CN109253884B - 基于神经网络的涡轮排气背压估计方法 - Google Patents
基于神经网络的涡轮排气背压估计方法 Download PDFInfo
- Publication number
- CN109253884B CN109253884B CN201810818717.5A CN201810818717A CN109253884B CN 109253884 B CN109253884 B CN 109253884B CN 201810818717 A CN201810818717 A CN 201810818717A CN 109253884 B CN109253884 B CN 109253884B
- Authority
- CN
- China
- Prior art keywords
- neural network
- back pressure
- exhaust back
- data
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 20
- 238000003062 neural network model Methods 0.000 claims abstract description 32
- 239000000446 fuel Substances 0.000 claims abstract description 22
- 238000002474 experimental method Methods 0.000 claims abstract description 5
- 230000005284 excitation Effects 0.000 claims description 23
- 238000012546 transfer Methods 0.000 claims description 15
- 238000012549 training Methods 0.000 claims description 5
- 238000011478 gradient descent method Methods 0.000 claims description 4
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/10—Testing internal-combustion engines by monitoring exhaust gases or combustion flame
- G01M15/102—Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
本发明公开了一种基于神经网络的涡轮排气背压估计方法,其包括:采集加速踏板开度和发动机转速,并作为输入激励数据;根据加速踏板开度和发动机转速进行发动机台架实验,采集和记录负荷、空燃比和涡轮排气背压数据;对转速、负荷、空燃比和涡轮排气背压数据进行归一化处理;构建神经网络模型;根据实际车辆的加速踏板开度、发动机转速和上述神经网络模型预估涡轮排气背压。本发明的方法不增加额外的系统零部件和传感器,只需设计一组包含工况全面且易于实验操作的转速和加速踏板开度数据,通过一次发动机台架实验,并构建神经网络模型,运用该神经网络模型能够对汽油机排气背压进行准确的实时估计。
Description
技术领域
本发明涉及一种能够估计涡轮排气背压大小的方法,属于发动机机参数估计领域。
背景技术
为了提高发动机输出动力,同时提升燃油燃烧效率,涡轮增压技术在乘用车中已被广泛使用。在涡轮增压发动机控制技术中,涡轮排气背压是非常重要的指标,它影响着增压器的工作效率和发动机整体的输出性能,由于涡轮排气歧管存在着很大的波动性和干扰,涡轮排气背压并不适合采用传感器进行测量。
为了得到排气背压且降低成本,目前最广泛使用的方法是采用经验公式和map图表结合进行估算,但这一方法的精确度取决于map标定的精细程度,而细化标定会带来巨大的工作量。
因此提出一种能够准确的估算涡轮排气背压的方法是十分必要且有意义的。
发明内容
本发明目的是为了解决涡轮排气背压难以测量的问题,本发明提出一种基于神经网络模型的排气背压估计方法。该方法不增加额外的系统零部件和传感器,只需设计一组包含工况全面且易于实验操作的转速和加速踏板开度数据,通过一次发动机台架实验,对负荷、排气背压和空燃比数据进行采集,将设计的输入数据和采集的输出数据进行处理并构建神经网络模型,运用该神经网络模型能够对汽油机排气背压进行准确的实时估计。
本发明解决技术问题采用如下技术方案:一种基于神经网络的涡轮排气背压估计方法,其包括:
S10、采集加速踏板开度和发动机转速,并作为输入激励数据;
S20、根据加速踏板开度和发动机转速进行发动机台架实验,采集和记录负荷、空燃比和涡轮排气背压数据;
S30、对转速、负荷、空燃比和涡轮排气背压数据进行归一化处理;
S40、构建神经网络模型;
S50、根据实际车辆的加速踏板开度、发动机转速和上述神经网络模型预估涡轮排气背压。
可选的,所述神经网络模型的输入层选为3层,分别为发动机转速、负荷和空燃比;中间层选为包含15个神经元;输出层选为1层,为涡轮排气背压;在训练神经网络模型时,第一层与第二层之间的传递函数为对数激励函数,第二层与第三层之间的传递函数为线性激励函数,训练算法采用梯度下降法。
可选的,神经网络的输出层Yp表示为:
其中,P为样本点个数,n为输入层的总层数,uPi为第i个输入层第P个样本输入,vki表示神经网络的第k个中间层与第i个输入层之间的权值,q为中间层的总层数,ωk表示第k个中间层与输出层之间的权值,而f(.)为传递函数,线性传递函数的表达式为:
对数传递函数的表达式为:
可选的,假设采集的输出数据为Tp,则全局误差函数E如下式所示:
可选的,S10中,激励输入数据为:转速从800转/分开始以200转/分为步长升至5000转/分,且每升高一个步长,转速稳定运行18s,在这稳定运行的18s内,加速踏板开度从0.1开始以0.1为步长升至1,在从1开始以0.1为步长降至0.1,每个开度持续1s;在转速上升阶段,加速踏板保持0.1开度不变。
可选的,S30具体为:通过下式对转速、负荷、空燃比和排气背压数据进行归一化:
其中,xmax为该数据中最大的值,xmin为该数据中最小的值,xi为该数据第i个量,yi为xi经过归一化后的值。
本发明具有如下有益效果:本发明的方法区别于传统的测量方法,在不额外增加系统零部件或传感器,能够根据工况条件通过神经网络模型可靠的估计出涡轮排气背压,从而省去了传感器硬件费用和标定环节,降低了成本,节约了人力和时间,缩短了控制器的开发周期。
附图说明
图1为神经网络建模过程图;
图2为台架实验输入数据图。
图3为台架实验输出数据图。
图4为归一化后的神经网络模型输入输出数据图。
图5为一组随机验证工况。
图6为验证对比图。
具体实施方式
下面结合实施例及附图对本发明的技术方案作进一步阐述。
实施例1
本实施例提供了一种基于神经网络的涡轮排气背压估计方法,尤其是应用于汽油机的一种基于神经网络的汽油机涡轮排气背压估计方法,包括:
S10、采集加速踏板开度和发动机转速,并作为输入激励数据。
在本发明的基于神经网络的涡轮排气背压估计方法,需要建立神经网络模型。在建立神经网络模型的过程中,需要设计输入激励数据,将输入激励数据作用于发动机台架,产生激励输出数据,将输入激励数据和激励输出数据进行归一化并得到神经网络模型。
本实施例中,所需要建立的神经网络模型输入为:转速,扭矩和空燃比,因为这三个参数直接决定了发动机的工况,同时也决定了涡轮增压器的工作情况;神经网络模型的激励输出数据则为需要估计的涡轮排气背压。
由于在做台架实验时,空燃比与负荷不能直接控制其大小,故采用控制加速踏板开度的方法来间接采集空燃比和负荷,因此,本实施例的输入激励数据为:加速踏板开度和发动机转速;激励输出数据为:空燃比,负荷和涡轮排气背压。
为了能够更好的反应汽油机排气背压特性,所设计的激励输入数据必须全面且方便测量和操作,设计的输入数据为:转速从800转/分开始以200转/分为步长升至5000转/分,且每升高一个步长,转速稳定运行18s,在这稳定运行的18s内,加速踏板开度从0.1开始以0.1为步长升至1,在从1开始以0.1为步长降至0.1,每个开度持续1s;在转速上升阶段,加速踏板保持0.1开度不变。
S20、根据加速踏板开度和发动机转速进行发动机台架实验,采集和记录负荷、空燃比和涡轮排气背压数据。
本实施例中,为建立神经网络模型,需要将输入激励数据和激励输出数据进行关联,为此,需要采集和记录负荷、空燃比和涡轮排气背压数据。
S30、对转速、负荷、空燃比和涡轮排气背压数据进行归一化处理。
由于转速、负荷、空燃比和排气背压等数据的数量级差异过大,这样的数据会导致建立的神经网络模型失真,故需要对数据进行归一化处理,从而排除因各个数据数量级不同而导致估计不准确的问题。
具体地:使所有的数据在区间[-1,1]内,归一化公式如下所示:
其中,xmax为该数据中最大的值,xmin为该数据中最小的值,xi为该数据第i个量,yi为xi经过归一化后的值。将转速、负荷、空燃比和排气背压四种数据都按照上述公式进行归一化处理。
S40、构建神经网络模型
所述神经网络模型的输入层选为3层,即发动机转速、负荷和空燃比;中间层选为包含15个神经元;输出层选为1层,即涡轮排气背压。
在训练神经网络模型时,第一层与第二层之间的传递函数为对数激励函数,第二层与第三层之间的传递函数为线性激励函数,训练算法采用梯度下降法。
神经网络的输出层Yp可以表示为:
