brightness component edge extraction unit, brightness component noise removal unit, color component noise removal unit, reverse scaling unit, image information A flowchart of the image processing process performed by the synthesis unit, the image information compression unit, and the image information output unit;

图15是根据本发明第三实施例的图像处理装置的结构的框图;15 is a block diagram of the structure of an image processing apparatus according to a third embodiment of the present invention;

图16A是图像信息获取单元,图像信息转换单元,分量分离单元,成像条件获取单元,滤波器确定单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,图像信息合成单元,图像信息转换单元,以及图像信息输出单元进行的图像处理过程的流程图;16A is an image information acquisition unit, an image information conversion unit, a component separation unit, an imaging condition acquisition unit, a filter determination unit, a brightness component edge extraction unit, a brightness component noise removal unit, a color component noise removal unit, and an image information synthesis unit, A flowchart of the image processing process performed by the image information conversion unit and the image information output unit;

图16B是图像信息获取单元,图像信息转换单元,分量分离单元,成像条件获取单元,滤波器确定单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,图像信息合成单元,图像信息转换单元,以及图像信息输出单元进行的图像处理过程的流程图;16B is an image information acquisition unit, an image information conversion unit, a component separation unit, an imaging condition acquisition unit, a filter determination unit, a brightness component edge extraction unit, a brightness component noise removal unit, a color component noise removal unit, and an image information synthesis unit, A flowchart of the image processing process performed by the image information conversion unit and the image information output unit;

图17是根据第三实施例的图像处理装置的硬件结构的框图;17 is a block diagram of a hardware configuration of an image processing apparatus according to a third embodiment;

图18是根据本发明第四实施例的图像处理单元的框图;18 is a block diagram of an image processing unit according to a fourth embodiment of the present invention;

图19是图像信息获取单元,高感光度低分辨率图像生成单元,分量分离单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,缩放单元,亮度分量合成单元,图像信息合成单元,以及图像信息输出单元进行的图像处理过程的流程图;Figure 19 is an image information acquisition unit, a high-sensitivity low-resolution image generation unit, a component separation unit, a brightness component edge extraction unit, a brightness component noise removal unit, a color component noise removal unit, a scaling unit, a brightness component synthesis unit, and image information A flowchart of the image processing process performed by the synthesis unit and the image information output unit;

图20是用于说明具有3×3的滤波器尺寸的平滑滤波器的示例的图示;FIG. 20 is a diagram for explaining an example of a smoothing filter having a filter size of 3×3;

图21是用于说明具有5×5的滤波器尺寸的边缘提取滤波器的示例的图示;FIG. 21 is a diagram for explaining an example of an edge extraction filter having a filter size of 5×5;

图22是用于说明分离的亮度信息的图示;FIG. 22 is a diagram for explaining separated luminance information;

图23是用于说明从亮度信息提取边缘获得的结果的图示;FIG. 23 is a diagram for explaining results obtained by extracting edges from luminance information;

图24是说明组合亮度信息和边缘信息获得的结果的图示;FIG. 24 is a diagram illustrating a result obtained by combining luminance information and edge information;

图25是根据本发明第五实施例的图像处理装置的结构的框图;25 is a block diagram of the configuration of an image processing apparatus according to a fifth embodiment of the present invention;

图26是图像信息获取单元,分量转换单元,分量分离单元,色彩分量噪声去除单元,缩放单元,亮度分量噪声去除单元,亮度分量边缘提取单元,亮度分量合成单元,图像信息合成单元,以及图像信息输出单元进行的图像处理过程的流程图。26 is an image information acquisition unit, component conversion unit, component separation unit, color component noise removal unit, scaling unit, brightness component noise removal unit, brightness component edge extraction unit, brightness component synthesis unit, image information synthesis unit, and image information Flowchart of the image processing process performed by the output unit.

具体实施方式 Detailed ways

下面参考附图详细描述本发明的范例实施例。Exemplary embodiments of the present invention are described in detail below with reference to the accompanying drawings.

参考附图,说明本发明的第一实施例。首先,说明应用本发明的数字照相机中包括的图像处理单元的结构示例。图1是根据第一实施例的图像处理单元100的结构的框图。Referring to the drawings, a first embodiment of the present invention will be described. First, a structural example of an image processing unit included in a digital camera to which the present invention is applied is explained. FIG. 1 is a block diagram of the structure of an image processing unit 100 according to the first embodiment.

图像处理单元100包括图像信息获取单元101,分量分离单元102,成像条件获取单元103,滤波器确定单元104,亮度分量边缘提取单元110,亮度分量噪声去除单元105,色彩分量噪声去除单元106,图像信息合成单元107,图像信息压缩单元108,图像信息输出单元109,边缘提取滤波器尺寸数据库120,参数数据库130,噪声去除滤波器尺寸数据库140,以及高斯σ值数据库150。The image processing unit 100 includes an image information acquisition unit 101, a component separation unit 102, an imaging condition acquisition unit 103, a filter determination unit 104, a brightness component edge extraction unit 110, a brightness component noise removal unit 105, a color component noise removal unit 106, an image Information synthesis unit 107 , image information compression unit 108 , image information output unit 109 , edge extraction filter size database 120 , parameter database 130 , noise removal filter size database 140 , and Gaussian σ value database 150 .

边缘提取滤波器尺寸是在从图像信息中提取边缘中使用的滤波器的尺寸。边缘提取中使用的滤波器的最佳尺寸根据成像条件变化。边缘提取滤波器尺寸数据库120存储每个成像条件的最佳滤波器尺寸。图2是用于说明边缘提取滤波器尺寸数据库的数据结构的示例的表格。以这种方式,在边缘提取滤波器尺寸数据库120中,成像条件和边缘提取滤波器尺寸相互关联。因此,可以从成像条件确定最佳滤波器尺寸。The edge extraction filter size is the size of a filter used in extracting edges from image information. The optimum size of a filter used in edge extraction varies depending on imaging conditions. The edge extraction filter size database 120 stores an optimum filter size for each imaging condition. FIG. 2 is a table for explaining an example of a data structure of an edge extraction filter size database. In this way, in the edge extraction filter size database 120, imaging conditions and edge extraction filter sizes are associated with each other. Therefore, an optimal filter size can be determined from imaging conditions.

成像条件是影响数字照相机拍摄的图像中的边缘提取的条件。特别是,将照相机的感光度,曝光时间,以及拍摄时的温度定义为成像条件。照相机的感光度指的是CCD或者互补金属氧化物半导体(CMOS)传感器的感光度。当感光度较高时,快门速度较高,趋向于不发生照相机抖动,并且可以没有模糊地拍摄移动目标。此外,即使在暗处也能拍摄亮图像。另一方面,如果感光度增加,趋向于产生噪声。Imaging conditions are conditions that affect edge extraction in images captured by a digital camera. In particular, the sensitivity of the camera, the exposure time, and the temperature at the time of shooting are defined as imaging conditions. The light sensitivity of a camera refers to that of a CCD or Complementary Metal Oxide Semiconductor (CMOS) sensor. When the sensitivity is high, the shutter speed is high, camera shake tends not to occur, and moving subjects can be shot without blurring. In addition, bright images can be captured even in dark places. On the other hand, if the sensitivity is increased, noise tends to be generated.

曝光时间指的是光照射到CCD或者CMOS传感器上的时间。如果感光度高,即使曝光时间降低也能拍摄图像。拍摄时的温度指的是在用照相机拍摄时外界的空气温度。当温度较低时,不容易产生噪声。Exposure time refers to the time when light hits the CCD or CMOS sensor. If the sensitivity is high, images can be captured even if the exposure time is reduced. The temperature at the time of shooting refers to the outside air temperature at the time of shooting with the camera. When the temperature is low, it is not easy to generate noise.

根据第一实施例,将照相机的感光度,曝光时间,以及拍摄时的温度作为成像条件。然而,不意味着成像条件限制于上述的这些,而是只要是改变边缘提取的就可以作为成像条件。According to the first embodiment, the sensitivity of the camera, the exposure time, and the temperature at the time of shooting are used as imaging conditions. However, it does not mean that the imaging conditions are limited to those described above, but any imaging conditions that change edge extraction may be used.

参数数据库130存储σ值和k值,用于计算用于对应于成像条件的边缘提取的高斯拉普拉斯(LoG)滤波器的值。图3是用于说明参数数据库的数据结构的示例的表格。参数数据库130相互关联地存储成像条件以及用于计算LoG滤波器的值的σ值和k值。The parameter database 130 stores σ values and k values used to calculate values of Laplacian of Gaussian (LoG) filters used for edge extraction corresponding to imaging conditions. FIG. 3 is a table for explaining an example of a data structure of a parameter database. The parameter database 130 stores the imaging conditions and the σ value and the k value used to calculate the value of the LoG filter in association with each other.

σ值指的是确定滤波器的宽度的参数。当σ值较大时,滤波器宽度较宽,平滑效果较大。当σ值较小时,滤波器宽度较窄,边缘增强的效果较强。The σ value refers to a parameter that determines the width of the filter. When the value of σ is larger, the filter width is wider and the smoothing effect is larger. When the σ value is small, the filter width is narrow and the effect of edge enhancement is strong.

k值指的是代表边缘增强的强度的参数。当k值较大时,边缘增强的效果较大。当k值较小时,模糊恢复的效果较小。以这种方式,当改变σ值和k值时,可以调节校正结果。此处,当LoG滤波器的σ值更接近于零时,滤波器更接近于拉普拉斯滤波器。The k value refers to a parameter representing the strength of edge enhancement. When the value of k is larger, the effect of edge enhancement is larger. When the value of k is small, the effect of blur restoration is small. In this way, when changing the σ value and the k value, the correction result can be adjusted. Here, when the σ value of the LoG filter is closer to zero, the filter is closer to the Laplacian filter.

不仅从LoG函数找到边缘提取滤波器,从其他函数找到的滤波器可以用于执行边缘提取过程。Not only edge extraction filters are found from the LoG function, filters found from other functions can be used to perform the edge extraction process.

噪声去除滤波器尺寸数据库140存储对应于成像条件的噪声去除的滤波器尺寸。图4是用于说明噪声去除滤波器尺寸数据库的数据结构的示例的表格。噪声去除滤波器尺寸数据库140相互关联地存储成像条件和滤波器尺寸。The noise removal filter size database 140 stores filter sizes for noise removal corresponding to imaging conditions. FIG. 4 is a table for explaining an example of the data structure of the noise removal filter size database. The noise removal filter size database 140 stores imaging conditions and filter sizes in association with each other.

滤波器尺寸指的是成像条件指定的噪声去除滤波器的尺寸,并且对于每个亮度信息和色彩信息存储滤波器尺寸。当滤波器尺寸较大时,噪声去除的效果较大,但是边缘模糊化较大。即,噪声去除效果和边缘模糊化具有这种折衷的关系。由于拍摄图像的噪声等级根据成像条件变化,根据拍摄时的成像条件选择滤波器尺寸,从而进行最佳的噪声去除。The filter size refers to the size of a noise removal filter specified by imaging conditions, and the filter size is stored for each luminance information and color information. When the filter size is larger, the effect of noise removal is larger, but the edge blurring is larger. That is, the noise removal effect and edge blurring have such a trade-off relationship. Since the noise level of the captured image varies according to the imaging conditions, the filter size is selected according to the imaging conditions at the time of shooting to perform optimal noise removal.

人眼具有对于亮度变化敏感而对于色彩变化迟钝的特性。因此,将亮度信息的滤波器尺寸设置为小于色彩信息的滤波器尺寸,从而考虑到人眼的特性进行有效的噪声去除。YUV格式的图像信息由亮度信息(Y)和色彩信息(U,V)构成。亮度信息指的是近似与人眼感觉为“亮度”的强度成比例的值。在色彩信息(U,V)中,U代表蓝色系的色调和色度,V代表红色系的色调和色度。对于每个亮度信息和色彩信息执行对应的噪声去除处理,从而最佳地去除噪声。在本实施例中,在噪声去除滤波器尺寸数据库中140中,表示亮度滤波器的尺寸的第一尺寸信息和表示色彩滤波器的尺寸的第二尺寸信息存储相同的尺寸。这里第一尺寸信息表示的亮度滤波器的尺寸可以小于第二尺寸信息表示的色彩滤波器的尺寸。The human eye is sensitive to brightness changes but insensitive to color changes. Therefore, the filter size of luminance information is set to be smaller than that of color information, thereby performing effective noise removal in consideration of the characteristics of human eyes. Image information in the YUV format consists of brightness information (Y) and color information (U, V). The luminance information refers to a value approximately proportional to the intensity perceived as "brightness" by human eyes. In the color information (U, V), U represents the hue and chroma of the blue system, and V represents the hue and chroma of the red system. Corresponding noise removal processing is performed for each luminance information and color information, thereby optimally removing noise. In this embodiment, in the noise removal filter size database 140, the first size information indicating the size of the luma filter and the second size information indicating the size of the color filter store the same size. Here, the size of the brightness filter indicated by the first size information may be smaller than the size of the color filter indicated by the second size information.

高斯σ值数据库150存储σ值,其用于计算用于对应于成像条件的噪声去除的高斯平滑滤波器的值。图5是用于说明高斯σ值数据库的数据结构的示例的表格。高斯σ值数据库150相互关联地存储成像条件以及用于计算高斯平滑滤波器的值的σ值。The Gaussian σ value database 150 stores σ values used to calculate values of Gaussian smoothing filters for noise removal corresponding to imaging conditions. FIG. 5 is a table for explaining an example of the data structure of the Gaussian σ value database. The Gaussian σ value database 150 stores imaging conditions and σ values used to calculate the value of the Gaussian smoothing filter in association with each other.

σ值的幅度代表了噪声去除的强度。当σ值较大时,噪声去除效果较大。这里,不仅从高斯函数找到滤波器。替代地,从其他函数找到的滤波器可以用于进行噪声去除过程。The magnitude of the σ value represents the strength of noise removal. When the σ value is larger, the noise removal effect is larger. Here, the filter is not only found from the Gaussian function. Alternatively, filters found from other functions can be used to perform the noise removal process.

