[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN109357771B - 电动汽车电池温度自校正式检测方法 - Google Patents

电动汽车电池温度自校正式检测方法 Download PDF

Info

Publication number
CN109357771B
CN109357771B CN201811477266.XA CN201811477266A CN109357771B CN 109357771 B CN109357771 B CN 109357771B CN 201811477266 A CN201811477266 A CN 201811477266A CN 109357771 B CN109357771 B CN 109357771B
Authority
CN
China
Prior art keywords
value
temperature
picture
battery
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811477266.XA
Other languages
English (en)
Other versions
CN109357771A (zh
Inventor
刘文平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Dbk Corp Co ltd
Original Assignee
Jiangxi Dbk Corp Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Dbk Corp Co ltd filed Critical Jiangxi Dbk Corp Co ltd
Priority to CN201811477266.XA priority Critical patent/CN109357771B/zh
Publication of CN109357771A publication Critical patent/CN109357771A/zh
Application granted granted Critical
Publication of CN109357771B publication Critical patent/CN109357771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Radiation Pyrometers (AREA)

Abstract

为了更好地控制混合动力汽车的电池温度,本发明从红外温度检测的角度,提供了一种适用于混合动力汽车的电动汽车电池温度自校正式检测方法。该方法克服了现有技术中对混合动力汽车出现电池被分布式设置,尤其是电池被分布式地设置的四驱混合动力汽车上,燃料辅助驱动单元对电力辅助驱动单元的温度不具备实时性参考价值的问题,通过红外图像的数值化处理,得到了校正电池管理系统对电池控制的校正参数,提高了电池工作的稳定性和寿命。