其中,P为样本点个数,n为输入层的总层数,uPi为第i个输入层第P个样本输入,vki表示神经网络的第k个中间层与第i个输入层之间的权值,q为中间层的总层数,ωk表示第k个中间层与输出层之间的权值,而f(.)为传递函数,线性传递函数的表达式为:
对数传递函数的表达式为:
设采集的输出数据为Tp,那么全局误差函数E如下式所示:
采用梯度下降法求解全局误差函数E计算出权值矩阵ωk、vki,即完成可以估算涡轮排气压力的神经网络模型训练。
S50、根据加速踏板开度、发动机转速和上述神经网络模型预估涡轮排气背压。
为了验证神经网络模型的准确性,在发动机台架随机采集一段数据。将该组随机数据输入给训练完毕的神经网络模型,对比输出结果如图5所示。
通过本实施例的神经网络模型,可以有效的估算涡轮排气背压的数值,通过输出数据对比可以发现,基于神经网络的汽油机涡轮排气背压估计方法具有良好的精度。
以上实施例的先后顺序仅为便于描述,不代表实施例的优劣。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (5)
1.一种基于神经网络的涡轮排气背压估计方法,其特征在于,包括:
S10、采集加速踏板开度和发动机转速,并作为输入激励数据;
S20、根据加速踏板开度和发动机转速进行发动机台架实验,采集和记录负荷、空燃比和涡轮排气背压数据;
S30、对转速、负荷、空燃比和涡轮排气背压数据进行归一化处理;
S40、构建神经网络模型;
S50、根据实际车辆的加速踏板开度、发动机转速和上述神经网络模型预估涡轮排气背压;
其中,S10中,激励输入数据为:转速从800转/分开始以200转/分为步长升至5000转/分,且每升高一个步长,转速稳定运行18s,在这稳定运行的18s内,加速踏板开度从0.1开始以0.1为步长升至1,从1开始以0.1为步长降至0.1,每个开度持续1s;在转速上升阶段,加速踏板保持0.1开度不变。
2.根据权利要求1所述的基于神经网络的涡轮排气背压估计方法,其特征在于,所述神经网络模型的输入层选为3层,分别为发动机转速、负荷和空燃比;中间层选为包含15个神经元;输出层选为1层,为涡轮排气背压;在训练神经网络模型时,第一层与第二层之间的传递函数为对数激励函数,第二层与第三层之间的传递函数为线性激励函数,训练算法采用梯度下降法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810818717.5A CN109253884B (zh) | 2018-07-24 | 2018-07-24 | 基于神经网络的涡轮排气背压估计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810818717.5A CN109253884B (zh) | 2018-07-24 | 2018-07-24 | 基于神经网络的涡轮排气背压估计方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109253884A CN109253884A (zh) | 2019-01-22 |
CN109253884B true CN109253884B (zh) | 2020-05-22 |
Family
ID=65048922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810818717.5A Active CN109253884B (zh) | 2018-07-24 | 2018-07-24 | 基于神经网络的涡轮排气背压估计方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109253884B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021079179A1 (en) * | 2019-10-25 | 2021-04-29 | Volvo Truck Corporation | System and method for a virtual turbocharger speed sensor using neural networks |
CN113392574A (zh) * | 2021-05-12 | 2021-09-14 | 中国第一汽车股份有限公司 | 一种基于神经网络模型的汽油机次充模型进气量估算方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103091112B (zh) * | 2013-01-31 | 2015-04-01 | 林惠堂 | 基于模糊推理和自学习的汽车排放故障检诊方法及装置 |
CN203551285U (zh) * | 2013-10-10 | 2014-04-16 | 广西玉柴机器股份有限公司 | 一种内燃机排气背压测量系统 |
US10196997B2 (en) * | 2016-12-22 | 2019-02-05 | GM Global Technology Operations LLC | Engine control system including feed-forward neural network controller |
-
2018
- 2018-07-24 CN CN201810818717.5A patent/CN109253884B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN109253884A (zh) | 2019-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104408271B (zh) | 一种基于模型的汽油机标定方法 | |
CN106762176B (zh) | 一种二缸机四冲程进气压力计算方法 | |
CN108762110B (zh) | 一种满足国ⅳ标准的电控摩托车发动机匹配标定方法 | |
CN106401757B (zh) | 发动机的断缸模式实现方法、系统及车辆 | |
CN109253884B (zh) | 基于神经网络的涡轮排气背压估计方法 | |
WO2017154214A1 (ja) | Wiebe関数パラメータ同定装置、方法、プログラム、内燃機関状態検出装置、及び車載制御システム | |
CN112146888B (zh) | 参数标定方法、装置、设备和存储介质 | |
CN102620939A (zh) | 一种发动机扭矩预测方法和装置 | |
CN109344492A (zh) | 一种基于k-均值聚类与粒子群核极限学习机的航空发动机推力估计方法 | |
CN113392574A (zh) | 一种基于神经网络模型的汽油机次充模型进气量估算方法 | |
CN114254498A (zh) | 一种基于bp神经网络的发动机动态油耗预测方法、系统 | |
Maschler et al. | Deep learning based soft sensors for industrial machinery | |
CN117927395A (zh) | 一种考虑不同工况的发动机控制方法及系统 | |
CN115127818B (zh) | 一种电控发电机节油测试方法及记录媒体 | |
CN114781245B (zh) | 基于油耗强相关参数修正的瞬态汽车油耗估计方法及系统 | |
CN109684704B (zh) | 一种基于速度密度模型的发动机进气流量在线标定方法 | |
CN113006958B (zh) | 用于内燃发动机模拟的方法和系统 | |
CN204877693U (zh) | 车用汽油机进气流量控制装置 | |
CN116974193A (zh) | 一种基于迭代优化的传递函数辨识方法 | |
Hao et al. | Dynamic indicated torque estimation for turbocharged diesel engines based on back propagation neural network | |
CN117150882A (zh) | 发动机油耗预测方法、系统、电子设备及存储介质 | |
CN106960092B (zh) | 韦伯燃烧规则经验参数自动校准方法 | |
CN111255557B (zh) | 一种汽车发动机冷却检测系统及其控制方法 | |
CN115906635A (zh) | 一种基于时域卷积网络的航空发动机推力估计方法 | |
CN114237043A (zh) | 基于深度学习的燃气轮机设备传递函数闭环辨识方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 130012 No. 1, xinhongqi street, automobile economic and Technological Development Zone, Changchun City, Jilin Province Patentee after: China Faw Co.,Ltd. Country or region after: China Address before: 130011 2259 Dongfeng Street, Xinxin economic and Technological Development Zone, Changchun, Jilin Patentee before: China Faw Co.,Ltd. Country or region before: China |