图像信息获取单元101从临时存储存储器获取图像信息。获取的图像信息为转换为YUV格式的图像信息。分量分离单元102将图像信息获取单元101获取的YUV格式的图像信息分离为亮度信息(Y)和色彩信息(U,V)。The image information acquisition unit 101 acquires image information from a temporary storage memory. The obtained image information is image information converted into YUV format. The component separation unit 102 separates the image information in YUV format acquired by the image information acquisition unit 101 into brightness information (Y) and color information (U, V).

成像条件获取单元103从临时存储存储器获取对应于图像信息获取单元101获取的图像信息的成像条件。该成像条件为在拍摄时的成像条件,即,照相机的感光度,曝光时间以及拍摄时的温度,并且它们相互关联地存储。这里,拍摄时的成像条件可以作为图像信息的部分来存储。The imaging condition acquisition unit 103 acquires imaging conditions corresponding to the image information acquired by the image information acquisition unit 101 from the temporary storage memory. The imaging conditions are the imaging conditions at the time of shooting, that is, the sensitivity of the camera, the exposure time, and the temperature at the time of shooting, and they are stored in association with each other. Here, imaging conditions at the time of shooting may be stored as part of the image information.

滤波器确定单元104确定对应于成像条件的边缘提取滤波器和噪声去除滤波器(亮度滤波器和色彩滤波器)。首先,滤波器确定单元104从边缘提取滤波器尺寸数据库120指定与成像条件获取单元103获取的成像条件相关联的边缘提取滤波器的尺寸,并且从参数数据库130指定与成像条件获取单元103获取的成像条件相关联的LoG函数的σ值和k值。The filter determination unit 104 determines an edge extraction filter and a noise removal filter (brightness filter and color filter) corresponding to imaging conditions. First, the filter determination unit 104 specifies the size of the edge extraction filter associated with the imaging condition acquired by the imaging condition acquisition unit 103 from the edge extraction filter size database 120, and specifies the size of the edge extraction filter associated with the imaging condition acquisition unit 103 from the parameter database 130. The σ and k values of the LoG function associated with the imaging conditions.

滤波器确定单元104进一步使用边缘提取滤波器尺寸和LoG函数的σ值,通过使用下面的方程(1)计算边缘提取滤波器。The filter determination unit 104 further calculates an edge extraction filter by using the following equation (1) using the edge extraction filter size and the σ value of the LoG function.

LoGLog (( xx ,, ythe y )) == -- 11 πσπσ 44 [[ 11 -- xx 22 ++ ythe y 22 22 σσ 22 ]] ee -- xx 22 ++ ythe y 22 22 σσ 22 -- -- -- (( 11 ))

并且,滤波器确定单元104确定对应于成像条件的噪声去除滤波器。滤波器确定单元104从噪声去除滤波器尺寸数据库140指定与成像条件获取单元103获取的成像条件相关联的噪声去除滤波器的尺寸,即,用于从亮度信息去除噪声的亮度滤波器的尺寸和用于从色彩信息去除噪声的色彩滤波器的尺寸。另外,滤波器确定单元104从高斯σ值数据库150指定与成像条件获取单元103获取的成像条件相关联的高斯函数的σ值。And, the filter determination unit 104 determines a noise removal filter corresponding to the imaging condition. The filter determination unit 104 specifies the size of the noise removal filter associated with the imaging condition acquired by the imaging condition acquisition unit 103 from the noise removal filter size database 140, that is, the size and The size of the color filter used to remove noise from color information. In addition, the filter determination unit 104 specifies the σ value of the Gaussian function associated with the imaging condition acquired by the imaging condition acquisition unit 103 from the Gaussian σ value database 150 .

滤波器确定单元104进一步使用亮度滤波器的尺寸和高斯函数的σ值通过使用下面的方程(2)计算亮度滤波器(高斯平滑滤波器)。The filter determination unit 104 further calculates a luminance filter (Gaussian smoothing filter) by using the following equation (2) using the size of the luminance filter and the σ value of the Gaussian function.

GG (( xx ,, ythe y )) == 11 22 ππ σσ 22 ee -- xx 22 ++ ythe y 22 22 σσ 22 -- -- -- (( 22 ))

并且,滤波器确定单元104使用色彩滤波器的尺寸和高斯函数的σ值使用上述的方程(2)计算色彩滤波器(高斯平滑滤波器)。Also, the filter determination unit 104 calculates a color filter (Gaussian smoothing filter) using the above-described equation (2) using the size of the color filter and the σ value of the Gaussian function.

亮度分量边缘提取单元110使用滤波器确定单元104确定的边缘提取滤波器和k值来从亮度信息提取边缘信息。边缘信息提取结果由下面的方程(3)表示。The luminance component edge extraction unit 110 extracts edge information from the luminance information using the edge extraction filter determined by the filter determination unit 104 and the k value. The edge information extraction result is expressed by the following equation (3).

gg (( xx ,, ythe y )) == -- kLoGiGO (( xx ,, ythe y )) ⊗⊗ ff (( xx ,, ythe y )) -- -- -- (( 33 ))

其中方程(3)中的运算的符号表示卷积处理。where the symbols of the operations in Equation (3) represent convolution processing.

亮度分量噪声去除单元105使用滤波器确定单元104确定的噪声去除滤波器,即,亮度滤波器(低通滤波器),从亮度信息去除噪声。色彩分量噪声去除单元106使用滤波器确定单元104确定的噪声去除滤波器,即,色彩滤波器(低通滤波器),从色彩信息去除噪声。The luminance component noise removal unit 105 removes noise from luminance information using the noise removal filter determined by the filter determination unit 104 , that is, a luminance filter (low-pass filter). The color component noise removal unit 106 removes noise from color information using the noise removal filter determined by the filter determination unit 104 , that is, a color filter (low-pass filter).

图像信息合成单元107将从亮度分量边缘提取单元110提取的边缘信息,由亮度分量噪声去除单元105去除了噪声的亮度信息,以及由色彩分量噪声去除单元106去除了噪声的色彩信息组合来生成YUV格式的图像信息。图像信息合成单元107形成根据本发明的图像信息生成单元。边缘信息和亮度信息的组合由下列方程(4)计算。Image information synthesis unit 107 combines edge information extracted from luminance component edge extraction unit 110, luminance information from which noise has been removed by luminance component noise removal unit 105, and color information from which noise has been removed by color component noise removal unit 106 to generate YUV format image information. The image information synthesis unit 107 forms an image information generation unit according to the present invention. The combination of edge information and luminance information is calculated by the following equation (4).

sthe s (( xx ,, ythe y )) == ff sthe s (( xx ,, ythe y )) -- kLoGiGO (( xx ,, ythe y )) ⊗⊗ ff (( xx ,, ythe y )) -- -- -- (( 44 ))

其中fs(x,y)表示经过噪声去除滤波器处理的亮度分量,s(x,y)表示合成图像。用方程(4)计算的亮度信息进一步与色彩信息组合来生成图像信息。这里,YUV格式的图像信息可以进一步转换为其他格式的图像信息,例如RGB格式。Where fs(x, y) represents the luminance component processed by the noise removal filter, and s(x, y) represents the synthesized image. The luminance information calculated by equation (4) is further combined with color information to generate image information. Here, the image information in YUV format can be further converted into image information in other formats, such as RGB format.

图像信息压缩单元108将图像信息合成单元107合成的YUV格式的图像信息压缩为例如联合图像专家组(JPEG)格式。图像信息输出单元109将图像信息压缩单元108压缩的图像信息输出到存储卡之类。The image information compression unit 108 compresses the image information in the YUV format synthesized by the image information synthesis unit 107 into, for example, a Joint Photographic Experts Group (JPEG) format. The image information output unit 109 outputs the image information compressed by the image information compression unit 108 to a memory card or the like.

下面,说明上述配置的图像处理单元100的图像处理。图6A和6B是图像信息获取单元,分量分离单元,成像条件获取单元,滤波器确定单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,图像信息合成单元,图像信息压缩单元,以及图像信息输出单元进行的图像处理过程的流程图。Next, image processing by the image processing unit 100 configured as described above will be described. 6A and 6B are image information acquisition unit, component separation unit, imaging condition acquisition unit, filter determination unit, brightness component edge extraction unit, brightness component noise removal unit, color component noise removal unit, image information synthesis unit, image information compression unit, and a flowchart of the image processing process performed by the image information output unit.

图像信息获取单元101从临时存储存储器获取YUV格式的图像信息(步骤S601)。分量分离单元102将图像信息获取单元101获取的YUV格式的图像信息分离为亮度信息和色彩信息(步骤S602)。成像条件获取单元103获取与图像信息相关联的成像条件(步骤S603)。The image information acquiring unit 101 acquires image information in YUV format from a temporary storage memory (step S601). The component separation unit 102 separates the image information in YUV format acquired by the image information acquisition unit 101 into brightness information and color information (step S602). The imaging condition acquisition unit 103 acquires imaging conditions associated with image information (step S603).

滤波器确定单元104从边缘提取滤波器尺寸数据库120指定与成像条件获取单元103获取的成像条件相对应的边缘提取滤波器的尺寸(步骤S604)。例如,将5×5指定为边缘提取滤波器的尺寸。The filter determination unit 104 specifies the size of the edge extraction filter corresponding to the imaging condition acquired by the imaging condition acquisition unit 103 from the edge extraction filter size database 120 (step S604 ). For example, specify 5×5 as the size of the edge extraction filter.

滤波器确定单元104从参数数据库130指定与成像条件获取单元103获取的成像条件相对应的LoG函数的σ值和k值(步骤S605)。滤波器确定单元104从边缘提取滤波器的滤波器尺寸和LoG函数的σ值和k值确定边缘提取滤波器的每个值(步骤S606)。例如,图7是说明了具有5×5的滤波器尺寸的边缘提取滤波器的示例。作为边缘提取滤波器的值的Ai,是由方程(1)计算的值。The filter determination unit 104 specifies the σ value and the k value of the LoG function corresponding to the imaging condition acquired by the imaging condition acquisition unit 103 from the parameter database 130 (step S605 ). The filter determination unit 104 determines each value of the edge extraction filter from the filter size of the edge extraction filter and the σ value and the k value of the LoG function (step S606 ). For example, FIG. 7 is a diagram illustrating an example of an edge extraction filter having a filter size of 5×5. Ai, which is a value of the edge extraction filter, is a value calculated by equation (1).

亮度分量边缘提取单元110使用滤波器确定单元104确定的边缘提取滤波器来从亮度信息提取边缘信息(步骤S607)。图8是用于说明使用边缘提取滤波器的边缘提取的结果的示例的图示。如图8所示,从图像信息提取了边缘分量(边缘信息)。The luminance component edge extraction unit 110 extracts edge information from the luminance information using the edge extraction filter determined by the filter determination unit 104 (step S607). FIG. 8 is a diagram for explaining an example of a result of edge extraction using an edge extraction filter. As shown in FIG. 8, edge components (edge information) are extracted from image information.

滤波器确定单元104从噪声去除滤波器尺寸数据库140指定与成像条件获取单元103获取的成像条件相对应的滤波器的尺寸(步骤S608)。具体来说,指定对应于作为成像条件的照相机的感光度,曝光时间,以及拍摄时的温度的亮度滤波器的尺寸和色彩滤波器的尺寸。The filter determination unit 104 specifies the size of the filter corresponding to the imaging condition acquired by the imaging condition acquisition unit 103 from the noise removal filter size database 140 (step S608 ). Specifically, the size of the luminance filter and the size of the color filter corresponding to the sensitivity of the camera as imaging conditions, the exposure time, and the temperature at the time of shooting are specified.

滤波器确定单元104从高斯σ值数据库150确定与成像条件获取单元103获取的成像条件相对应的高斯函数的σ值(步骤S609)。The filter determination unit 104 determines the σ value of the Gaussian function corresponding to the imaging condition acquired by the imaging condition acquisition unit 103 from the Gaussian σ value database 150 (step S609 ).

滤波器确定单元104从亮度滤波器的滤波器尺寸和高斯函数的指定的σ值确定亮度滤波器,并且从色彩滤波器的滤波器尺寸和高斯函数的指定的σ值确定色彩滤波器(步骤S610)。The filter determination unit 104 determines a luminance filter from the filter size of the luminance filter and the specified σ value of the Gaussian function, and determines a color filter from the filter size of the color filter and the specified σ value of the Gaussian function (step S610 ).

亮度分量噪声去除单元105使用滤波器确定单元104确定的亮度滤波器从亮度信息去除噪声(步骤S611)。图9是用于说明使用亮度滤波器的噪声去除的结果的图示。色彩分量噪声去除单元106使用滤波器确定单元104确定的色彩滤波器从色彩信息去除噪声(步骤S612)。The luminance component noise removal unit 105 removes noise from the luminance information using the luminance filter determined by the filter determination unit 104 (step S611 ). FIG. 9 is a diagram for explaining the result of noise removal using a luminance filter. The color component noise removal unit 106 removes noise from the color information using the color filter determined by the filter determination unit 104 (step S612).

图像信息合成单元107将边缘信息,去除了噪声的亮度信息以及色彩信息组合来生成YUV格式的图像信息(步骤S613)。图10是用于说明通过组合边缘信息和去除了噪声的亮度信息得到的结果的图示。在合成的图像信息中,由于如同图10中所示清楚地表示了边缘,获得了没有边缘模糊化并且去除了噪声的图像。图像信息压缩单元108将图像信息合成单元107生成的YUV格式的图像信息压缩为JPEG格式(步骤S614)。图像信息输出单元109将图像信息压缩单元108压缩的图像信息输出到存储卡之类(步骤S615)。The image information synthesis unit 107 combines the edge information, noise-removed luminance information, and color information to generate image information in YUV format (step S613 ). FIG. 10 is a diagram for explaining a result obtained by combining edge information and noise-removed luminance information. In the synthesized image information, since edges are clearly expressed as shown in FIG. 10 , an image without blurring of edges and with noise removed is obtained. The image information compressing unit 108 compresses the image information in the YUV format generated by the image information combining unit 107 into a JPEG format (step S614). The image information output unit 109 outputs the image information compressed by the image information compression unit 108 to a memory card or the like (step S615).