Description

电动汽车电池温度自校正式检测方法
技术领域
本发明属于汽车电池控制技术领域,具体涉及一种电动汽车电池温度自校正式检测方法。
背景技术
目前,电动汽车的电池管理系统多数是以集中式结构配置在车辆的前部或尾部的。然而,随着电动汽车的发展,人们愈来愈意识到混合动力汽车相比电动汽车在节省能耗、驾驶便利性等方面的优势。对于目前广泛使用的混合动力汽车的驱动系统而言,均是设置了由燃料辅助驱动单元(通常为汽油发动机或柴油发动机)和由电力辅助的驱动单元(通常为蓄电池),二者配合工作而实现对混合动力汽车的驱动。
混合动力车辆加速或爬坡时要求电力辅助驱动单元进行大电流放电,减速或下坡时要对电力辅助驱动单元进行快速充电以实现制动能量回收,这就要求电力辅助驱动单元具有优良的高倍率快充快放特性和相当长的使用寿命。例如,申请号为CN201711441888.2的中国发明专利申请公开了一种基于超级电容和蓄电池并联的四驱混合动力系统,包括由发动机单元驱动的四驱传动系统和由电动机辅助驱动的后驱传动系统,所述后驱传动系统包括电动机驱动单元和配套设置的辅助电力驱动单元;所述辅助电力驱动单元包括并联设置的蓄电池单元和超级电容单元;所述蓄电池单元为所述电动机驱动单元提供电能;当车辆加速或爬坡时,所述超级电容单元放电以对所述电动机驱动单元提供辅助;当车辆减速或下坡时,所述电动机驱动单元为所述超级电容单元充电。
同时,目前使用的以蓄电池为主的电力辅助驱动单元中,在驱动汽车实现电池充电过程中,燃料辅助驱动单元的工作温度将会影响电池充电速度和工作状态。因此,为了确保汽车内电池的正常充电乃至放电,电池管理系统需要根据燃料辅助驱动单元的温度进行校正。现有技术中,校正过程通常采用温度传感器采集电池管理系统的温度和周围的温度,然而温度传感器具有即时性,而温度的传播具有一定延迟性,尤其是汽车处于一些工况(例如刚起步、长期低档慢速等等)时,燃料辅助驱动单元的温度将可能因为传导较慢而变化较慢,从而使燃料辅助驱动单元的温度采集过程需要受到周围环境温度的不断修正,这使得温度传感器在近似温度下的工作时间较长,容易造成温度传感器灵敏度下降。此外,汽车、发动机和电池所处环境的温度与发动机和电池的温度之间的热交换需要一定时间,通过温度传感器检测得到的温度值,哪怕是经过环境温度修正,也难以被与电池管理系统如何控制充电或放电等电池工作状态建立准确的、快速的模型。
另外,类似的问题也存在于四驱混合动力电动汽车。
发明内容
为了更好地控制混合动力汽车的电池温度(这里混合动力汽车出现电池被分布式设置,尤其是电池被分布式地设置的四驱混合动力汽车),本发明从红外温度检测的角度,提供了一种适用于混合动力汽车的电动汽车电池温度自校正式检测方法,包括:
(1)通过温度传感器在t1、t2、t3、t4、t5、t6、t7和t8时刻分别采集N个分布式设置的电池的检测参数集合,各集合分别对应各设置电池的位置,且各集合均包括:燃料辅助驱动单元的温度T1燃料、电池温度T1和环境温度T1,其中N为大于5的整数;
(2)在t1时刻到t8时刻期间,通过红外探测器拍摄并输出关于N个分布式设置的电池的燃料辅助驱动单元的温度T2燃料、电池温度T2的红外图片,从而得到N张红外图片;
(3)当温度T1燃料存在超过预设温度预警值时,基于检测参数集合和红外图片对电池的温度进行多点温度自校正式校正;
(4)根据校正结果对电池温度进行检测。
进一步地,所述步骤(3)包括:
(31)对N张所述红外图片分别进行代数化表示,从而得到N个校验值;
(32)计算N个所述位置在t1时刻到t8时刻期间的电池温度T1的几何平均数;
(33)根据N个校验值中的每一个一一对应地对N个几何平均值进行校正。
进一步地,步骤(31)中,对一张所述红外图片分别进行代数化表示,从而得到一个校验值包括:
归一化处理:对于某一个电池被设置的位置所对应的检测参数集合以及红外图片对应的燃料辅助驱动单元的温度T2燃料、电池温度T2,利用T1对T2燃料进行归一化处理;
数值化处理:对该张红外图片进行压缩转换,生成解析度至少在256*256像素尺寸的彩色图片Img,并构建具有不同灰度的蓝色图片Img2,该具有不同灰度的蓝色图片Img2为图片Img在不同灰度下的对应图片,所述蓝色图片Img2的灰度值g由彩色空间线性表示为:
g=αrIrgIgbIb
其中αr≥0,αg≥0,αb≥0,αrgb=1
式中αr,αg,αb为待定参数,Ir,Ig,Ib是图片Img的颜色通道值;
构建如下函数:
Figure BDA0001892471720000041
式中,x,y为像素点,l’为图片Img的所有像素的集合,gx,gy分别为x和y的灰度值,δx,y为图片Img转化为色彩模型空间的x,y像素点的欧几里得度量,p为gx,gy的算术平均数且当p的绝对值大于1时取p的倒数;
由像素点x,y和δx,y设置如下目标函数:
Figure BDA0001892471720000051
其中,Δgx,y=gx-gy,σ为尺度因子且为预设值,gx,y表示像素点(x,y)处的灰度值;
计算目标函数E(g)为最大值时的参数αr,αg,αb
设经过GAUSS滑动平均对上述具有不同灰度的蓝色图片的灰度进行处理后得到的所述蓝色图片满足如下分布G(x,y,σ),并构造L函数如下:
Figure BDA0001892471720000052
L(x,y,σ,ρ)=ρ·I(x,y)·G(x,y,σ)
式中,(x,y)表示上述蓝色图片的像素点,各像素点的灰度值被表示为其各自灰度值本身与E(g)的最大模值max之间的商,ρ为缩放经验因子且等于目标函数E(g)为最大值时的αr,αg,αb的平方和,I′(x,y)为上述蓝色图片的色温;
建立对比延伸函数,即:
Figure BDA0001892471720000053
其中,c为对比延伸中心且该中心为上述(x,y)表示的像素点之一,λ为预设的对比延伸斜率且等于ρ/max;利用哈里斯矩阵计算上述蓝色图片的每个像素点的自相关矩阵:
Figure BDA0001892471720000061
其中x,y为像素点坐标,N为图片分辨率,则对比延伸图片特征响应函数为:
R(x,y,c)=detA(x,y,fc)-k(traceA(x,y,fc))2
其中,k为常数因子,det()函数表示计算方阵A的行列式的值的函数,trace()函数表示求矩阵的迹的函数;
以(x,y)为变量,计算函数R的定积分在x和y各自在0-255之间变化期间时的值,并将该值进行累加得到累加和,将该累加和作为该张红外图片的特征值Rt。
进一步地,所述步骤(33)包括:
将N对一一对应的校验值中的每一个和N个几何平均值的每一个,分别进行作差,取得差值的绝对值。
进一步地,所述步骤(4)包括:当与电池被设置的某个位置的绝对值大于预设阈值时,减小给该位置的充电电流,并检测该充电电流以确保其值小于预设充电电流值;反之当与电池被设置的某个位置的绝对值小于预设阈值时,增大给该位置的充电电流,并检测该充电电流以确保其值大于预设充电电流值。
本发明具有如下有益效果:
本发明克服了现有技术中对混合动力汽车出现电池被分布式设置,尤其是电池被分布式地设置的四驱混合动力汽车上,燃料辅助驱动单元对电力辅助驱动单元的温度不具备实时性参考价值的问题,通过红外图像的数值化处理,得到了校正电池管理系统对电池控制的校正参数,提高了电池工作的稳定性和寿命。
附图说明
附图1为本发明的方法的流程图。
具体实施方式
如图1所示,根据本发明的优选实施例,提供了一种适用于混合动力汽车的电动汽车电池温度自校正式检测方法,包括:
(1)通过温度传感器在t1、t2、t3、t4、t5、t6、t7和t8时刻分别采集N个分布式设置的电池的检测参数集合,各集合分别对应各设置电池的位置,且各集合均包括:燃料辅助驱动单元的温度T1燃料、电池温度T1和环境温度T1,其中N为大于5的整数;
(2)在t1时刻到t8时刻期间,通过红外探测器拍摄并输出关于N个分布式设置的电池的燃料辅助驱动单元的温度T2燃料、电池温度T2的红外图片,从而得到N张红外图片;
(3)当温度T1燃料存在超过预设温度预警值时,基于检测参数集合和红外图片对电池的温度进行多点温度自校正式校正;
(4)根据校正结果对电池温度进行检测。
优选地,所述步骤(3)包括:
(31)对N张所述红外图片分别进行代数化表示,从而得到N个校验值;
(32)计算N个所述位置在t1时刻到t8时刻期间的电池温度T1的几何平均数;
(33)根据N个校验值中的每一个一一对应地对N个几何平均值进行校正。
优选地,步骤(31)中,对一张所述红外图片分别进行代数化表示,从而得到一个校验值包括:
归一化处理:对于某一个电池被设置的位置所对应的检测参数集合以及红外图片对应的燃料辅助驱动单元的温度T2燃料、电池温度T2,利用T1对T2燃料进行归一化处理;
数值化处理:对该张红外图片进行压缩转换,生成解析度至少在256*256像素尺寸的彩色图片Img,并构建具有不同灰度的蓝色图片Img2,该具有不同灰度的蓝色图片Img2为图片Img在不同灰度下的对应图片,所述蓝色图片Img2的灰度值g由彩色空间线性表示为:
g=αrIrgIgbIb
其中αr≥0,αg≥0,αb≥0,αrgb=1
式中αr,αg,αb为待定参数,Ir,Ig,Ib是图片Img的颜色通道值;
构建如下函数:
Figure BDA0001892471720000091
式中,x,y为像素点,1’为图片Img的所有像素的集合,gx,gy分别为x和y的灰度值,δx,y为图片Img转化为色彩模型空间的x,y像素点的欧几里得度量,p为gx,gy的算术平均数且当p的绝对值大于1时取p的倒数;
由像素点x,y和δx,y设置如下目标函数:
Figure BDA0001892471720000092
其中,Δgx,y=gx-gy,σ为尺度因子且为预设值,gx,y表示像素点(x,y)处的灰度值;
计算目标函数E(g)为最大值时的参数αr,αg,αb
设经过GAUSS滑动平均对上述具有不同灰度的蓝色图片的灰度进行处理后得到的所述蓝色图片满足如下分布G(x,y,σ),并构造L函数如下:
Figure BDA0001892471720000093
L(x,y,σ,ρ)=ρ·I(x,y)·G(x,y,σ)
式中,(x,y)表示上述蓝色图片的像素点,各像素点的灰度值被表示为其各自灰度值本身与E(g)的最大模值max之间的商,ρ为缩放经验因子且等于目标函数E(g)为最大值时的αr,αg,αb的平方和,I′(x,y)为上述蓝色图片的色温;
建立对比延伸函数,即:
Figure BDA0001892471720000101
其中,c为对比延伸中心且该中心为上述(x,y)表示的像素点之一,λ为预设的对比延伸斜率且等于ρ/max;利用哈里斯矩阵计算上述蓝色图片的每个像素点的自相关矩阵:
Figure BDA0001892471720000102
其中x,y为像素点坐标,N为图片分辨率,则对比延伸图片特征响应函数为:
R(x,y,c)=detA(x,y,fc)-k(traceA(x,y,fc))2
其中,k为常数因子,det()函数表示计算方阵A的行列式的值的函数,trace()函数表示求矩阵的迹的函数;
以(x,y)为变量,计算函数R的定积分在x和y各自在0-255之间变化期间时的值,并将该值进行累加得到累加和,将该累加和作为该张红外图片的特征值Rt。
优选地,所述步骤(33)包括:
将N对一一对应的校验值中的每一个和N个几何平均值的每一个,分别进行作差,取得差值的绝对值。
优选地,所述步骤(4)包括:当与电池被设置的某个位置的绝对值大于预设阈值时,减小给该位置的充电电流,并检测该充电电流以确保其值小于预设充电电流值;反之当与电池被设置的某个位置的绝对值小于预设阈值时,增大给该位置的充电电流,并检测该充电电流以确保其值大于预设充电电流值。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种适用于混合动力汽车的电动汽车电池温度自校正式检测方法,包括:
(1)通过温度传感器在t1、t2、t3、t4、t5、t6、t7和t8时刻分别采集N个分布式设置的电池的检测参数集合,各集合分别对应各设置电池的位置,且各集合均包括:燃料辅助驱动单元的温度T1燃料、电池温度T1和环境温度T1,其中N为大于5的整数;
(2)在t1时刻到t8时刻期间,通过红外探测器拍摄并输出关于N个分布式设置的电池的燃料辅助驱动单元的温度T2燃料、电池温度T2的红外图片,从而得到N张红外图片;
(3)当温度T1燃料存在超过预设温度预警值时,基于检测参数集合和红外图片对电池的温度进行多点温度自校正式校正;
(4)根据校正结果对电池温度进行检测;
所述步骤(3)包括:
(31)对N张所述红外图片分别进行代数化表示,从而得到N个校验值;
(32)计算N个所述位置在t1时刻到t8时刻期间的电池温度T1的几何平均数;
(33)根据N个校验值中的每一个一一对应地对N个几何平均值进行校正;
其特征在于,步骤(31)中,对一张所述红外图片分别进行代数化表示,从而得到一个校验值包括:
归一化处理:对于某一个电池被设置的位置所对应的检测参数集合以及红外图片对应的燃料辅助驱动单元的温度T2燃料、电池温度T2,利用T1对T2燃料进行归一化处理;
数值化处理:对该张红外图片进行压缩转换,生成解析度至少在256*256像素尺寸的彩色图片Img,并构建具有不同灰度的蓝色图片Img2,该具有不同灰度的蓝色图片Img2为图片Img在不同灰度下的对应图片,所述蓝色图片Img2的灰度值g由彩色空间线性表示为:
g=αrIrgIgbIb
其中αr≥0,αg≥0,αb≥0,αrgb=1
式中αr,αg,αb为待定参数,Ir,Ig,Ib是图片Img的颜色通道值;
构建如下函数:
Figure FDA0002661809910000021
式中,x,y为像素点,l’为图片Img的所有像素的集合,gx,gy分别为x和y的灰度值,δx,y为图片Img转化为色彩模型空间的x,y像素点的欧几里得度量,p为gx,gy的算术平均数且当p的绝对值大于1时取p的倒数;
由像素点x,y和δx,y设置如下目标函数:
Figure FDA0002661809910000022
其中,Δgx,y=gx-gy,σ为尺度因子且为预设值,gx,y表示像素点(x,y)处的灰度值;
计算目标函数E(g)为最大值时的参数αr,αg,αb
设经过GAUSS滑动平均对上述具有不同灰度的蓝色图片的灰度进行处理后得到的所述蓝色图片满足如下分布G(x,y,σ),并构造L函数如下:
Figure FDA0002661809910000023
L(x,y,σ,ρ)=ρ·I(x,y)·G(x,y,σ)
式中,(x,y)表示上述蓝色图片的像素点,各像素点的灰度值被表示为其各自灰度值本身与E(g)的最大模值max之间的商,ρ为缩放经验因子且等于目标函数E(g)为最大值时的αr,αg,αb的平方和,I′(x,y)为上述蓝色图片的色温;
建立对比延伸函数,即:
Figure FDA0002661809910000031
其中,c为对比延伸中心且该中心为上述(x,y)表示的像素点之一,λ为预设的对比延伸斜率且等于ρ/max;利用哈里斯矩阵计算上述蓝色图片的每个像素点的自相关矩阵:
Figure FDA0002661809910000032
其中x,y为像素点坐标,则对比延伸图片特征响应函数为:
R(x,y,c)=detA(x,y,fc)-k(traceA(x,y,fc))2
其中,k为常数因子,det()函数表示计算方阵A的行列式的值的函数,trace()函数表示求矩阵的迹的函数;
以(x,y)为变量,计算函数R的定积分在x和y各自在0-255之间变化期间时的值,并将该值进行累加得到累加和,将该累加和作为该张红外图片的特征值Rt。
2.根据权利要求1所述的方法,其特征在于,所述步骤(33)包括:
将N对一一对应的校验值中的每一个和N个几何平均值的每一个,分别进行作差,取得差值的绝对值。
3.根据权利要求2所述的方法,其特征在于,所述步骤(4)包括:当与电池被设置的某个位置的绝对值大于预设阈值时,减小给该位置的充电电流,并检测该充电电流以确保其值小于预设充电电流值;反之当与电池被设置的某个位置的绝对值小于预设阈值时,增大给该位置的充电电流,并检测该充电电流以确保其值大于预设充电电流值。
CN201811477266.XA 2018-12-05 2018-12-05 电动汽车电池温度自校正式检测方法 Active CN109357771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811477266.XA CN109357771B (zh) 2018-12-05 2018-12-05 电动汽车电池温度自校正式检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811477266.XA CN109357771B (zh) 2018-12-05 2018-12-05 电动汽车电池温度自校正式检测方法

Publications (2)

Publication Number Publication Date
CN109357771A CN109357771A (zh) 2019-02-19
CN109357771B true CN109357771B (zh) 2020-11-10

Family

ID=65331090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811477266.XA Active CN109357771B (zh) 2018-12-05 2018-12-05 电动汽车电池温度自校正式检测方法

Country Status (1)

Country Link
CN (1) CN109357771B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110134156A (zh) * 2019-02-28 2019-08-16 成都派沃特科技股份有限公司 利用视觉识别技术的数据中心设备故障检测系统
CN109828618A (zh) * 2019-02-28 2019-05-31 成都派沃特科技股份有限公司 基于人工智能技术的数据中心设备测控装置
CN109949550A (zh) * 2019-02-28 2019-06-28 成都派沃特科技股份有限公司 分布式数据中心设备状态的云监控系统
CN111751756B (zh) * 2020-07-31 2022-06-03 中国汽车工程研究院股份有限公司 一种用累积动力电池温度曲线识别故障电池单体的方法
CN111751732B (zh) * 2020-07-31 2021-09-28 中国汽车工程研究院股份有限公司 一种基于自适应高斯卷积积分法的电量计算方法
CN113189488A (zh) * 2021-05-06 2021-07-30 佛山科学技术学院 一种基于充电温度影像的电池soh测评方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916098B1 (fr) * 2007-05-11 2009-07-03 Commissariat Energie Atomique Procede de charge d'un element de stockage d'un systeme autonome
US9362750B2 (en) * 2011-12-05 2016-06-07 Samsung Sdi Co., Ltd. Energy storage system and method for controlling the same
CN107240937A (zh) * 2016-03-28 2017-10-10 中兴通讯股份有限公司 一种磷酸铁锂电池的充电方法及装置
US10375325B2 (en) * 2016-06-23 2019-08-06 Fluke Corporation Thermal anomaly detection
CN206440386U (zh) * 2016-12-23 2017-08-25 国联汽车动力电池研究院有限责任公司 一种电池温度检测系统

Also Published As

Publication number Publication date
CN109357771A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN109357771B (zh) 电动汽车电池温度自校正式检测方法
CN109624789B (zh) 电池管理系统的多点温度校正方法
CN109997050B (zh) 用于可再充电电池的荷电状态和容量估计的系统和方法
US8589096B2 (en) Method for estimating remaining capacity of battery
CN103950390B (zh) 纯电动汽车实时续驶里程的预测方法及系统
CN110549900B (zh) 电动汽车及动力电池静置之后的参数更新方法、装置
US8854010B2 (en) Control apparatus and control method for electric storage apparatus
CN109624784B (zh) 多工况自适应电池管理系统
CN104614675A (zh) 一种动力电池组一致性检测方法及装置
CN210454789U (zh) 一种确定混合动力汽车的能量使用策略的装置
CN114994541A (zh) 一种基于多策略融合的锂离子电池soh估计方法
CN113147514A (zh) 一种多能量源氢燃料电池汽车能量管理控制方法及系统
CN112816891A (zh) 一种基于电池组内单体充电曲线差异的电池容量和soc估计方法
CN109556729B (zh) 随使用温湿度自动校正的电动汽车电池管理系统
CN113400943A (zh) 一种电动汽车续驶里程的估算方法、装置及电动汽车
CN115158289A (zh) 一种车辆中动力电池的充放电功率控制方法、装置及车辆
CN109001632B (zh) 一种用于对补锂电池阶段寿命进行预测的方法及系统
CN111666825B (zh) 基于人在回路的车辆载重状态识别方法及装置
CN111775773B (zh) 一种车辆燃料电池功率控制方法及装置
CN108944572B (zh) 一种转矩限制方法、装置及电动汽车
CN112895979B (zh) 一种自适应车辆电池能量管理方法和装置
CN116739997A (zh) 一种基于x射线成像的锂电池在线成像分析方法
CN111497820B (zh) 一种车辆及燃料电池功率控制方法和系统
CN113507578A (zh) 预处理装置及方法
CN109466377B (zh) 用于自动更新soc区间里程参考值的方法、装置和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant