CN100348743C - Process controlling quenching cooling speed by regulating pulse itt duty ratio - Google Patents
Process controlling quenching cooling speed by regulating pulse itt duty ratio Download PDFInfo
- Publication number
- CN100348743C CN100348743C CNB2006100276375A CN200610027637A CN100348743C CN 100348743 C CN100348743 C CN 100348743C CN B2006100276375 A CNB2006100276375 A CN B2006100276375A CN 200610027637 A CN200610027637 A CN 200610027637A CN 100348743 C CN100348743 C CN 100348743C
- Authority
- CN
- China
- Prior art keywords
- quenching
- pulse
- water
- cooling
- cooling rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 103
- 238000010791 quenching Methods 0.000 title claims abstract description 63
- 230000000171 quenching effect Effects 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000001105 regulatory effect Effects 0.000 title claims abstract 6
- 230000001276 controlling effect Effects 0.000 title claims abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 62
- 238000005507 spraying Methods 0.000 claims abstract description 25
- 239000007921 spray Substances 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 238000005261 decarburization Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 238000010301 surface-oxidation reaction Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Landscapes
- Heat Treatment Of Articles (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Abstract
Description
技术领域technical field
本发明涉及的是一种热处理技术领域的控制淬火的方法,特别是一种调节脉冲喷射的占空比控制淬火冷却速度的方法。The invention relates to a method for controlling quenching in the technical field of heat treatment, in particular to a method for controlling the quenching cooling rate by adjusting the duty ratio of pulse injection.
背景技术Background technique
长期以来,热处理工作者在对零件进行淬火时,为了获得理想的冷却曲线,以保证淬火后的零件质量,曾经采用多种具有不同冷却速度的淬火冷却介质(如以水的冷却速率为1,其他几种冷却介质的冷却速率依次为:空气0.05~0.08,油0.35,快速冷却油0.5,强烈搅拌水2,盐水2)和冷却方法,但都有不足之处。如采用水为冷却介质,高温时具有较好的冷却能力,在马氏体转变的300~100℃范围内,水的冷却速度较快,因而容易使淬火零件引起变形和开裂;矿物油作为淬火冷却介质,冷却速度缓慢,零件的变形、开裂倾向小,但对低淬透性钢制成的零件或是截面厚度较大的零件,淬火时过冷奥氏体易发生珠光体转变。油作为淬火冷却介质,环境污染严重。曾有许多研究和实践探索,如在水中添加一定比例的NaCl或Na(OH),或在油中加入某些添加剂,或配制聚合物水溶液等作为淬火冷却介质,或采用双介质冷却、喷水或间歇浸水冷却等淬火方法,虽然可以改善冷却性能,但因单一冷却介质的冷却速度是不可调节的,即使采用双介质或多介质进行冷却,其冷却速度的调节范围是有限的,要通过现有的冷却方法获得理想的冷却曲线难度很大。For a long time, heat treatment workers have used a variety of quenching cooling media with different cooling rates in order to obtain an ideal cooling curve to ensure the quality of the quenched parts when quenching the parts (for example, the cooling rate of water is 1, The cooling rates of several other cooling media are as follows: air 0.05~0.08, oil 0.35, rapid cooling oil 0.5, strong stirring water 2, brine 2) and cooling methods, but there are deficiencies. If water is used as the cooling medium, it has better cooling ability at high temperature. In the range of 300~100°C of martensitic transformation, the cooling speed of water is faster, so it is easy to cause deformation and cracking of quenched parts; mineral oil is used as quenching Cooling medium, the cooling speed is slow, the deformation and cracking tendency of the parts are small, but for the parts made of low hardenability steel or the parts with large cross-section thickness, the supercooled austenite is prone to pearlite transformation during quenching. Oil is used as a quenching cooling medium, causing serious environmental pollution. There have been many researches and practical explorations, such as adding a certain proportion of NaCl or Na(OH) to water, or adding certain additives to oil, or preparing polymer aqueous solution as a quenching cooling medium, or using dual-medium cooling, water spraying Quenching methods such as intermittent immersion cooling can improve cooling performance, but the cooling rate of a single cooling medium cannot be adjusted. Even if dual-medium or multi-media cooling is used, the adjustment range of the cooling rate is limited. Some cooling methods are very difficult to obtain the ideal cooling curve.
理想的淬火冷却曲线如图1所示。在TTT曲线“鼻子”以上温度较慢冷却,以减少因急剧冷却所产生的热应力使零件变形;为了避免过冷奥氏体发生珠光体转变,在TTT曲线“鼻子”附近必须以足够快的速度冷却;在进行马氏体转变时(Ms点附近温度),冷却速度应小些,以减少组织转变应力。大量研究和试验早已证实,不同的钢材TTT曲线是不同的,而且具体零件的冷却速度随着尺寸的变化而变化,因而各种零件在淬火冷却过程中为避免发生珠光体转变所需要的足够快的冷却速度是不同的。The ideal quenching cooling curve is shown in Figure 1. The temperature above the "nose" of the TTT curve is cooled slowly to reduce the deformation of the part due to the thermal stress caused by rapid cooling; in order to avoid the pearlite transformation of the supercooled austenite, the temperature must be fast enough near the "nose" of the TTT curve Speed cooling; during martensitic transformation (temperature near the Ms point), the cooling speed should be smaller to reduce the transformation stress of the structure. A large number of studies and experiments have already confirmed that the TTT curves of different steels are different, and the cooling speed of specific parts changes with the change of size, so various parts need to be fast enough to avoid pearlite transformation during quenching and cooling. The cooling rate is different.
经对现有技术文献的检索发现,“大型锻件材料及热处理”(康大韬、叶国斌主编,龙门书局出版.1998)P195倒10行“1.水空间隙冷却”一节中,提出对截面较大(直径大于300mm),合金含量较高的锻件采用空冷和水冷(水浸)交替的淬火方法,这种方法由于每次水浸和空冷的持续时间长,零件表面温度波动大,冷却速度可调性差,操作也困难,很难获得理想的冷却曲线。而且,这种淬火冷却方法仅适合于合金含量较高的大截面锻件,使用范围狭窄。After searching the existing technical documents, it is found that in the section "1. Water-air gap cooling" in "Large forging materials and heat treatment" (Edited by Kang Datao and Ye Guobin, published by Longmen Bookstore. 1998) P195, it is proposed that the larger section (diameter greater than 300mm), the forgings with high alloy content adopt the alternate quenching method of air cooling and water cooling (water immersion). This method has a long duration of water immersion and air cooling, and the surface temperature of the parts fluctuates greatly, and the cooling speed can be adjusted. The performance is poor, the operation is also difficult, and it is difficult to obtain an ideal cooling curve. Moreover, this quenching and cooling method is only suitable for large-section forgings with high alloy content, and its application range is narrow.
发明内容Contents of the invention
本发明的目的在于克服现有技术中的不足,提供一种调节脉冲喷射的占空比控制淬火冷却速度的方法。使其通过脉冲喷射的方法,获得理想的冷却速度,保证了零件的淬火质量,并实现零件淬火控制自动化,消除环境污染。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a method for controlling the quenching cooling rate by adjusting the duty ratio of the pulse injection. Through the method of pulse spraying, the ideal cooling rate can be obtained, the quenching quality of the parts can be guaranteed, the quenching control automation of the parts can be realized, and the environmental pollution can be eliminated.
本发明是通过以下技术方案实现的,本发明的方法步骤具体如下:The present invention is achieved through the following technical solutions, and the method steps of the present invention are specifically as follows:
1、在喷射装置的喷水管路的淬火零件周围安装喷水器,喷水器采用脉冲喷射法对淬火零件喷水,每次脉冲周期选择在1-20秒范围内;1. Install a water sprayer around the quenching parts of the water spraying pipeline of the spraying device. The water sprayer uses the pulse jet method to spray water on the quenching parts, and the pulse period of each pulse is selected within the range of 1-20 seconds;
所述的脉冲喷射法,是指以2-6大气压力的水按预先设定的喷水与不喷水时间对淬火零件进行脉冲喷射,以获得所需要的冷却速度。The pulse spraying method refers to pulse spraying the quenched parts with water at a pressure of 2-6 atmospheres according to the preset water spraying and non-spraying time, so as to obtain the required cooling rate.
所述的脉冲周期,是指喷水冷却时间t1及相继不喷水的时间t2之和。The pulse period refers to the sum of the water spray cooling time t 1 and the consecutive non-water spray time t 2 .
2、在一个脉冲周期内调节占空比K,K=t1/(t1+t2),实现冷却速度在最大冷速与最小冷速范围内可调;2. Adjust the duty ratio K within a pulse period, K=t 1 /(t 1 +t 2 ), to realize the adjustable cooling speed between the maximum cooling speed and the minimum cooling speed;
所述的占空比,是指在一个脉冲喷射周期内,喷水冷却时间在该脉冲周期内所占的比例。The above-mentioned duty ratio refers to the proportion of water spray cooling time in a pulse injection period in the pulse period.
所述的最大冷速,是指水淬冷速的3倍。The maximum cooling rate mentioned refers to 3 times of the water quenching cooling rate.
所述的最小冷速,是指油淬冷速的四分之一。The minimum cooling rate mentioned refers to a quarter of the oil quenching cooling rate.
3、通过调节在淬火过程中不同时刻的占空比在不同的冷却阶段获得的冷却速度,实现保证零件的淬火质量的理想的冷却曲线,为实现自动化操作创造了必要条件。3. By adjusting the cooling rate obtained in different cooling stages by adjusting the duty cycle at different times during the quenching process, an ideal cooling curve that ensures the quenching quality of the parts is achieved, creating the necessary conditions for automatic operation.
假设在一个脉冲周期内,全部采用喷水冷却,则该脉冲周期内K等于1;若喷水时间为0,则K等于0。占空比可以在0~1范围内调节,也就是说,在一个微小的脉冲间隙周期内调整t1和t2,使该周期内零件表面的平均换热系数在喷射水的换热系数与空气的换热系数之间变化,冷却速度也随之改变。Assuming that water spray cooling is used for all within a pulse period, K is equal to 1 in this pulse period; if the water spray time is 0, K is equal to 0. The duty cycle can be adjusted in the range of 0~1, that is to say, adjust t 1 and t 2 in a tiny pulse gap cycle, so that the average heat transfer coefficient of the part surface in this cycle is between the heat transfer coefficient of sprayed water and As the heat transfer coefficient of the air changes, the cooling rate also changes accordingly.
所述的淬火零件,是分级淬火零件或等温淬火零件时,当表面冷却到分级或等温温度时立即调节占空比,使其表面温度保持在±15℃温度范围内上下波动,待内部温度继续下降,直到占空比为0,而表面温度仍继续下降时,将其转入空气加热等温炉或流态床内。When the quenched parts mentioned above are graded quenched parts or isothermally quenched parts, when the surface is cooled to the graded or isothermal temperature, the duty ratio is adjusted immediately so that the surface temperature fluctuates up and down within the temperature range of ±15°C, and when the internal temperature continues to Decrease until the duty cycle is 0, and when the surface temperature continues to drop, transfer it to an air-heated isothermal furnace or a fluidized bed.
所述的淬火零件,当淬火零件≤20mm时,由于零件表面冷却到等温或分级温度时,心部温度已接近于表面温度,将它直接转入空气加热等温炉或流态床内进行等温处理。As for the quenched part, when the quenched part is less than or equal to 20 mm, since the surface of the part is cooled to the isothermal or graded temperature, the core temperature is close to the surface temperature, so it is directly transferred to an air-heated isothermal furnace or a fluidized bed for isothermal treatment .
所述的对淬火零件进行脉冲喷射,在喷射装置的喷水管路截止阀与喷水出口之间安装一个高压空气阀,当喷水指令停止时,高压空气阀瞬间打开,将余水吹掉,喷水立即停止,保证准确控制占空比。For the pulse spraying of the quenched parts, a high-pressure air valve is installed between the water spray line shut-off valve and the water spray outlet of the spray device. When the water spray command stops, the high-pressure air valve opens instantly to blow off the remaining water. , the water spray stops immediately to ensure accurate control of the duty cycle.
将整个喷射冷却装置安装在密封的容器内,并向容器内通入氮或氮与氨分解气的混合气体作保护气体,减少零件在淬火过程中表面氧化或脱碳,提高淬火质量。Install the entire spray cooling device in a sealed container, and pass nitrogen or a mixture of nitrogen and ammonia decomposition gas into the container as a protective gas to reduce surface oxidation or decarburization of parts during the quenching process and improve quenching quality.
根据理想冷却曲线的要求采用“试错法”或计算机模拟方法确定被处理零件在不同冷却阶段的占空比,从而获得最佳的淬火质量。According to the requirements of the ideal cooling curve, the "trial and error" or computer simulation method is used to determine the duty cycle of the processed parts in different cooling stages, so as to obtain the best quenching quality.
本发明具有实质性的技术进步,与现有淬火冷却技术相比本发明通过采用脉冲喷射的方法,调节脉冲周期内的占空比,使该周期内零件表面的平均换热系数在喷水的换热系数与空冷的换热系数之间变化,以获得理想的冷却速度。占空比可以在1~0之间变化,也就是可以在最强的冷却能力与最弱的冷却能力之间调节,这样可以根据零件的理想冷却曲线所要求的冷却速度选择相应的占空比,克服目前常用淬火介质的不足,保证了零件的淬火质量。采用脉冲喷射淬火法,可以通过采用计算机模拟方法确定占空比,并实现零件淬火控制自动化。采用脉冲喷射淬火法还可以消除环境污染。The present invention has substantial technical progress. Compared with the existing quenching and cooling technology, the present invention adjusts the duty cycle in the pulse cycle by adopting the method of pulse spraying, so that the average heat transfer coefficient of the surface of the part in this cycle is within the range of water spraying. The heat transfer coefficient varies between that of air cooling to obtain the desired cooling rate. The duty cycle can be changed between 1 and 0, that is, it can be adjusted between the strongest cooling capacity and the weakest cooling capacity, so that the corresponding duty cycle can be selected according to the cooling rate required by the ideal cooling curve of the part , to overcome the lack of commonly used quenching medium, to ensure the quenching quality of parts. Using the pulse jet quenching method, the duty cycle can be determined by using computer simulation methods, and the quenching control automation of parts can be realized. The use of pulse jet quenching can also eliminate environmental pollution.
附图说明Description of drawings
图1几种不同淬火冷却曲线和TTT曲线示意图Figure 1 Schematic diagram of several different quenching cooling curves and TTT curves
图2本发明在不同占空比的情况下零件表面的冷却速度曲线示意图Fig. 2 is a schematic diagram of the cooling rate curve of the surface of the part under different duty ratios in the present invention
图3本发明零件冷却后获得的曲线形状示意图The schematic diagram of the curve shape obtained after the parts of the present invention are cooled
图4实施例安装高压空气阀的喷水器示意图Fig. 4 embodiment installs the sprinkler schematic diagram of high-pressure air valve
具体实施方式Detailed ways
本发明在采用脉冲喷射冷却法在不同占空比的情况下零件表面的获得的冷却速度曲线如图2,图中K值较小时,曲线平缓下降,K值较大时,曲线的坡度变得陡峭。由此可知,我们只要将占空比K值在0~1之间进行任意调节,就能得到所需要的冷却速度,克服了采用一种或几种冷却介质仅能在有限范围内调节冷却速度的局限性。图2表明,脉冲喷射淬火时工件表面的冷却曲线带锯齿状,但随着脉冲周期(t1+t2)的缩短,锯齿状得到改善,曲线趋向于光滑。零件在表层冷却过程中内层的热量连续不断传向表层,内层温度也相应随着变化,但愈向内温度变化愈缓慢,内层的冷却曲线形状应比表层的更显连续光滑,如图3所示。The present invention adopts the cooling rate curve obtained on the part surface under the situation of different duty ratios by the pulse jet cooling method as shown in Figure 2. When the K value in the figure is small, the curve declines gently, and when the K value is large, the slope of the curve becomes steep. It can be seen that as long as we adjust the duty cycle K value between 0 and 1, we can get the required cooling rate, which overcomes the problem that the cooling rate can only be adjusted within a limited range by using one or several cooling media. limitations. Figure 2 shows that the cooling curve of the workpiece surface is jagged during pulse jet quenching, but as the pulse period (t 1 +t 2 ) shortens, the jaggedness is improved and the curve tends to be smooth. During the cooling process of the surface layer, the heat of the inner layer is continuously transferred to the surface layer, and the temperature of the inner layer also changes accordingly, but the temperature changes slowly as it goes inward, and the shape of the cooling curve of the inner layer should be more continuous and smooth than that of the surface layer, as shown in Figure 3 shows.
实施例一Embodiment one
零件名称:轴Part Name: Shaft
材料:40Gr,尺寸:Φ20×200mm;Material: 40Gr, size: Φ20×200mm;
热处理技术要求:硬度:HRC 56~58;Heat treatment technical requirements: Hardness: HRC 56~58;
淬火工艺Quenching process
加热温度:840℃±5;Heating temperature: 840℃±5;
冷却方法:脉冲喷射淬火法;Cooling method: pulse jet quenching method;
喷水压:5~6大气压,脉冲周期:1秒,占空比:0.15;Spray water pressure: 5-6 atmospheres, pulse period: 1 second, duty cycle: 0.15;
质量检查符合技术要求。Quality checks meet technical requirements.
实施例二Embodiment two
零件名称:圆环Part Name: Ring
材料:Gr15,尺寸:外径280mm、内径250mm、高100mm;Material: Gr15, size: outer diameter 280mm, inner diameter 250mm, height 100mm;
热处理技术要求:硬度:HRC 58~62,变形:椭圆度≤±0.5mm;Heat treatment technical requirements: hardness: HRC 58~62, deformation: ellipticity ≤ ± 0.5mm;
淬火工艺Quenching process
加热温度:860℃±5;Heating temperature: 860℃±5;
冷却方法:脉冲喷射淬火法(在密封装置内采用N2或N2+5%NH3分解气为防止零件氧化的保护气体);Cooling method: pulse jet quenching method (N2 or N2+5%NH3 decomposition gas is used as the protective gas to prevent oxidation of parts in the sealing device);
喷水压:3~4大气压,脉冲周期:2秒;Water spray pressure: 3 to 4 atmospheres, pulse period: 2 seconds;
800℃~700℃ K 0.1,700℃~400℃ K 0.6,400℃~300℃ K 0.25,300℃转入流态床或空气炉;800℃~700℃ K 0.1, 700℃~400℃ K 0.6, 400℃~300℃ K 0.25, 300℃ transfer to fluidized bed or air furnace;
质量检查符合技术要求。Quality checks meet technical requirements.
实施例三Embodiment Three
零件名称:轧辊Part Name: Roller
材料:9Gr2Mo,尺寸:直径360mm,长:700mm;Material: 9Gr2Mo, size: diameter 360mm, length: 700mm;
热处理技术要求:硬度:HRC 60~64,淬火后无裂纹:Heat treatment technical requirements: Hardness: HRC 60~64, no cracks after quenching:
淬火工艺Quenching process
加热温度:860℃±5;Heating temperature: 860℃±5;
冷却方法:脉冲喷射淬火法Cooling method: pulse jet quenching method
喷水压:2~3大气压;Spray water pressure: 2 to 3 atmospheres;
860℃~730℃脉冲周期:20秒K 0.1,730℃~680℃脉冲周期:5秒K 0.8;860℃~730℃ pulse period: 20 seconds K 0.1, 730℃~680℃ pulse period: 5 seconds K 0.8;
680℃~400℃脉冲周期:5秒K 0.95,400℃以下脉冲周期:5秒K 0.5;680℃~400℃ pulse period: 5 seconds K 0.95, pulse period below 400℃: 5 seconds K 0.5;
质量检查符合技术要求。Quality checks meet technical requirements.
在上述实施例的实际操作中,每次脉冲周期内喷水指令停止时,因喷嘴内剩余水的惯性作用,仍有部分流水喷出,影响占空比的精确控制。为了避免这种现象发生,可在喷水管路截止阀与喷水出口之间安装一个高压水的惯性作用,仍有部分流水喷出,影响占空比的精确控制。为了避免这种现象发生,可在喷水管路截止阀与喷水出口之间安装一个高压空气阀,当喷水指令停止时,高压空气阀瞬间打开,将余水吹掉,喷水立即停止,保证占空比的准确控制,提高冷却质量,如图4所示。In the actual operation of the above embodiment, when the water spray command stops in each pulse cycle, due to the inertia of the remaining water in the nozzle, part of the water is still sprayed out, which affects the precise control of the duty cycle. In order to avoid this phenomenon, a high-pressure water inertia effect can be installed between the water spray pipeline shut-off valve and the water spray outlet, and part of the water will still be sprayed out, which will affect the precise control of the duty cycle. In order to avoid this phenomenon, a high-pressure air valve can be installed between the shut-off valve of the water spray pipeline and the water spray outlet. When the water spray instruction stops, the high-pressure air valve will open instantly to blow off the remaining water, and the water spray will stop immediately. , to ensure accurate control of the duty cycle and improve cooling quality, as shown in Figure 4.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100276375A CN100348743C (en) | 2006-06-13 | 2006-06-13 | Process controlling quenching cooling speed by regulating pulse itt duty ratio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100276375A CN100348743C (en) | 2006-06-13 | 2006-06-13 | Process controlling quenching cooling speed by regulating pulse itt duty ratio |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1861814A CN1861814A (en) | 2006-11-15 |
CN100348743C true CN100348743C (en) | 2007-11-14 |
Family
ID=37389341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100276375A Expired - Fee Related CN100348743C (en) | 2006-06-13 | 2006-06-13 | Process controlling quenching cooling speed by regulating pulse itt duty ratio |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100348743C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103382522B (en) * | 2013-07-01 | 2015-02-11 | 中钢集团邢台机械轧辊有限公司 | Method for controlling roller rotary spray quenching technology |
JP7350441B2 (en) * | 2019-10-21 | 2023-09-26 | 日本製鋼所M&E株式会社 | Cooling method and cooling device for cooled components |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1168613A1 (en) * | 1981-05-07 | 1985-07-23 | Всесоюзный Научно-Исследовательский И Проектный Институт По Очистке Технологических Газов,Сточных Вод И Использованию Вторичных Энергоресурсов Предприятий Черной Металлургии | Method of cooling articles with water-air mixture |
CN85100774A (en) * | 1985-04-01 | 1986-08-20 | 首都钢铁公司 | Annular spray cooler |
US4902355A (en) * | 1987-08-31 | 1990-02-20 | Bohler Gesellschaft M.B.H. | Method of and a spray for manufacturing a titanium alloy |
JPH02294424A (en) * | 1989-05-10 | 1990-12-05 | Toyota Motor Corp | Method and apparatus for quenching casting |
CN2344411Y (en) * | 1998-07-16 | 1999-10-20 | 昆山太平洋精密机械有限公司 | Spray quenching equipment |
CN1605634A (en) * | 2004-11-18 | 2005-04-13 | 上海交通大学 | Multifunctional quenching experimental apparatus |
-
2006
- 2006-06-13 CN CNB2006100276375A patent/CN100348743C/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1168613A1 (en) * | 1981-05-07 | 1985-07-23 | Всесоюзный Научно-Исследовательский И Проектный Институт По Очистке Технологических Газов,Сточных Вод И Использованию Вторичных Энергоресурсов Предприятий Черной Металлургии | Method of cooling articles with water-air mixture |
CN85100774A (en) * | 1985-04-01 | 1986-08-20 | 首都钢铁公司 | Annular spray cooler |
US4902355A (en) * | 1987-08-31 | 1990-02-20 | Bohler Gesellschaft M.B.H. | Method of and a spray for manufacturing a titanium alloy |
JPH02294424A (en) * | 1989-05-10 | 1990-12-05 | Toyota Motor Corp | Method and apparatus for quenching casting |
CN2344411Y (en) * | 1998-07-16 | 1999-10-20 | 昆山太平洋精密机械有限公司 | Spray quenching equipment |
CN1605634A (en) * | 2004-11-18 | 2005-04-13 | 上海交通大学 | Multifunctional quenching experimental apparatus |
Non-Patent Citations (2)
Title |
---|
大型合金钢锻件"水-空"间歇冷却热处理工艺 马振忠.锻压机械,第5期 1998 * |
大型铸、锻钢件的间歇水冷淬火 孙中仁,李长林,丁雪,沈元兴.金属热处理,第29卷第6期 2004 * |
Also Published As
Publication number | Publication date |
---|---|
CN1861814A (en) | 2006-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1052435C (en) | Method for thermal surface treatment in a continuous casting machine and relative device | |
CN101260457A (en) | Multifunctional steel wire induction heating heat treatment equipment and method | |
EA022297B1 (en) | Method and device for heat treating rails | |
CN100348743C (en) | Process controlling quenching cooling speed by regulating pulse itt duty ratio | |
CN105543457A (en) | Quenching and cooling device, draw gear and machining technology of draw gear | |
CN100370038C (en) | Steel wire toughening treatment method and equipment | |
CN102399970B (en) | Heat treatment method for V150 steel grade drill rod welded seam | |
US6174389B1 (en) | Fixture and method for selectively quenching a predetermined area of a workpiece | |
CN102994890B (en) | A kind of valve body of anti-explosion valve castmethod | |
CN102979938B (en) | Casting method of valve body of check valve | |
CN202116602U (en) | Residual heat quenching cooling device | |
CN101824523B (en) | Cooling spray pipe with continuously adjustable jet width | |
CN104017956A (en) | Spraying and air cooling dual-purpose quenching device | |
CN203846074U (en) | Horizontal liquid nitrogen direct-injection type forged steel cold roller sub-zero treatment equipment | |
CN205954070U (en) | Saw blade air quenching device | |
CN106854691A (en) | Heat treatment process for steel parts, steel forging method and heat treatment device using the heat treatment process | |
CN102776343A (en) | Tunnel steel pipe quenching device and quenching method thereof | |
CN103409600B (en) | Workpiece quenching lathe and quenching method thereof | |
CN102747213B (en) | Cooling method for continuous heat treatment of high-strength steel | |
CN106498132B (en) | High-pressure gas quenching process for die | |
CN112961966A (en) | Heat treatment spray quenching device and control method | |
CN203002790U (en) | Turbulence water cooling device | |
CN103290181B (en) | Supersonic gas (fog) scanning quenching nozzle | |
CN108048626B (en) | Device and method for reducing laser quenching soft belt | |
CN1401795A (en) | Continuous staged or isothermal quenching cooling apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071114 Termination date: 20160613 |