以这种方式,图像信息分离为亮度信息和色彩信息;从亮度信息提取边缘信息;对亮度信息和色彩信息执行噪声去除处理,进一步从边缘信息和去除了噪声的亮度信息和色彩信息合成图像信息。由此,可以在噪声去除之前预先提取边缘分量,接着可以噪声去除之后组合边缘分量。从而,在噪声去除的时候可以平滑边缘来补偿具有图像模糊化的图像。即,可以在抑制边缘模糊化的情况下有效地去除噪声来保持高图像质量。In this way, image information is separated into luminance information and color information; edge information is extracted from luminance information; noise removal processing is performed on luminance information and color information, and image information is further synthesized from edge information and noise-removed luminance information and color information . Thereby, edge components can be extracted in advance before noise removal, and edge components can then be combined after noise removal. Thus, an image with image blurring can be compensated for by smoothing edges at the time of noise removal. That is, noise can be effectively removed to maintain high image quality while suppressing edge blurring.

根据第一实施例,基于成像条件指定滤波器尺寸,σ值和k值,接着计算滤波器的值以便确定边缘提取滤波器。在另一个示例中,可以直接从成像条件确定边缘提取滤波器。在此情况下,提供相互关联地存储成像条件和边缘提取滤波器的数据库,并且指定对应于成像条件的边缘提取滤波器。接着,通过使用指定的边缘提取滤波器从亮度信息提取边缘信息。According to the first embodiment, the filter size, σ value, and k value are specified based on imaging conditions, and then the values of the filters are calculated to determine the edge extraction filter. In another example, edge extraction filters may be determined directly from imaging conditions. In this case, a database storing imaging conditions and edge extraction filters in association with each other is provided, and an edge extraction filter corresponding to the imaging conditions is specified. Next, edge information is extracted from the luminance information by using a specified edge extraction filter.

下面,描述数字照相机(即进行图像处理的成像设备的一个示例)的硬件结构。图11是根据第一实施例的数字照相机的硬件结构的框图。如图11所示,目标的光首先经由数字照相机1000的成像光学系统1进入电荷耦合器件(CCD)3。还有,机械快门2位于成像系统1和CCD 3之间。使用机械快门2,可以截断到CCD 3的入射光。这里,成像光学系统1和机械快门2由马达驱动器6驱动。Next, the hardware configuration of a digital camera, that is, an example of an imaging device that performs image processing, is described. Fig. 11 is a block diagram of the hardware configuration of the digital camera according to the first embodiment. As shown in FIG. 11 , light of an object first enters a charge-coupled device (CCD) 3 via an imaging optical system 1 of a digital camera 1000 . Also, the mechanical shutter 2 is located between the imaging system 1 and the CCD 3. Using the mechanical shutter 2, the incident light to the CCD 3 can be cut off. Here, the imaging optical system 1 and the mechanical shutter 2 are driven by a motor driver 6 .

CCD 3将形成在成像表面的光学图像转换为电信号来作为模拟图像数据输出。从CCD 3输出的图像信息由相干双采样(CDS)电路4去除了噪声分量,由模/数(A/D)转换器5转换为数字值,接着输出到图像处理电路8。The CCD 3 converts the optical image formed on the imaging surface into an electrical signal to output as analog image data. The image information output from the CCD 3 is denoised by a coherent double sampling (CDS) circuit 4, converted into a digital value by an analog/digital (A/D) converter 5, and then output to an image processing circuit 8.

图像处理电路8使用临时存储图像数据的同步动态随机访问存储器(SDRAM)12来进行各种图像处理,包括YUV转换,白平衡控制,对比度校正,边缘增强,以及色彩转换。这里,白平衡控制是调节图像信息的色彩浓度的图像处理,而对比度校正是调节图像信息的对比度的图像处理。边缘增强是调节图像信息的清晰度的图像处理,而色彩转换是调节图像信息的色彩的暗度的图像处理。还有,图像处理电路8使得图像信息经过信号处理和图像处理以便显示在液晶显示器(LCD)16上。The image processing circuit 8 uses a synchronous dynamic random access memory (SDRAM) 12 that temporarily stores image data to perform various image processing including YUV conversion, white balance control, contrast correction, edge enhancement, and color conversion. Here, white balance control is image processing to adjust the color density of image information, and contrast correction is image processing to adjust the contrast of image information. Edge enhancement is image processing that adjusts the sharpness of image information, and color conversion is image processing that adjusts the darkness of colors of image information. Also, the image processing circuit 8 subjects image information to signal processing and image processing to be displayed on a liquid crystal display (LCD) 16 .

还有,经过信号处理和图像处理的图像信息经由压缩/解压缩电路13记录在存储卡14上。压缩/解压缩电路13在从操作单元15获得指令时压缩从图像处理电路8输出的图像信息,接着将结果输出到存储卡14。还有,压缩/解压缩电路13解压缩从存储卡14读取的图像信息以便输出到图像处理电路8。Also, image information subjected to signal processing and image processing is recorded on the memory card 14 via the compression/decompression circuit 13 . The compression/decompression circuit 13 compresses the image information output from the image processing circuit 8 upon obtaining an instruction from the operation unit 15 , and then outputs the result to the memory card 14 . Also, the compression/decompression circuit 13 decompresses the image information read from the memory card 14 to be output to the image processing circuit 8 .

还有,CCD 3,CDS电路4,以及A/D转换器5由中央处理单元(CPU)9经由生成定时信号的定时信号发生器7进行定时控制。此外,图像处理电路8,压缩/解压缩电路13,以及存储卡14也由CPU 9控制。Also, the CCD 3, the CDS circuit 4, and the A/D converter 5 are controlled by a central processing unit (CPU) 9 via a timing signal generator 7 that generates a timing signal. In addition, the image processing circuit 8, the compression/decompression circuit 13, and the memory card 14 are also controlled by the CPU 9.

在数字照相机1000中,CPU 9根据程序执行各种算术运算,并且其中集成了例如只读存储器(ROM)11和随机访问存储器(RAM)10,ROM 11是其中存储了程序等的只读存储器,RAM 10是具有在各种处理的过程中使用的工作区域和各种数据存储区域的可以自由读写的存储器。这些元件经由总线相互连接。In the digital camera 1000, the CPU 9 executes various arithmetic operations according to programs, and integrates therein, for example, a read only memory (ROM) 11 which is a read only memory in which programs and the like are stored, and a random access memory (RAM) 10, The RAM 10 is a freely readable and writable memory having a work area used in various processes and various data storage areas. These elements are connected to each other via a bus.

当数字照相机1000进行噪声去除处理时,系统控制器从ROM 11加载高感光度(sensitive)噪声去除程序到RAM 10来执行。噪声去除程序经由系统控制器获取成像感光度的设置和代表拍摄时的曝光时间的参数。从ROM 11中读取对应于这些参数的最佳噪声去除设置条件用于噪声去除。要处理的图像临时存储在SDRAM 12中,并且对存储的图像进行噪声去除处理。When the digital camera 1000 performs noise removal processing, the system controller loads a high-sensitivity (sensitive) noise removal program from the ROM 11 to the RAM 10 for execution. The noise removal program acquires the setting of imaging sensitivity and the parameter representing the exposure time at the time of shooting via the system controller. Optimum noise removal setting conditions corresponding to these parameters are read from the ROM 11 for noise removal. The image to be processed is temporarily stored in the SDRAM 12, and the stored image is subjected to noise removal processing.

接着,说明在拍摄时的噪声去除方法。首先,说明高感光度噪声的特性。在数字照相机(成像设备)1000中,改变电路的放大器来调节成像感光度而不改变CCD 3的感光度。当曝光量很小时,发生曝光不足。在此情况下,通过增加放大器的放大系数,可以增加感光度。然而,同时也放大了噪声信号。如果曝光量足够,噪声信号相对小并且不那么明显。在曝光不足的情况下,当通过增加放大器的放大系数增加感光度时也放大了噪声,并且高感光度噪声变得显著。这种噪声是随机噪声,即使拍摄黑白目标时也发生色彩噪声。为了去除以这种方式发生的图像信息的噪声,执行上述的噪声去除处理。Next, a noise removal method at the time of shooting will be described. First, the characteristics of high-sensitivity noise will be described. In the digital camera (imaging device) 1000, the amplifier of the circuit is changed to adjust the imaging sensitivity without changing the sensitivity of the CCD 3. When the amount of exposure is small, underexposure occurs. In this case, by increasing the amplification factor of the amplifier, the sensitivity can be increased. However, the noise signal is also amplified at the same time. If the exposure is sufficient, the noise signal is relatively small and not so noticeable. In the case of underexposure, noise is also amplified when the sensitivity is increased by increasing the amplification factor of the amplifier, and high-sensitivity noise becomes conspicuous. This noise is random noise, and color noise occurs even when shooting black and white objects. In order to remove noise of the image information that occurs in this way, the above-described noise removal processing is performed.

边缘提取滤波器尺寸数据库120,参数数据库130,噪声去除滤波器尺寸数据库140,以及高斯σ值数据库150可以用任何通常使用的存储介质来配置,诸如数字照相机1000的ROM 11,硬盘驱动器(HDD),光盘,以及存储卡。The edge extraction filter size database 120, the parameter database 130, the noise removal filter size database 140, and the Gaussian σ value database 150 can be configured with any commonly used storage medium, such as the ROM 11 of the digital camera 1000, a hard disk drive (HDD) , CD-ROM, and memory card.

还有,根据本实施例的要在数字照相机上执行的图像处理程序可以存储在连接到诸如互联网的网络的计算机上,并且可以经由网络下载来提供。还有,根据本实施例的要在数字照相机上执行的图像处理程序可以经由诸如互联网的网络来提供或者分配。Also, the image processing program to be executed on the digital camera according to the present embodiment can be stored on a computer connected to a network such as the Internet, and can be provided via network download. Also, the image processing program to be executed on the digital camera according to the present embodiment can be provided or distributed via a network such as the Internet.

此外,根据本实施例的图像处理程序可以预先集成在ROM之类中来提供。Furthermore, the image processing program according to the present embodiment may be provided integrated in a ROM or the like in advance.

要在根据本实施例的数字照相机上执行的图像处理程序以可安装或者可执行的格式记录在计算机可读存储介质上,诸如光盘只读存储器(CD-ROM),软盘(FD),可记录光盘(CD-R),或者数字多功能光盘(DVD)来提供。The image processing program to be executed on the digital camera according to the present embodiment is recorded on a computer-readable storage medium in an installable or executable format, such as a compact disk read-only memory (CD-ROM), a floppy disk (FD), a recordable CD-R, or Digital Versatile Disc (DVD).

根据本实施例的要在数字照相机上执行的图像处理程序具有包括每个元件(图像信息获取单元,分量分离单元,成像条件获取单元,滤波器确定单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,图像信息合成单元,图像信息压缩单元,图像信息输出单元等)的模块结构。作为实际硬件,随着CPU(处理器)从存储介质读出图像处理程序来执行,每个单元,即,图像信息获取单元,分量分离单元,成像条件获取单元,滤波器确定单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,图像信息合成单元,图像信息压缩单元,图像信息输出单元等被加载并生成到主存储设备上。The image processing program to be executed on the digital camera according to the present embodiment has a function including each element (image information acquisition unit, component separation unit, imaging condition acquisition unit, filter determination unit, luminance component edge extraction unit, luminance component noise removal unit, color component noise removal unit, image information synthesis unit, image information compression unit, image information output unit, etc.) module structure. As actual hardware, each unit, namely, image information acquisition unit, component separation unit, imaging condition acquisition unit, filter determination unit, brightness component edge The extraction unit, the brightness component noise removal unit, the color component noise removal unit, the image information synthesis unit, the image information compression unit, the image information output unit, etc. are loaded and generated on the main storage device.

下面说明本发明的第二实施例。作为根据第二实施例的图像处理设备的数字照相机对去除了噪声的亮度信息和色彩信息进行缩放,并且将经过缩放的亮度信息和色彩信息,以及边缘信息组合来生成图像信息。这里,说明与第一实施例不同的部分。Next, a second embodiment of the present invention will be described. A digital camera as an image processing apparatus according to the second embodiment scales noise-removed luminance information and color information, and combines the scaled luminance information and color information, and edge information to generate image information. Here, differences from the first embodiment will be described.

说明应用了本发明的数字照相机中包括的图像处理单元的结构示例。图12是根据本发明第二实施例的图像处理单元200的结构的框图。图像处理单元200包括图像信息获取单元101,分量分离单元102,成像条件获取单元103,滤波器确定单元104,缩放单元211,亮度分量边缘提取单元110,亮度分量噪声去除单元105,色彩分量噪声去除单元106,反向缩放单元212,图像信息合成单元107,图像信息压缩单元108,图像信息输出单元109,边缘提取滤波器尺寸数据库120,参数数据库130,噪声去除滤波器尺寸数据库140,高斯σ值数据库150,以及缩放因子数据库260。A structural example of an image processing unit included in a digital camera to which the present invention is applied is explained. FIG. 12 is a block diagram of the structure of the image processing unit 200 according to the second embodiment of the present invention. Image processing unit 200 includes image information acquisition unit 101, component separation unit 102, imaging condition acquisition unit 103, filter determination unit 104, scaling unit 211, brightness component edge extraction unit 110, brightness component noise removal unit 105, color component noise removal Unit 106, inverse scaling unit 212, image information synthesis unit 107, image information compression unit 108, image information output unit 109, edge extraction filter size database 120, parameter database 130, noise removal filter size database 140, Gaussian σ value database 150, and scale factor database 260.

图像信息获取单元101,分量分离单元102,成像条件获取单元103,滤波器确定单元104,亮度分量边缘提取单元110,亮度分量噪声去除单元105,色彩分量噪声去除单元106,图像信息合成单元107,图像信息压缩单元108,图像信息输出单元109,边缘提取滤波器尺寸数据库120,参数数据库130,噪声去除滤波器尺寸数据库140,以及高斯σ值数据库150的结构和功能类似于第一实施例中的那些单元,这里不再说明。Image information acquisition unit 101, component separation unit 102, imaging condition acquisition unit 103, filter determination unit 104, brightness component edge extraction unit 110, brightness component noise removal unit 105, color component noise removal unit 106, image information synthesis unit 107, The image information compression unit 108, the image information output unit 109, the edge extraction filter size database 120, the parameter database 130, the noise removal filter size database 140, and the structure and function of the Gaussian σ value database 150 are similar to those in the first embodiment Those units will not be described here.

缩放因子数据库260为亮度信息和色彩信息中的每个存储用于对应于成像条件进行缩放的缩放因子。图13是用于说明缩放因子数据库的数据结构的示例的表格。缩放因子数据库260相互关联地存储成像条件和用于亮度信息和色彩信息的缩放因子。The scaling factor database 260 stores scaling factors for scaling corresponding to imaging conditions for each of brightness information and color information. FIG. 13 is a table for explaining an example of the data structure of the scaling factor database. The scaling factor database 260 stores imaging conditions and scaling factors for brightness information and color information in association with each other.

缩放因子是改变亮度信息或者色彩信息的尺寸的比率。为了减小尺寸,将缩放因子设置为小于100%。当以小于100%的缩放因子执行缩放时,缩放之后的图像小于原始图像。当对经过缩小的图像进行滤波时,由于经过缩小的图像小于原始图像,可以减少处理时间,从而加快处理。还有,通过减小原始图像,可以获得低通滤波器的效果。The scaling factor is a ratio at which the size of luminance information or color information is changed. To reduce the size, set the scaling factor to less than 100%. When scaling is performed with a scaling factor smaller than 100%, the scaled image is smaller than the original image. When filtering a downscaled image, since the downscaled image is smaller than the original image, processing time can be reduced, resulting in faster processing. Also, by reducing the original image, a low-pass filter effect can be obtained.

例如,当缩放因子为宽度上三倍和长度上三倍并且噪声滤波器的尺寸为5×5时,可以获得尺寸为15×15的噪声滤波器的效果。当对图像信息进行15×15噪声去除滤波处理时,需要大量的时间。然而,当通过3×3缩放处理和使用5×5噪声去除滤波器的噪声去除处理实现类似的处理时,可以减少处理时间。For example, when the scaling factor is three times in width and three times in length and the size of the noise filter is 5×5, the effect of a noise filter having a size of 15×15 can be obtained. When image information is subjected to 15×15 noise removal filter processing, a large amount of time is required. However, when similar processing is realized by 3×3 scaling processing and noise removal processing using a 5×5 noise removal filter, the processing time can be reduced.

缩放单元211使用从缩放因子数据库260获得的对应于成像条件的缩放因子来对通过分量分离单元102的分离获得的亮度信息和色彩信息进行缩放。The scaling unit 211 scales the luminance information and color information obtained through the separation by the component separation unit 102 using the scaling factor corresponding to the imaging condition obtained from the scaling factor database 260 .

反向缩放单元212使用缩放单元211的倒数(inverse)缩放因子对用亮度分量噪声去除单元105去除了噪声的亮度信息和用色彩分量噪声去除单元106去除了噪声的色彩信息进行缩放。The inverse scaling unit 212 scales the luminance information from which noise has been removed by the luminance component noise removal unit 105 and the color information from which noise has been removed by the color component noise removal unit 106 using the inverse scaling factor of the scaling unit 211 .

下面,说明上述结构的图像处理单元200进行的图像处理。图14A和14B是图像信息获取单元,分量分离单元,成像条件获取单元,滤波器确定单元,缩放单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,反向缩放单元,图像信息合成单元,图像信息压缩单元,以及图像信息输出单元进行的图像处理过程的流程图。Next, image processing performed by the image processing unit 200 configured as described above will be described. 14A and 14B are image information acquisition unit, component separation unit, imaging condition acquisition unit, filter determination unit, scaling unit, brightness component edge extraction unit, brightness component noise removal unit, color component noise removal unit, reverse scaling unit, A flow chart of the image processing process performed by the image information synthesis unit, the image information compression unit, and the image information output unit.

根据第二实施例的图像处理过程与图6A和6B描绘的流程图有共同的部分,因此这里仅说明不同的部分。对于步骤S1401到S1410,参考图6A和6B中的说明,这里不再说明这些步骤。The image processing procedure according to the second embodiment has parts in common with the flowcharts depicted in FIGS. 6A and 6B, so only different parts will be explained here. For steps S1401 to S1410, refer to the description in FIGS. 6A and 6B , and these steps will not be described here again.

在步骤S1411,缩放单元211从缩放因子数据库160指定对应于成像条件的缩放因子(步骤S1411)。对于亮度信息和色彩信息中的每个指定缩放因子。缩放单元211接着使用各个缩放因子来对通过分量分离单元102分离获得的亮度信息和色彩信息进行缩放(步骤S1412)。In step S1411, the scaling unit 211 specifies a scaling factor corresponding to the imaging condition from the scaling factor database 160 (step S1411). A scaling factor is specified for each of brightness information and color information. The scaling unit 211 then scales the luminance information and color information separated and obtained by the component separating unit 102 using the respective scaling factors (step S1412).

亮度分量噪声去除单元105使用亮度滤波器从经过缩放单元211的缩放的亮度信息去除噪声(步骤S1413)。色彩分量噪声去除单元106使用色彩滤波器从经过缩放单元211的缩放的色彩信息去除噪声(步骤S1414)。The luminance component noise removing unit 105 removes noise from the scaled luminance information subjected to the scaling unit 211 using a luminance filter (step S1413 ). The color component noise removal unit 106 removes noise from the scaled color information by the scaling unit 211 using a color filter (step S1414 ).

反向缩放单元212分别以倒数缩放因子对用亮度分量噪声去除单元105去除了噪声的亮度信息和用色彩分量噪声去除单元106去除了噪声的色彩信息进行缩放(步骤S1415)。The inverse scaling unit 212 scales the luminance information from which noise has been removed by the luminance component noise removing unit 105 and the color information from which noise has been removed by the color component noise removing unit 106 , respectively, by a reciprocal scaling factor (step S1415 ).

图像信息合成单元107将边缘信息,经过缩放的亮度信息以及色彩信息组合来生成YUV格式的图像信息(步骤S1416)。图像信息压缩单元108将图像信息合成单元107生成的YUV格式的图像信息压缩为JPEG格式(步骤S1417)。图像信息输出单元109将图像信息压缩单元108压缩的图像信息输出到存储卡之类(步骤S1418)。The image information combining unit 107 combines the edge information, the scaled brightness information and the color information to generate image information in YUV format (step S1416). The image information compressing unit 108 compresses the image information in the YUV format generated by the image information combining unit 107 into the JPEG format (step S1417). The image information output unit 109 outputs the image information compressed by the image information compression unit 108 to a memory card or the like (step S1418).

以这种方式,即使由于相机的感光度的增加而导致噪声的尺寸增加从而必须增加噪声滤波器的尺寸,对于噪声去除处理对亮度信息和色彩信息进行缩放,接着在处理之后以倒数缩放因子进行缩放。由此,可以减少噪声去除处理所需要的时间,从而以高速度实现有效的噪声去除处理。In this way, even if the size of the noise increases due to an increase in the sensitivity of the camera so that the size of the noise filter must be increased, the luminance information and the color information are scaled for the noise removal process, followed by an inverse scaling factor after the processing zoom. Thereby, the time required for noise removal processing can be reduced, thereby realizing efficient noise removal processing at high speed.

下面说明本发明的第三实施例。在根据第三实施例的图像处理装置中,在图像处理装置中而不是成像设备中执行图像信息的边缘提取和噪声去除。这里,仅仅说明与第一实施例不同的部分。A third embodiment of the present invention will be described below. In the image processing apparatus according to the third embodiment, edge extraction and noise removal of image information are performed in the image processing apparatus instead of the imaging device. Here, only the parts different from the first embodiment will be described.

说明应用了本发明的图像处理单元的结构示例。图15是根据本发明第三实施例的图像处理装置300的结构的框图。图像处理装置300包括图像信息获取单元301,图像信息转换单元313,分量分离单元102,成像条件获取单元303,滤波器确定单元104,亮度分量边缘提取单元110,亮度分量噪声去除单元105,色彩分量噪声去除单元106,图像信息合成单元107,图像信息转换单元314,图像信息输出单元309,边缘提取滤波器尺寸数据库120,参数数据库130,噪声去除滤波器尺寸数据库140,以及高斯σ值数据库150。A structural example of an image processing unit to which the present invention is applied is explained. FIG. 15 is a block diagram of the configuration of an image processing apparatus 300 according to a third embodiment of the present invention. The image processing device 300 includes an image information acquisition unit 301, an image information conversion unit 313, a component separation unit 102, an imaging condition acquisition unit 303, a filter determination unit 104, a luminance component edge extraction unit 110, a luminance component noise removal unit 105, a color component Noise removal unit 106, image information synthesis unit 107, image information conversion unit 314, image information output unit 309, edge extraction filter size database 120, parameter database 130, noise removal filter size database 140, and Gaussian σ value database 150.

分量分离单元102,滤波器确定单元104,亮度分量边缘提取单元110,亮度分量噪声去除单元105,色彩分量噪声去除单元106,图像信息合成单元107,边缘提取滤波器尺寸数据库120,参数数据库130,噪声去除滤波器尺寸数据库140,以及高斯σ值数据库150的结构和功能类似于第一实施例中的那些,这里不再说明。Component separation unit 102, filter determination unit 104, brightness component edge extraction unit 110, brightness component noise removal unit 105, color component noise removal unit 106, image information synthesis unit 107, edge extraction filter size database 120, parameter database 130, The structures and functions of the noise removal filter size database 140, and the Gaussian σ value database 150 are similar to those in the first embodiment, and will not be described here.

图像信息获取单元获取存储在存储介质中的图像信息或者经由网络传送的图像信息。图像信息转换单元313将图像信息获取单元301获取的图像信息转换为YUV格式的图像信息。The image information acquisition unit acquires image information stored in a storage medium or image information transmitted via a network. The image information conversion unit 313 converts the image information acquired by the image information acquisition unit 301 into image information in YUV format.

成像条件获取单元303从图像信息获取单元301获取的图像信息获取成像条件。图像信息转换单元314将图像信息合成单元107生成的YUV格式的图像信息转换为其他格式的图像信息。图像信息输出单元309将经过图像信息转换单元314转换的图像信息输出到HDD或者打印机。The imaging condition acquisition unit 303 acquires imaging conditions from the image information acquired by the image information acquisition unit 301 . The image information conversion unit 314 converts the image information in the YUV format generated by the image information synthesis unit 107 into image information in other formats. The image information output unit 309 outputs the image information converted by the image information conversion unit 314 to an HDD or a printer.

说明上述结构的图像处理装置进行的图像处理。图16A和16B是图像信息获取单元,图像信息转换单元,分量分离单元,成像条件获取单元,滤波器确定单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,图像信息合成单元,图像信息转换单元,以及图像信息输出单元进行的图像处理过程的流程图。Image processing performed by the image processing device configured as described above will be described. 16A and 16B are image information acquisition unit, image information conversion unit, component separation unit, imaging condition acquisition unit, filter determination unit, luminance component edge extraction unit, luminance component noise removal unit, color component noise removal unit, image information synthesis unit, the image information conversion unit, and the flow chart of the image processing process performed by the image information output unit.

根据本实施例的图像处理过程与图6A和6B描绘的流程图大致相似,因此这里仅说明不同的部分。对于步骤S1605到S1614,参考图6A和6B中的说明,这里不再说明这些步骤。The image processing procedure according to the present embodiment is roughly similar to the flowcharts depicted in FIGS. 6A and 6B , so only the different parts will be described here. For steps S1605 to S1614, refer to the description in FIGS. 6A and 6B , and these steps will not be described here again.

图像信息获取单元301获取存储在存储介质中的图像信息或者经由网络传送的图像信息(步骤S1601)。图像信息转换单元313将图像信息获取单元301获取的图像信息转换为YUV格式的图像信息(步骤S1602)。例如,当获取的图像信息是RGB格式时,通过下面的转换方程将这种图像信息转换到YUV格式的图像信息。The image information acquisition unit 301 acquires image information stored in a storage medium or image information transmitted via a network (step S1601). The image information conversion unit 313 converts the image information acquired by the image information acquisition unit 301 into image information in YUV format (step S1602). For example, when acquired image information is in RGB format, such image information is converted into image information in YUV format by the following conversion equation.

YY Uu VV == 0.2990.299 0.5870.587 0.1140.114 0.50.5 -- 0.4190.419 -- 0.0810.081 -- 0.1690.169 -- 0.3320.332 0.50.5 RR GG BB -- -- -- (( 55 ))

分量分离单元102将经过转换的YUV格式的图像信息分离为亮度信息和色彩信息(步骤S1603)。成像条件获取单元303从图像信息获取单元301获取的图像信息获取成像条件(步骤S1604)。例如,当图像信息为可交换图像文件格式(Exif)时,图像信息中额外地记录了成像设备的数据,诸如制造商,型号编号,成像感光度,以及成像设备拍摄时的曝光时间。The component separation unit 102 separates the converted image information in YUV format into brightness information and color information (step S1603). The imaging condition acquisition unit 303 acquires imaging conditions from the image information acquired by the image information acquisition unit 301 (step S1604). For example, when the image information is in the Exchangeable Image File Format (Exif), the image information additionally records data of the imaging device, such as manufacturer, model number, imaging sensitivity, and exposure time when the imaging device shoots.

对于步骤S1605到S1614的说明,参考图6A和6B的说明。图像信息转换单元314将图像信息合成单元107生成的YUV格式的图像信息转换为例如RGB格式的图像信息(步骤S1615)。当将YUV格式的图像信息转换到RGB格式的图像信息时,使用下面的转换方程进行转换。For the description of steps S1605 to S1614, refer to the description of FIGS. 6A and 6B. The image information conversion unit 314 converts the image information in the YUV format generated by the image information synthesis unit 107 into, for example, image information in the RGB format (step S1615). When converting image information in YUV format to image information in RGB format, the following conversion equation is used for conversion.

RR GG BB == 11 .. 00 1.4021.402 00 11 .. 00 -- 0.1740.174 -- 0.3440.344 1.01.0 00 1.7721.772 YY Uu VV -- -- -- (( 66 ))

图像信息输出单元309将经过图像信息转换单元314转换获得的图像信息输出到存储介质或者打印机(步骤S1616)。The image information output unit 309 outputs the image information converted by the image information converting unit 314 to a storage medium or a printer (step S1616).

以这种方式,即使在图像处理装置中,将YUV格式的图像信息分离为亮度信息和色彩信息;从亮度信息提取边缘信息;从亮度信息和色彩信息去除噪声;并且组合边缘信息,亮度信息和色彩信息。由此,可以在抑制边缘模糊化的情况下有效地去除噪声来保持高图像质量。同时,通过使用适合于分离获得的亮度信息和色彩信息的每个的滤波器去除了噪声。由此,可以考虑到人眼的特性执行有效的噪声去除。In this way, even in the image processing apparatus, image information in YUV format is separated into luminance information and color information; edge information is extracted from luminance information; noise is removed from luminance information and color information; and edge information, luminance information and color information. Thereby, noise can be effectively removed to maintain high image quality while suppressing edge blurring. At the same time, noise is removed by using a filter suitable for separating each of the obtained luminance information and color information. Thereby, effective noise removal can be performed in consideration of the characteristics of the human eye.

第二实施例中说明的缩放处理可以结合到本实施例中。由此,即使在图像处理装置中,即使由于成像感光度的增加而导致噪声的尺寸增加从而必须增加噪声滤波器的尺寸,对于噪声去除处理对亮度信息和色彩信息进行缩放,接着在处理之后以倒数缩放因子进行缩放。由此,可以减少噪声去除处理所需要的时间,从而以高速度实现有效的噪声去除处理。The scaling processing described in the second embodiment can be incorporated into this embodiment. Thus, even in the image processing apparatus, even if the size of the noise increases due to an increase in imaging sensitivity so that the size of the noise filter must be increased, the luminance information and the color information are scaled for the noise removal processing, and then after the processing in the Reciprocal scaling factor for scaling. Thereby, the time required for noise removal processing can be reduced, thereby realizing efficient noise removal processing at high speed.

图17是根据第三实施例的图像处理装置的硬件结构的框图。图像处理装置300包括中心控制每个元件的CPU 24,CPU 24经由总线连接了其中存储了基本输入输出系统(BIOS)等的ROM 22和可写地存储了各种数据并且作为CPU的工作区域的RAM 21,从而形成微计算机。此外,总线连接了存储了控制程序的HDD 25,读取CD-ROM 28的CD-ROM驱动器26,以及作为用于与打印机单元之类通信的接口的接口(I/F)23。Fig. 17 is a block diagram of a hardware configuration of an image processing apparatus according to a third embodiment. The image processing apparatus 300 includes a CPU 24 that centrally controls each element, and the CPU 24 is connected via a bus to a ROM 22 in which a basic input output system (BIOS) and the like are stored, and a ROM 22 in which various data are writably stored and serves as a work area of the CPU. RAM 21, thereby forming a microcomputer. Furthermore, the bus connects an HDD 25 storing a control program, a CD-ROM drive 26 that reads a CD-ROM 28, and an interface (I/F) 23 as an interface for communication with a printer unit or the like.

图17中描绘的CD-ROM 28中存储了预定的控制程序。CPU 24在CD-ROM驱动器26处读取存储在CD-ROM 28中的控制程序,接着将程序安装到HDD 25。由此,可以执行上述的各种处理。同时,存储卡29中存储了图像信息等,由存储卡驱动器27读取。Predetermined control programs are stored in the CD-ROM 28 depicted in FIG. 17 . The CPU 24 reads the control program stored in the CD-ROM 28 at the CD-ROM drive 26, and then installs the program to the HDD 25. Thereby, various processes described above can be performed. At the same time, image information and the like are stored in the memory card 29 and read by the memory card drive 27 .

作为存储介质,除了CD-ROM或者存储卡,还可以使用各种介质,诸如包括DVD的各种光盘,各种磁光盘,包括软盘的各种磁盘,以及半导体存储器。同时,程序可以在诸如互联网的网络上下载,并且可以安装到HDD 25中。在此情况下,在发送侧的服务器上存储了程序的存储设备也是根据本发明的存储介质。这里,程序可以在预定的操作系统(OS)上工作。在此情况下,下面将进一步说明的各种处理的一部分可以由OS执行或者可以包括在预定的应用程序软件中,诸如文字处理器软件,或者作为形成操作系统等的一组程序文件的一部分。As the storage medium, various media such as various optical disks including DVD, various magneto-optical disks, various magnetic disks including floppy disks, and semiconductor memories can be used in addition to CD-ROM or memory card. Meanwhile, the program can be downloaded on a network such as the Internet, and can be installed into the HDD 25. In this case, the storage device in which the program is stored on the server on the transmission side is also a storage medium according to the present invention. Here, the program can work on a predetermined operating system (OS). In this case, a part of various processes to be described further below may be executed by the OS or may be included in predetermined application software such as word processor software, or as part of a set of program files forming an operating system or the like.

如同第一实施例那样,边缘提取滤波器尺寸数据库120,参数数据库130,噪声去除滤波器尺寸数据库140,以及高斯σ值数据库150可以用任何通常使用的存储介质来配置,诸如HDD,光盘,以及存储卡。Like the first embodiment, the edge extraction filter size database 120, the parameter database 130, the noise removal filter size database 140, and the Gaussian σ value database 150 can be configured with any commonly used storage medium, such as HDD, optical disk, and storage card.

还有,要在根据本实施例的图像处理装置上执行的图像处理程序可以存储在连接到诸如互联网的网络的计算机上,并且可以经由网络下载来提供。还有,要在根据本实施例的图像处理装置上执行的图像处理程序可以经由诸如互联网的网络来提供或者分配。Also, the image processing program to be executed on the image processing apparatus according to the present embodiment may be stored on a computer connected to a network such as the Internet, and may be provided via network download. Also, the image processing program to be executed on the image processing apparatus according to the present embodiment can be provided or distributed via a network such as the Internet.

此外,根据本实施例的图像处理程序可以预先集成在ROM之类中来提供。Furthermore, the image processing program according to the present embodiment may be provided integrated in a ROM or the like in advance.

要在根据本实施例的图像处理装置上执行的图像处理程序以可安装或者可执行的格式记录在计算机可读存储介质上,诸如CD-ROM,FD,CD-R,或DVD来提供。The image processing program to be executed on the image processing apparatus according to the present embodiment is provided in an installable or executable format recorded on a computer-readable storage medium such as CD-ROM, FD, CD-R, or DVD.

要在根据第三实施例的图像处理装置上执行的图像处理程序具有包括每个元件(图像信息获取单元,图像信息转换单元,分量分离单元,成像条件获取单元,滤波器确定单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,图像信息合成单元,图像信息输出单元等)的模块结构。作为实际硬件,随着CPU(处理器)从存储介质读出图像处理程序用于执行时,每个单元(即,图像信息获取单元,图像信息转换单元,分量分离单元,成像条件获取单元,滤波器确定单元,亮度分量边缘提取单元,亮度分量噪声去除单元,色彩分量噪声去除单元,图像信息合成单元,图像信息输出单元等)被加载并生成到主存储设备上。The image processing program to be executed on the image processing apparatus according to the third embodiment has components including each element (image information acquisition unit, image information conversion unit, component separation unit, imaging condition acquisition unit, filter determination unit, luminance component edge Extraction unit, brightness component noise removal unit, color component noise removal unit, image information synthesis unit, image information output unit, etc.) module structure. As actual hardware, as the CPU (processor) reads the image processing program from the storage medium for execution, each unit (i.e., image information acquisition unit, image information conversion unit, component separation unit, imaging condition acquisition unit, filter device determination unit, luminance component edge extraction unit, luminance component noise removal unit, color component noise removal unit, image information synthesis unit, image information output unit, etc.) are loaded and generated on the main storage device.

下面说明本发明的第四实施例。首先,说明应用了本发明的数字照相机中包括的图像处理单元的结构示例。图18是根据本发明第四实施例的图像处理单元400的框图。Next, a fourth embodiment of the present invention will be described. First, a configuration example of an image processing unit included in a digital camera to which the present invention is applied is explained. FIG. 18 is a block diagram of an image processing unit 400 according to a fourth embodiment of the present invention.

图像处理单元400包括图像信息获取单元101,高感光度(sensitive)低分辨率图像生成单元415,分量分离单元402,色彩分量噪声去除单元406,亮度分量噪声去除单元405,亮度分量边缘提取单元410,缩放单元411,亮度分量合成单元416,图像信息合成单元407,以及图像信息输出单元109。图像信息获取单元101和图像信息输出单元109的结构和功能类似于第一实施例中的那些单元,这里不再说明。The image processing unit 400 includes an image information acquisition unit 101, a high-sensitivity (sensitive) low-resolution image generation unit 415, a component separation unit 402, a color component noise removal unit 406, a brightness component noise removal unit 405, and a brightness component edge extraction unit 410 , a scaling unit 411 , a luminance component synthesis unit 416 , an image information synthesis unit 407 , and an image information output unit 109 . The structures and functions of the image information acquisition unit 101 and the image information output unit 109 are similar to those in the first embodiment, and will not be described here again.

高感光度低分辨率图像生成单元415将图像信息获取单元101获取的图像信息中多个相邻像素的像素值相加来计算一个像素值,从而从获取的图像信息生成高感光度低分辨率图像信息。例如,当将四个相邻像素值相加时,像素的数量变为四分之一。然而,每个像素的光量变为四重,因此感光度变为四重。这里,将它们的像素值相加的像素的数量不限制为四个。同时,将它们的像素值相加的像素形成的形状不限制于正方形,而是可以是各种多边形,直线或者多边形线中的任何一个。The high-sensitivity low-resolution image generation unit 415 adds the pixel values of a plurality of adjacent pixels in the image information acquired by the image information acquisition unit 101 to calculate one pixel value, thereby generating a high-sensitivity low-resolution image from the acquired image information. image information. For example, when four adjacent pixel values are added, the number of pixels becomes one quarter. However, the amount of light per pixel becomes quadruple, so the sensitivity becomes quadruple. Here, the number of pixels whose pixel values are added is not limited to four. Meanwhile, the shape formed by pixels whose pixel values are added is not limited to a square, but may be any of various polygons, straight lines, or polygonal lines.

分量分离单元402将高感光度低分辨率图像生成单元415生成的高感光度低分辨率图像信息分离为亮度信息和色彩信息。同时,分量分离单元402将图像信息获取单元101获取的图像信息分离为亮度信息和色彩信息。这里,相对于通过将像素值相加生成的高感光度低分辨率图像信息,图像信息获取单元101获取的图像信息为低感光度高分辨率图像信息。The component separation unit 402 separates the high-sensitivity low-resolution image information generated by the high-sensitivity low-resolution image generation unit 415 into brightness information and color information. At the same time, the component separation unit 402 separates the image information acquired by the image information acquisition unit 101 into brightness information and color information. Here, the image information acquired by the image information acquiring unit 101 is low-sensitivity high-resolution image information, with respect to high-sensitivity low-resolution image information generated by adding pixel values.

色彩分量噪声去除单元406使用存储在装置中的滤波器来从色彩信息中去除噪声。这里,作为滤波器,除了如同在第一实施例中说明的存储在装置中的滤波器之外,可以从对应于成像条件的σ值计算高斯平滑滤波器,并且计算的滤波器可以用于从色彩信息中去除噪声。The color component noise removal unit 406 uses filters stored in the device to remove noise from color information. Here, as the filter, in addition to the filter stored in the device as explained in the first embodiment, a Gaussian smoothing filter can be calculated from the σ value corresponding to the imaging condition, and the calculated filter can be used to obtain from Remove noise from color information.

亮度分量噪声去除单元405使用存储在装置中的滤波器来从亮度信息中去除噪声。这里,作为滤波器,除了如同在第一实施例中说明的存储在装置中的滤波器之外,可以从对应于成像条件的σ值计算高斯平滑滤波器,并且计算的滤波器可以用于从亮度信息中去除噪声。The luminance component noise removal unit 405 removes noise from luminance information using filters stored in the device. Here, as the filter, in addition to the filter stored in the device as explained in the first embodiment, a Gaussian smoothing filter can be calculated from the σ value corresponding to the imaging condition, and the calculated filter can be used to obtain from Noise removal from brightness information.

亮度分量边缘提取单元410使用存储在装置中的滤波器来从亮度信息中提取边缘信息。这里,作为滤波器,除了如同在第一实施例中说明的存储在装置中的滤波器之外,可以从对应于成像条件的σ值和k值计算高斯拉普拉斯(LoG)滤波器,并且计算的滤波器可以用于提取边缘信息。The luminance component edge extraction unit 410 extracts edge information from luminance information using filters stored in the device. Here, as the filter, in addition to the filter stored in the device as explained in the first embodiment, a Laplacian of Gaussian (LoG) filter can be calculated from the σ value and the k value corresponding to the imaging condition, And the calculated filter can be used to extract edge information.

缩放单元411对由色彩分量噪声去除单元406去除了噪声的色彩信息进行缩放,并且对通过分量分离单元402的分离获得的亮度信息执行缩放。例如,高感光度低分辨率图像生成单元415将四个像素值相加来计算一个像素值来生成高感光度低分辨率图像信息,并且当图像尺寸变为四分之一时,将每个像素值放大四倍,从而图像具有原始的图像尺寸。The scaling unit 411 scales color information from which noise has been removed by the color component noise removing unit 406 , and performs scaling on luminance information obtained by separation by the component separation unit 402 . For example, the high-sensitivity low-resolution image generation unit 415 adds four pixel values to calculate one pixel value to generate high-sensitivity low-resolution image information, and when the image size is quartered, each The pixel values are quadrupled so that the image has the original image dimensions.

亮度分量合成单元416从经过缩放单元411的缩放的亮度信息,由亮度分量噪声去除单元405去除了噪声的亮度信息,以及从亮度分量边缘提取单元410提取的边缘信息来组合亮度信息。The luminance component synthesis unit 416 combines the luminance information from the scaled luminance information by the scaling unit 411 , the luminance information from which noise has been removed by the luminance component noise removal unit 405 , and the edge information extracted from the luminance component edge extraction unit 410 .

图像信息合成单元407从经过缩放单元411的缩放的色彩信息以及由亮度分量合成单元416合成的亮度信息合成图像信息。The image information synthesis unit 407 synthesizes image information from the scaled color information by the scaling unit 411 and the luminance information synthesized by the luminance component synthesis unit 416 .

下面,说明上述结构的图像处理单元400进行的图像处理。图19是图像信息获取单元,高感光度低分辨率图像生成单元,分量分离单元,色彩分量噪声去除单元,亮度分量噪声去除单元,亮度分量边缘提取单元,缩放单元,亮度分量合成单元,图像信息合成单元,以及图像信息输出单元进行的图像处理过程的流程图。Next, image processing performed by the image processing unit 400 configured as described above will be described. Figure 19 is an image information acquisition unit, a high-sensitivity low-resolution image generation unit, a component separation unit, a color component noise removal unit, a luminance component noise removal unit, a luminance component edge extraction unit, a scaling unit, a luminance component synthesis unit, and an image information A flowchart of the image processing process performed by the synthesis unit and the image information output unit.

首先,图像信息获取单元101从临时存储存储器获取图像信息(步骤S1901)。高感光度低分辨率图像生成单元415将图像信息中的相邻像素值相加来生成高感光度低分辨率图像信息(步骤S1902)。由此,减少了像素值的数量,但是增加了每个像素的曝光量。分量分离单元402将高感光度低分辨率图像信息分开为色彩信息(CrCb信号)和亮度信息(Y信号)(步骤S1903)。色彩分量噪声去除单元406从通过分离获得的色彩信息去除噪声(步骤S1904)。对于这里的噪声去除处理使用低通滤波器(例如,平滑滤波器)。图20是用于说明具有3×3的滤波器尺寸的平滑滤波器的示例的图示。First, the image information acquisition unit 101 acquires image information from a temporary storage memory (step S1901). The high-sensitivity low-resolution image generation unit 415 adds adjacent pixel values in the image information to generate high-sensitivity low-resolution image information (step S1902). Thus, the number of pixel values is reduced, but the exposure per pixel is increased. The component separation unit 402 separates the high-sensitivity low-resolution image information into color information (CrCb signal) and luminance information (Y signal) (step S1903). The color component noise removing unit 406 removes noise from the color information obtained by the separation (step S1904). A low-pass filter (for example, a smoothing filter) is used for the noise removal process here. FIG. 20 is a diagram for explaining an example of a smoothing filter having a filter size of 3×3.

缩放单元411将去除了噪声的色彩信息缩放到原始图像尺寸(步骤S1905)。缩放单元411将通过分离获得的亮度信息缩放到原始图像尺寸(步骤S1906)。由此,通过分离从通过将像素值相加生成的高感光度低分辨率图像信息获得的亮度信息和通过分离从高感光度低分辨率图像信息获得、并且进一步去除了噪声的色彩信息具有将像素值相加之前的图像尺寸。The scaling unit 411 scales the noise-removed color information to the original image size (step S1905). The scaling unit 411 scales the luminance information obtained by the separation to the original image size (step S1906). Thus, by separating luminance information obtained from high-sensitivity low-resolution image information generated by adding pixel values and color information obtained from high-sensitivity low-resolution image information by separating and further removing noise has Image dimensions before pixel values are added.

分量分离单元402将图像信息获取单元101获取的图像信息分离为色彩信息(CrCb信号)和亮度信息(Y信号)(步骤S1907)。亮度分量噪声去除单元405从通过分离获得的亮度信息去除噪声(步骤S1908)。对于这里的噪声去除处理,如同色彩分量噪声去除单元406中的处理,使用低通滤波器(例如,图20所示的平滑滤波器)。The component separation unit 402 separates the image information acquired by the image information acquisition unit 101 into color information (CrCb signal) and luminance information (Y signal) (step S1907). The luminance component noise removing unit 405 removes noise from the luminance information obtained by separation (step S1908). For the noise removal processing here, like the processing in the color component noise removal unit 406 , a low-pass filter (for example, a smoothing filter shown in FIG. 20 ) is used.

同时,亮度分量边缘提取单元410从通过分离获得的亮度信息中提取边缘信息(步骤S1909)。这里,对于边缘提取处理,使用LoG滤波器作为边缘提取滤波器。滤波器可以通过使用上述的方程(1)计算。图21是用于说明具有5×5的滤波器尺寸的边缘提取滤波器的示例的图示。还有,对于边缘分量提取处理,使用上述的方程(3)。图22是用于说明分离的亮度信息的图示。图23是用于说明从亮度信息提取边缘获得的结果的图示。以这种方式,当通过使用如图21所示的边缘提取滤波器从如图22所示的亮度信息提取边缘时,提取了如同图23中所示的边缘分量。Meanwhile, the luminance component edge extraction unit 410 extracts edge information from the luminance information obtained by the separation (step S1909). Here, for edge extraction processing, a LoG filter is used as an edge extraction filter. The filter can be calculated by using equation (1) above. FIG. 21 is a diagram for explaining an example of an edge extraction filter having a filter size of 5×5. Also, for the edge component extraction processing, the above-mentioned equation (3) is used. FIG. 22 is a diagram for explaining separated luminance information. FIG. 23 is a diagram for explaining results obtained by extracting edges from luminance information. In this way, when an edge is extracted from luminance information as shown in FIG. 22 by using the edge extraction filter as shown in FIG. 21 , an edge component as shown in FIG. 23 is extracted.

亮度分量合成单元416从通过从高感光度低分辨率图像信息分离获得并且经过缩放的亮度信息,去除了噪声的亮度信息,以及边缘信息合成亮度信息(步骤S1910)。图24是说明组合亮度信息和边缘信息获得的结果的图示。如图24中那样提取边缘分量,并且与通过从高感光度低分辨率图像信息分离获得并经过缩放的亮度信息以及去除了噪声的亮度信息组合。由此,可以获得高质量的图像而不降低图像的分辨率。图像信息合成单元407从通过从高感光度低分辨率图像信息分离获得并经过缩放的色彩信息以及合成的亮度信息来合成图像信息(步骤S1911)。图像信息输出单元109输出经过合成的图像信息(步骤S1912)。这里,步骤S1907到S1909的处理和步骤S1902到S1906的处理可以同时执行。The luminance component synthesizing unit 416 synthesizes luminance information from luminance information obtained by separation from high-sensitivity low-resolution image information and scaled, noise-removed luminance information, and edge information (step S1910 ). Fig. 24 is a diagram illustrating a result obtained by combining luminance information and edge information. The edge component is extracted as in FIG. 24 , and combined with brightness information obtained by separation from high-sensitivity low-resolution image information and scaled, and noise-removed brightness information. Thereby, high-quality images can be obtained without reducing the resolution of the images. The image information synthesis unit 407 synthesizes image information from color information obtained by separating and scaling from high-sensitivity low-resolution image information and synthesized luminance information (step S1911 ). The image information output unit 109 outputs the synthesized image information (step S1912). Here, the processing of steps S1907 to S1909 and the processing of steps S1902 to S1906 may be performed simultaneously.

以这种方式,从来自高感光度低分辨率图像信息的亮度信息,去除了噪声的色彩信息,来自高感光度低分辨率图像信息的去除了噪声的亮度信息,以及边缘信息来合成图像信息。由此,即使成像时的曝光时间短也可以去除噪声,从而获得具有良好的色彩再现性和白平衡,并且具有图像的色彩和亮度之间出色的平衡的图像信息。In this way, image information is synthesized from luminance information from high-sensitivity low-resolution image information, noise-removed color information, noise-removed luminance information from high-sensitivity low-resolution image information, and edge information . Thereby, noise can be removed even if the exposure time in imaging is short, thereby obtaining image information having good color reproducibility and white balance, and having an excellent balance between color and brightness of an image.

从高感光度低分辨率图像信息分离的亮度信息经过缩放并且组合到图像信息,从而抑制了合成的图像的噪声。即,如果不变地使用图像信息的亮度值,由于图像信息的亮度值低,必须放大图像信息的亮度值来增加它。由此,也增强了噪声。另一方面,组合了高感光度低分辨率图像的亮度信息,可以减少对于图像信息的放大的缩放因子。因此,减少了噪声的放大因子,从而减少了合成的图像的噪声分量。结果是,减少了合成的图像的噪声。Brightness information separated from high-sensitivity low-resolution image information is scaled and combined into image information, thereby suppressing noise of the synthesized image. That is, if the luminance value of the image information is used unchanged, since the luminance value of the image information is low, it is necessary to enlarge the luminance value of the image information to increase it. Thereby, noise is also enhanced. On the other hand, combining the luminance information of the high-sensitivity low-resolution image can reduce the scaling factor for the enlargement of the image information. Therefore, the amplification factor of noise is reduced, thereby reducing the noise component of the synthesized image. As a result, the noise of the synthesized image is reduced.

根据第四实施例,由成像单元拍摄图像,并且通过使用存储在临时存储存储器中的一段图像信息,生成高感光度低分辨率图像信息和低感光度高分辨率图像信息。替代地,高感光度低分辨率图像信息和低感光度高分辨率图像信息可以通过使用通过由成像单元拍摄图像两次获得的两段图像信息生成。此时,两段图像信息可以以相同的曝光时间生成。替代地,两段图像信息可以以不同的曝光时间生成,并且具有长曝光时间的图像信息可以用于生成高感光度低分辨率图像信息,具有短曝光时间的图像信息可以用于生成低感光度高分辨率图像信息。According to the fourth embodiment, an image is captured by an imaging unit, and by using a piece of image information stored in a temporary storage memory, high-sensitivity low-resolution image information and low-sensitivity high-resolution image information are generated. Alternatively, high-sensitivity low-resolution image information and low-sensitivity high-resolution image information may be generated by using two pieces of image information obtained by capturing an image twice by the imaging unit. At this time, two pieces of image information can be generated with the same exposure time. Alternatively, two pieces of image information can be generated with different exposure times, and the image information with long exposure time can be used to generate high-sensitivity low-resolution image information, and the image information with short exposure time can be used to generate low-sensitivity image information. High resolution image information.

下面,描述数字照相机,即进行图像处理的成像设备的一个示例的硬件结构。数字照相机的硬件结构类似于图11中的结构。因此,参考图11及其说明,这里只说明不同的部分。Next, the hardware configuration of an example of a digital camera, that is, an imaging device that performs image processing, is described. The hardware structure of the digital camera is similar to that in FIG. 11 . Therefore, referring to FIG. 11 and its description, only the different parts will be described here.

CCD 3将形成在成像表面的光学图像转换为电信号来作为模拟图像信息输出。在上述的图像处理单元400中,一次拍摄的图像信息用于生成高感光度低分辨率图像信息和低感光度高分辨率图像信息。替代地,可以通过两次曝光顺序地输出图像信息,并且可以使用输出图像信息。在此情况下,对一段曝光的图像信息执行将像素值相加的处理。从CCD 3输出的图像信息由CDS电路4去除了噪声分量,由A/D转换器5转换为数字值,接着输出到图像处理电路8。这里,噪声去除由电路执行,不同于通过图像处理的噪声去除。The CCD 3 converts the optical image formed on the imaging surface into an electrical signal to output as analog image information. In the image processing unit 400 described above, image information captured once is used to generate high-sensitivity low-resolution image information and low-sensitivity high-resolution image information. Alternatively, image information may be sequentially output by two exposures, and the output image information may be used. In this case, processing of adding pixel values is performed on image information of one exposure. The image information output from the CCD 3 is removed from the noise component by the CDS circuit 4, converted into a digital value by the A/D converter 5, and then output to the image processing circuit 8. Here, noise removal is performed by a circuit, different from noise removal by image processing.

图像处理电路8使用临时存储图像信息的SDRAM 12来进行各种图像处理,包括YCrCb转换,白平衡控制,对比度校正,边缘增强,以及色彩转换。这里,白平衡控制是调节图像信息的色彩浓度的图像处理,而对比度校正是调节图像信息的对比度的图像处理。边缘增强是调节图像信息的清晰度的图像处理,而色彩转换是调节图像信息的色彩的暗度的图像处理。还有,图像处理电路8使得图像信息经过信号处理和图像处理以便显示在液晶LCD 16上。The image processing circuit 8 uses the SDRAM 12 for temporarily storing image information to perform various image processing including YCrCb conversion, white balance control, contrast correction, edge enhancement, and color conversion. Here, white balance control is image processing to adjust the color density of image information, and contrast correction is image processing to adjust the contrast of image information. Edge enhancement is image processing that adjusts the sharpness of image information, and color conversion is image processing that adjusts the darkness of colors of image information. Also, the image processing circuit 8 subjects image information to signal processing and image processing to be displayed on the liquid crystal LCD 16.

当数字照相机执行高感光度图像合成处理时,系统控制器从ROM 11加载图像处理程序到RAM 10来执行。图像处理程序经由系统控制器访问临时存储在SDRAM中的YCrCb图像来获得用于色彩分量噪声去除,亮度分量噪声去除,以及亮度分量边缘提取的参数和滤波器来进行这些处理。When the digital camera performs high-sensitivity image synthesis processing, the system controller loads the image processing program from the ROM 11 to the RAM 10 for execution. The image processing program accesses the YCrCb image temporarily stored in SDRAM via the system controller to obtain parameters and filters for color component noise removal, luminance component noise removal, and luminance component edge extraction to perform these processes.

根据本实施例的要在数字照相机上执行的图像处理程序具有包括每个元件(图像信息获取单元,高感光度低分辨率图像生成单元,分量分离单元,色彩分量噪声去除单元,缩放单元,亮度分量边缘提取单元,亮度分量噪声去除单元,亮度分量合成单元,图像信息合成单元,图像信息输出单元等)的模块结构。作为实际硬件,随着CPU(处理器)从存储介质读出图像处理程序来执行,每个单元(即,图像信息获取单元,高感光度低分辨率图像生成单元,分量分离单元,色彩分量噪声去除单元,缩放单元,亮度分量边缘提取单元,亮度分量噪声去除单元,亮度分量合成单元,图像信息合成单元,图像信息输出单元等)被加载并生成到主存储设备上。The image processing program to be executed on the digital camera according to the present embodiment has components including each element (image information acquisition unit, high-sensitivity low-resolution image generation unit, component separation unit, color component noise removal unit, scaling unit, brightness component edge extraction unit, luminance component noise removal unit, luminance component synthesis unit, image information synthesis unit, image information output unit, etc.) module structure. As actual hardware, as the CPU (processor) reads out the image processing program from the storage medium for execution, each unit (i.e., image information acquisition unit, high-sensitivity low-resolution image generation unit, component separation unit, color component noise removal unit, scaling unit, luminance component edge extraction unit, luminance component noise removal unit, luminance component synthesis unit, image information synthesis unit, image information output unit, etc.) are loaded and generated on the main storage device.

参考附图,说明第五实施例。首先,说明应用了本发明的图像处理装置的结构示例。图25是根据第五实施例的图像处理装置500的结构的框图。Referring to the drawings, a fifth embodiment will be described. First, a configuration example of an image processing apparatus to which the present invention is applied will be described. FIG. 25 is a block diagram of the structure of an image processing apparatus 500 according to the fifth embodiment.

根据本实施例的图像处理装置500包括图像信息获取单元501,分量转换单元517,分量分离单元402,色彩分量噪声去除单元406,缩放单元411,亮度分量噪声去除单元405,亮度分量边缘提取单元410,亮度分量合成单元416,图像信息合成单元407,分量转换单元518,成像条件获取单元303,以及图像信息输出单元309。这里,分量分离单元402,色彩分量噪声去除单元406,缩放单元411,亮度分量噪声去除单元405,亮度分量边缘提取单元410,亮度分量合成单元416,图像信息合成单元407的结构和功能类似于第四实施例中的那些单元。另外,成像条件获取单元303以及图像信息输出单元309结构和功能类似于第三实施例中的那些单元。因此,这里不再说明这些元件。The image processing apparatus 500 according to this embodiment includes an image information acquisition unit 501, a component conversion unit 517, a component separation unit 402, a color component noise removal unit 406, a scaling unit 411, a luminance component noise removal unit 405, and a luminance component edge extraction unit 410 , a luminance component synthesis unit 416 , an image information synthesis unit 407 , a component conversion unit 518 , an imaging condition acquisition unit 303 , and an image information output unit 309 . Here, the structure and function of the component separation unit 402, the color component noise removal unit 406, the scaling unit 411, the brightness component noise removal unit 405, the brightness component edge extraction unit 410, the brightness component synthesis unit 416, and the image information synthesis unit 407 are similar to those of the first Those units in the four embodiments. In addition, the imaging condition acquisition unit 303 and the image information output unit 309 are similar in structure and function to those in the third embodiment. Therefore, these elements will not be described here.

图像信息获取单元501获取存储在存储器中的高感光度低分辨率图像信息和低感光度高分辨率图像信息。通过将成像单元拍摄的图像信息的多个像素的像素值相加,以类似于第四实施例的方式生成高感光度低分辨率图像信息。在本实施例中,将诸如将它们在拍摄时的像素值相加的像素的数量的成像条件,增加到通过在拍摄时执行像素值相加处理生成的高感光度低分辨率图像信息中。例如,高感光度低分辨率图像信息存储在数字照相机的存储卡中。还有,存储添加了成像条件的拍摄图像信息(低感光度高分辨率图像信息)。例如,当图像信息为Exif格式时,添加到图像信息的成像条件包括制造商,型号编号,成像感光度,以及成像设备拍摄时将它们的像素值相加的像素的数量。这里,由于将像素值相加减小了高感光度低分辨率图像信息的图像尺寸,低感光度高分辨率图像信息的图像尺寸为常规尺寸。The image information acquisition unit 501 acquires high-sensitivity low-resolution image information and low-sensitivity high-resolution image information stored in the memory. High-sensitivity low-resolution image information is generated in a manner similar to the fourth embodiment by adding pixel values of a plurality of pixels of image information captured by an imaging unit. In this embodiment, imaging conditions such as the number of pixels whose pixel values at the time of shooting are added are added to high-sensitivity low-resolution image information generated by performing pixel value addition processing at the time of shooting. For example, high-sensitivity low-resolution image information is stored in a memory card of a digital camera. Also, captured image information (low-sensitivity high-resolution image information) to which imaging conditions are added is stored. For example, when the image information is in the Exif format, the imaging conditions added to the image information include the manufacturer, model number, imaging sensitivity, and the number of pixels whose pixel values are added when the imaging device shoots. Here, since adding the pixel values reduces the image size of the high-sensitivity low-resolution image information, the image size of the low-sensitivity high-resolution image information is a normal size.

分量转换单元517将RGB格式的图像信息转换为YCrCb格式的图像信息。分量转换单元518将YCrCb格式的图像信息转换为RGB格式的图像信息。The component conversion unit 517 converts the image information in the RGB format into the image information in the YCrCb format. The component conversion unit 518 converts the image information of the YCrCb format into the image information of the RGB format.

下面,说明上述配置的图像处理装置500的图像处理。图26是图像信息获取单元,分量转换单元,分量分离单元,色彩分量噪声去除单元,缩放单元,亮度分量噪声去除单元,亮度分量边缘提取单元,亮度分量合成单元,图像信息合成单元,以及图像信息输出单元进行的图像处理过程的流程图。Next, image processing by the image processing apparatus 500 configured as described above will be described. 26 is an image information acquisition unit, component conversion unit, component separation unit, color component noise removal unit, scaling unit, brightness component noise removal unit, brightness component edge extraction unit, brightness component synthesis unit, image information synthesis unit, and image information Flowchart of the image processing process performed by the output unit.

根据第五实施例的过程与图19描绘的流程图大致相似,因此仅说明不同的部分。对于步骤S2609到S2612,参考图19中的说明,这里不再说明这些步骤。The process according to the fifth embodiment is roughly similar to the flowchart depicted in FIG. 19 , so only different parts will be explained. For steps S2609 to S2612, refer to the description in FIG. 19 , and these steps will not be described here again.

首先,图像信息获取单元501从存储器中获取RGB格式的高感光度低分辨率图像信息(步骤S2601)。由于高感光度低分辨率图像信息包括成像条件,例如,也获得了拍摄时将它们的像素值相加的像素的数量。分量转换单元517将RGB格式的图像信息转换为YCrCb格式的图像信息(步骤S2602)。分量分离单元402将高感光度低分辨率图像信息分离为色彩信息(CrCb信号)和亮度信息(Y信号)(步骤S2603)。色彩分量噪声去除单元406从通过分离获得的色彩信息去除噪声(步骤S2604)。First, the image information obtaining unit 501 obtains high-sensitivity low-resolution image information in RGB format from the memory (step S2601 ). Since the high-sensitivity low-resolution image information includes imaging conditions, for example, the number of pixels whose pixel values are added at the time of shooting is also obtained. The component converting unit 517 converts the image information in RGB format into image information in YCrCb format (step S2602). The component separation unit 402 separates the high-sensitivity low-resolution image information into color information (CrCb signal) and luminance information (Y signal) (step S2603). The color component noise removing unit 406 removes noise from the color information obtained by the separation (step S2604).

缩放单元411使用作为成像条件获得的将它们的像素值相加的像素的数量,将去除了噪声的色彩信息缩放到原始尺寸(步骤S2605)。缩放单元411使用作为成像条件获得的将它们的像素值相加的像素的数量,将通过分离获得的亮度信息缩放到原始尺寸(步骤S2606)。由此,通过分离从通过将像素值相加生成的高感光度低分辨率图像信息获得的亮度信息和去除了噪声的色彩信息具有将像素值相加之前的原始图像尺寸。The scaling unit 411 scales the noise-removed color information to the original size using the number of pixels whose pixel values are added obtained as the imaging condition (step S2605 ). The scaling unit 411 scales the luminance information obtained by the separation to the original size using the number of pixels whose pixel values are added obtained as the imaging condition (step S2606 ). Thus, the noise-removed color information obtained by separating luminance information and color information obtained from high-sensitivity low-resolution image information generated by adding pixel values has the original image size before adding pixel values.

图像信息获取单元501从存储器中获取RGB格式的低感光度高分辨率图像信息(步骤S2607)。由于低感光度高分辨率图像信息包括成像条件,也获得了成像条件。分量转换单元517将RGB格式的图像信息转换为YCrCb格式的图像信息(步骤S2608)。对于步骤S2609到S2612,参考图19的说明。The image information acquisition unit 501 acquires low-sensitivity high-resolution image information in RGB format from the memory (step S2607). Since the low-sensitivity high-resolution image information includes imaging conditions, imaging conditions are also obtained. The component conversion unit 517 converts the image information in RGB format into image information in YCrCb format (step S2608). For steps S2609 to S2612, refer to the description of FIG. 19 .

图像信息合成单元407自通过分离获得并经过缩放的色彩信息的图像信息以及合成的亮度信息合成图像心思(步骤S2613)。分量转换单元518将YCrCb格式的图像信息转换为RGB格式的图像信息(步骤S2614)。图像信息输出单元309将经过转换的图像信息输出到存储介质或者打印机(步骤S2615)。这里,步骤S2607到S2611的处理可以与步骤S2601到S2606的处理同时进行。The image information synthesizing unit 407 synthesizes an image mind from the image information of the color information obtained by separation and scaled and the synthesized luminance information (step S2613). The component conversion unit 518 converts the image information of the YCrCb format into the image information of the RGB format (step S2614). The image information output unit 309 outputs the converted image information to a storage medium or a printer (step S2615). Here, the processing of steps S2607 to S2611 may be performed simultaneously with the processing of steps S2601 to S2606.

以这种方式,即使在图像处理装置中,从来自高感光度低分辨率图像信息的亮度信息,去除了噪声的色彩信息,来自高感光度低分辨率图像信息并去除了噪声的亮度信息,以及边缘信息合成图像信息。由此,即使当成像时曝光时间短也可以去除噪声,从而获取具有良好的色彩再现性和白平衡,并且具有图像的色彩和亮度之间出色的平衡的图像信息。In this way, even in the image processing apparatus, from luminance information from high-sensitivity low-resolution image information, noise-removed color information, from high-sensitivity low-resolution image information and noise-removed luminance information, and edge information to synthesize image information. Thereby, noise can be removed even when the exposure time is short when imaging, thereby obtaining image information having good color reproducibility and white balance, and having an excellent balance between color and brightness of an image.

根据第五实施例,从在拍摄时将像素值相加来生成高感光度低分辨率图像信息,并获得存储在存储器中的高感光度低分辨率图像信息和低感光度高分辨率图像信息开始说明了处理。替代地,如同第四实施例那样,一拍摄的图像信息段可以存储在存储器中,并且可以作为图像处理来进行将像素值相加的处理来生成高感光度低分辨率图像信息。还有替代地,可以通过成像单元拍摄两段图像信息,可以对这些图像信息段中的一段执行将像素值相加的处理,接着可以进行上述的图像处理。According to the fifth embodiment, high-sensitivity low-resolution image information is generated from adding pixel values at the time of shooting, and high-sensitivity low-resolution image information and low-sensitivity high-resolution image information stored in the memory are obtained We started to explain the processing. Alternatively, as in the fourth embodiment, a captured piece of image information may be stored in a memory, and a process of adding pixel values may be performed as image processing to generate high-sensitivity low-resolution image information. Still alternatively, two pieces of image information may be captured by the imaging unit, and processing of adding pixel values may be performed on one of these pieces of image information, followed by the above-mentioned image processing.

描述根据本实施例的图像处理装置的硬件结构。由于图像处理装置的硬件结构类似于上述的图17中的那个结构,所以参考图17及其说明。The hardware configuration of the image processing apparatus according to the present embodiment is described. Since the hardware configuration of the image processing apparatus is similar to that in FIG. 17 described above, reference is made to FIG. 17 and its description.

在前面,尽管通过使用第一到第五实施例说明了本发明,可以对上述的实施例进行各种修改和改进。这里,可以自由地组合上述的第一到第五实施例中说明的结构和功能。In the foregoing, although the present invention has been described by using the first to fifth embodiments, various modifications and improvements can be made to the above-described embodiments. Here, the structures and functions described in the first to fifth embodiments described above can be freely combined.

如上所述,根据本发明的一个方面,组合预先提取的边缘信息来生成图像信息。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。As described above, according to an aspect of the present invention, edge information extracted in advance is combined to generate image information. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained.

此外,根据本发明的另一个方面,通过常规滤波处理提取边缘信息。因此,可以实现这样的效果,即,可以容易地进行边缘提取处理。Furthermore, according to another aspect of the present invention, edge information is extracted through conventional filtering processing. Therefore, an effect can be achieved that edge extraction processing can be easily performed.

此外,根据本发明的还有另一个方面,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。Furthermore, according to still another aspect of the present invention, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained.

此外,根据本发明的还有另一个方面,通过基于对应于成像条件的σ值和k值找到的滤波器提取边缘信息。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。Furthermore, according to still another aspect of the present invention, edge information is extracted by a filter found based on a value of σ and a value of k corresponding to imaging conditions. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained.

此外,根据本发明的还有另一个方面,通过对应于成像条件的滤波器提取边缘信息。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。Furthermore, according to still another aspect of the present invention, edge information is extracted through a filter corresponding to imaging conditions. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained.

更进一步,根据本发明的还有另一个方面,可以进行适合于图像质量等级的边缘提取。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。Furthermore, according to still another aspect of the present invention, edge extraction suitable for the image quality level can be performed. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained.

此外,根据本发明的还有另一个方面,可以进行适合于图像质量等级的边缘提取。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。Furthermore, according to yet another aspect of the present invention, edge extraction suitable for the image quality level can be performed. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained.

此外,根据本发明的还有另一个方面,可以进行适合于图像质量等级的边缘提取。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。Furthermore, according to yet another aspect of the present invention, edge extraction suitable for the image quality level can be performed. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained.

此外,根据本发明的还有另一个方面,在放大或者缩小亮度信息和色彩信息之后进行噪声去除处理。因此,可以实现这样的效果,即可以减少噪声去除处理的时间。Furthermore, according to still another aspect of the present invention, noise removal processing is performed after the brightness information and the color information are enlarged or reduced. Therefore, there can be achieved an effect that the time for noise removal processing can be reduced.

此外,根据本发明的还有另一个方面,增加图像信息的感光度。因此,可以实现这样的效果,即可以得到具有出色的色彩再现性和白平衡的高质量图像。In addition, according to still another aspect of the present invention, the sensitivity of image information is increased. Therefore, it is possible to achieve the effect that a high-quality image with excellent color reproduction and white balance can be obtained.

此外,根据本发明的还有另一个方面,从高感光度低分辨率色彩信息去除噪声。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。Furthermore, according to yet another aspect of the present invention, noise is removed from high-sensitivity low-resolution color information. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained.

此外,根据本发明的还有另一个方面,组合之前提取的边缘信息来生成图像信息。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。Furthermore, according to yet another aspect of the present invention, the previously extracted edge information is combined to generate image information. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained.

此外,根据本发明的还有另一个方面,可以改进成像的图像信息的感光度。因此,可以实现这样的效果,即可以得到具有出色的色彩再现性和白平衡的高质量图像。Furthermore, according to still another aspect of the present invention, the sensitivity of imaged image information can be improved. Therefore, it is possible to achieve the effect that a high-quality image with excellent color reproduction and white balance can be obtained.

此外,根据本发明的还有另一个方面,组合之前提取的边缘信息来生成图像信息。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。Furthermore, according to yet another aspect of the present invention, the previously extracted edge information is combined to generate image information. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained.

此外,根据本发明的还有另一个方面,组合之前提取的边缘信息来生成图像信息。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。同时,在放大或者缩小亮度信息和色彩信息之后进行噪声去除处理。因此,可以实现这样的效果,即可以减少噪声去除处理的时间。Furthermore, according to yet another aspect of the present invention, the previously extracted edge information is combined to generate image information. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained. Meanwhile, noise removal processing is performed after enlarging or reducing brightness information and color information. Therefore, there can be achieved an effect that the time for noise removal processing can be reduced.

此外,根据本发明的还有另一个方面,可以改进成像的图像信息的感光度。因此,可以实现这样的效果,即可以得到具有出色的色彩再现性和白平衡的高质量图像。Furthermore, according to still another aspect of the present invention, the sensitivity of imaged image information can be improved. Therefore, it is possible to achieve the effect that a high-quality image with excellent color reproduction and white balance can be obtained.

此外,根据本发明的还有另一个方面,组合之前提取的边缘信息来生成图像信息。因此,可以实现这样的效果,即可以获得具有高质量和较少边缘模糊化的图像。同时,在放大或者缩小亮度信息和色彩信息之后进行噪声去除处理。因此,可以实现这样的效果,即可以减少噪声去除处理的时间。更进一步,可以改进成像的图像信息的感光度。因此,可以实现这样的效果,即可以得到具有出色的色彩再现性和白平衡的高质量图像。Furthermore, according to yet another aspect of the present invention, the previously extracted edge information is combined to generate image information. Therefore, it is possible to achieve the effect that an image with high quality and less edge blurring can be obtained. Meanwhile, noise removal processing is performed after enlarging or reducing brightness information and color information. Therefore, there can be achieved an effect that the time for noise removal processing can be reduced. Still further, the sensitivity of imaged image information can be improved. Therefore, it is possible to achieve the effect that a high-quality image with excellent color reproduction and white balance can be obtained.

当结合附图考虑,通过阅读本发明当前优选实施例的下列详细描述,将更好地理解本发明的上述和其他目标,特征,优点和技术和工业重要性。The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in conjunction with the accompanying drawings.

Claims (10)

1. An image processing apparatus, comprising:
an image information acquisition unit (101) for acquiring image information;
an image component separation unit (102) for separating the image information acquired by the image information acquisition unit (101) into luminance information and color information;
an imaging condition acquisition unit (103) for acquiring an imaging condition corresponding to the image information from the temporary storage memory;
a filter determination unit (104) for determining an edge extraction filter and a noise removal filter corresponding to the imaging conditions;
an edge extraction unit (110) for extracting edge information from the luminance information separated by the image component separation unit (102) using the edge extraction filter determined by the filter determination unit (104) and a k value representing the intensity of edge enhancement;
a luminance noise removing unit (105) for removing noise from the luminance information separated by the image component separating unit (102) using the noise removing filter determined by the filter determining unit (104);
a color noise removing unit (106) for removing noise from the color information separated by the image component separating unit (102) using the noise removing filter determined by the filter determining unit (104); and
an image information synthesizing unit (107) for synthesizing image information based on the edge information extracted by the edge extracting unit (110), the luminance information from which noise is removed by the luminance noise removing unit (105), and the color information from which noise is removed by the color noise removing unit (106).
2. The image processing apparatus according to claim 1, further comprising:
a filter size storage unit for storing imaging conditions indicating an imaging state at the time of imaging of the image information and a size of the filter in association with each other; wherein,
a filter determination unit (104) specifies the size of the filter associated with the imaging condition acquired by the imaging condition acquisition unit (103) from a filter size storage unit (120) to determine the filter.
3. The image processing apparatus according to claim 2, further comprising:
a parameter storage unit (130) for storing an imaging condition indicating an imaging state when image information is imaged, in association with a sigma value and a k value representing an intensity of edge enhancement, which are parameters in a Gaussian Laplace function, as parameters for determining a width of a filter,
a filter determination unit (104) specifies a sigma value and a k value associated with the imaging condition acquired by the imaging condition acquisition unit (103), and determines a filter based on a Gaussian Laplace function defined by the specified sigma value and k value.
4. The image processing apparatus according to claim 1, further comprising:
a filter storage unit for storing an imaging condition indicating an imaging state at the time of imaging the image information and a filter extracting an edge in association with each other; wherein,
a filter determination unit (104) determines a filter associated with the imaging condition acquired by the imaging condition acquisition unit (103).
5. The image processing apparatus according to any one of claims 2 to 4, wherein the imaging condition includes at least one of an exposure time, a temperature at the time of imaging, and an imaging sensitivity.
6. The image processing apparatus according to any one of claims 2 to 4, further comprising:
a scaling unit (211) for scaling the luminance information and the color information obtained by the separation by the image component separation unit (102), wherein,
a luminance noise removal unit (105) removes noise from the luminance information scaled by the scaling unit (211); and is
A color noise removal unit (106) removes noise from the color information scaled by the scaling unit (211).
7. The image processing apparatus according to claim 5, further comprising:
a scaling unit (211) for scaling the luminance information and the color information obtained by the separation by the image component separation unit (102), wherein,
a luminance noise removal unit (105) removes noise from the luminance information scaled by the scaling unit (211); and is
A color noise removal unit (106) removes noise from the color information scaled by the scaling unit (211).
8. An imaging device, comprising:
an imaging unit for capturing an image of a target and outputting image information of the target; and
the image processing apparatus according to any one of claims 1 to 7, wherein
An image information acquisition unit (101) acquires image information from an imaging unit.
9. An image processing method, comprising:
acquiring image information;
separating the acquired image information into luminance information and color information;
acquiring an imaging condition corresponding to the image information from the temporary storage memory;
determining an edge extraction filter and a noise removal filter corresponding to the imaging conditions;
extracting edge information from the separated luminance information using the determined edge extraction filter and a k value representing the intensity of the edge enhancement;
luminance noise removal including removing noise from the separated luminance information using the determined noise removal filter;
color noise removal including removing noise from the separated color information using the determined noise removal filter; and
image information is generated based on the extracted edge information, the luminance information from which the noise is removed, and the color information from which the noise is removed.
10. An image processing method, comprising:
acquiring image information;
separating the acquired image information into luminance information and color information;
acquiring an imaging condition corresponding to the image information from the temporary storage memory;
determining an edge extraction filter and a noise removal filter corresponding to the imaging conditions;
extracting edge information from the separated luminance information using the determined edge extraction filter and a k value representing the intensity of the edge enhancement;
scaling the separated luminance information and color information;
luminance noise removal including removing noise from the scaled luminance information using the determined noise removal filter;
color noise removal including removing noise from the scaled color information using the determined noise removal filter; and is
Image information is generated based on the extracted edge information, the luminance information from which the noise is removed, and the color information from which the noise is removed.
CNB2007101397583A 2006-07-31 2007-07-30 Image processing apparatus, imaging device and image processing method Active CN100550996C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006208063 2006-07-31
JP2006208063 2006-07-31
JP2007034532 2007-02-15

Publications (2)

Publication Number Publication Date
CN101119448A CN101119448A (en) 2008-02-06
CN100550996C true CN100550996C (en) 2009-10-14

Family

ID=39055354

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101397583A Active CN100550996C (en) 2006-07-31 2007-07-30 Image processing apparatus, imaging device and image processing method

Country Status (1)

Country Link
CN (1) CN100550996C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102907082A (en) * 2010-05-21 2013-01-30 松下电器产业株式会社 Camera device, image processing device, image processing method, and image processing program

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742086B (en) * 2008-11-07 2013-05-15 联咏科技股份有限公司 Image Noise Removal Method
KR101574733B1 (en) * 2008-11-19 2015-12-04 삼성전자 주식회사 Image processing apparatus for obtaining high-definition color image and method therof
JP5430379B2 (en) * 2009-02-03 2014-02-26 キヤノン株式会社 Imaging apparatus, control method thereof, and program
CN101742052A (en) * 2009-12-02 2010-06-16 北京中星微电子有限公司 Method and device for suppressing pseudo color based on edge detection
JP5882576B2 (en) * 2010-12-01 2016-03-09 キヤノン株式会社 Image processing apparatus, image processing apparatus control method, and program
TW201336303A (en) * 2012-02-24 2013-09-01 Htc Corp Image capture system and image processing method applied to an image capture system
CN103067661B (en) * 2013-01-07 2017-12-05 华为终端有限公司 Image processing method, device and camera terminal
CN103152524B (en) * 2013-03-05 2016-04-06 东莞宇龙通信科技有限公司 Camera arrangement and continuous shooting method thereof
US9876966B2 (en) 2013-10-18 2018-01-23 Pixart Imaging Inc. System and method for determining image variation tendency and controlling image resolution
CN104580943B (en) * 2013-10-28 2019-10-18 原相科技股份有限公司 Image sensing system and method and eyeball tracking system and method
CN104252698B (en) * 2014-06-25 2017-05-17 西南科技大学 Semi-inverse method-based rapid single image dehazing algorithm
EP3229468B1 (en) 2015-01-13 2020-03-18 Sony Corporation Image processing device, image processing method, program, and system
US10176554B2 (en) * 2015-10-05 2019-01-08 Google Llc Camera calibration using synthetic images
CN105306788B (en) * 2015-10-27 2018-05-15 广东欧珀移动通信有限公司 A kind of noise-reduction method and device of image of taking pictures
CN106846270B (en) * 2017-01-05 2020-02-14 浙江大华技术股份有限公司 Image edge enhancement method and device
CN107340956A (en) * 2017-07-11 2017-11-10 深圳传音通讯有限公司 The processing method and user terminal of noise in image
CN108550158B (en) * 2018-04-16 2021-12-17 Tcl华星光电技术有限公司 Image edge processing method, electronic device and computer readable storage medium
JP7167615B2 (en) * 2018-10-05 2022-11-09 コニカミノルタ株式会社 IMAGE INSPECTION APPARATUS, IMAGE INSPECTION METHOD AND IMAGE INSPECTION PROGRAM
CN109785649B (en) * 2019-03-04 2020-10-30 嵊州市雾非雾机械设备商行 Dynamic big data updating device for traffic intersection
CN112085679B (en) * 2020-09-08 2022-03-22 眸芯科技(上海)有限公司 Width-adjusted edge enhancement processing method and application
CN116389898B (en) * 2023-02-27 2024-03-19 荣耀终端有限公司 Image processing methods, equipment and storage media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102907082A (en) * 2010-05-21 2013-01-30 松下电器产业株式会社 Camera device, image processing device, image processing method, and image processing program
CN102907082B (en) * 2010-05-21 2016-05-18 松下电器(美国)知识产权公司 Camera head, image processing apparatus, image processing method

Also Published As

Publication number Publication date
CN101119448A (en) 2008-02-06

Similar Documents

Publication Publication Date Title
CN100550996C (en) Image processing apparatus, imaging device and image processing method
EP1885136B1 (en) Imaging processing apparatus, imaging apparatus, image processing method, and computer program product
CN100512377C (en) Image processing apparatus and image processing method
EP2399397B1 (en) Image processing apparatus, image pickup apparatus, image processing method, and computer program
Andriani et al. Beyond the Kodak image set: A new reference set of color image sequences
JP2004128985A (en) Imaging system, playback system, imaging program, playback program
JP4433883B2 (en) White balance correction device, white balance correction method, program, and electronic camera device
EP2214136B1 (en) Method and program for controlling image capture apparatus
JP5589660B2 (en) Image processing apparatus, imaging apparatus, and image processing program
JP2005115598A (en) Image processing method and apparatus
JP2004246644A (en) Image processing apparatus, image processing method, and image processing program
JP6415063B2 (en) Image processing apparatus, image processing method, control program, and recording medium
JP6786273B2 (en) Image processing equipment, image processing methods, and programs
JP5181913B2 (en) Image processing apparatus, imaging apparatus, image processing method, and program
JP2001292325A (en) Edge enhancement device, edge enhancement method, and recording medium
EP1887783B1 (en) Image processing method and image processing apparatus
JP2005182232A (en) Luminance correction apparatus and luminance correction method
JP4087807B2 (en) Image processing method, apparatus, and program
JP4687750B2 (en) Digital camera and image signal processing storage medium
KR101595888B1 (en) A photographing apparatus, a control method of the photographing apparatus, and a recording medium storing a program for executing the control method
JP5315634B2 (en) Image processing apparatus and image processing method
US20240114251A1 (en) Server device and program
JP2009122759A (en) Image processor, image processing method, and program
JP2007164628A (en) Image processing device and method
JP2010021833A (en) Image processing apparatus and image processing program

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant