[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN108018040A - 一种荧光陶瓷材料、其制备方法以及一种低色温白光led - Google Patents

一种荧光陶瓷材料、其制备方法以及一种低色温白光led Download PDF

Info

Publication number
CN108018040A
CN108018040A CN201711321597.XA CN201711321597A CN108018040A CN 108018040 A CN108018040 A CN 108018040A CN 201711321597 A CN201711321597 A CN 201711321597A CN 108018040 A CN108018040 A CN 108018040A
Authority
CN
China
Prior art keywords
fluorescent
fluorescent ceramic
powder
temperature
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711321597.XA
Other languages
English (en)
Inventor
孙鹏
刘永福
蒋俊
江浩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201711321597.XA priority Critical patent/CN108018040A/zh
Publication of CN108018040A publication Critical patent/CN108018040A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了一种荧光陶瓷材料,其化学式为:(A2‑xRexM)(Mg2D3)O12,其中A为Y、Lu、Sc、Gd、Ga中至少一种,Re为Eu、Ce、Pr、Sm、Dy、Tm、Tb、Nd中的至少一种,M为Ca、Sr、Ba中的至少一种,D为Ti、Si、Ge中的至少一种,0.001≤x<2。该荧光陶瓷可被蓝光芯片有效激发,结合蓝光芯片可制作低色温白光LED;同时,该荧光陶瓷具有荧光粉无法比拟的机械与力学性能,可直接与蓝光芯片进行封装,替代目前荧光粉加有机材料的封装模式,有效解决了有机封装材料散热差,持续高温引起的光效降低和色漂移的问题,大幅度延长了白光LED器件寿命。

Description

一种荧光陶瓷材料、其制备方法以及一种低色温白光LED
技术领域
本发明涉及透明荧光陶瓷材料,特别是一种荧光陶瓷材料、其制备方法以及用其制备低色温白光LED的应用。
背景技术
作为第四代照明光源的白光LED有着节能、环保、寿命长及响应迅速的优点,已经取得了令人瞩目的发展,广泛应用于各种照明场景中。目前商用白光LED的制造方法通常采用封装技术将一种以上的荧光粉利用环氧树脂或者硅胶等有机材料封装在蓝光芯片上,由蓝光芯片激发荧光粉的发光和多余的蓝光混合得到白光。然而这种封装方式在实际使用中存在着一些问题:首先,有机封装材料散热性能较差,芯片长时间点亮下温度会高于150℃,有机材料在高温下极易老化变质,造成光源光效降低及色漂移,大大降低了白光LED的使用寿命;其次,由于封装材料的散热性能差,荧光粉在封装材料中也一直处于高温环境,导致荧光粉老化,引起温度猝灭,同样造成光效降低和色漂移现象;再者,荧光粉在封装材料中的分散不均匀,特别是大批量制作时,荧光粉在环氧树脂及硅胶中由于沉淀引起分散不均匀,导致光源发光颜色不均匀。上述问题都极大的影响了白光LED的应用和推广,也限制了其在大功率白光LED领域的发展。
2006年,Anant A.Setlur等人首次报道了Lu2CaMg2(Si,Ge)3O12:Ce3+橙色荧光粉(请参见文献Crystal Chemistry and Luminescence of Ce3+-Doped Lu2CaMg2(Si,Ge)3O12and Its Use in LED Based Lighting,Chem.Mater.2006,18,3314-3322),由于其独特的发光性能,提出将其应用在白光LED领域。2016年,Wei Xia等人也对这种荧光粉进行了研究(Synthesis and luminescence properties of (Lu0.95-xCe0.05)2Ca1+ 2xMg2Si3O12silicate garnet phosphors and its applications,Functional MaterialsLetters Vol.9,No.3(2016)),并将其与传统YAG荧光粉进行单粉封装对比,在色坐标和光效接近的条件下,该荧光粉封装的白光LED色温更低。但是,该橙色荧光粉制备的白光LED也很难避免上述问题。
发明内容
本发明提供了一种荧光陶瓷材料,可被蓝光激发,具有低色温高显色的特性,可用于制作低色温白光LED,同时由于具有荧光粉无法比拟的机械与力学性能,可以直接与蓝光芯片进行封装,替代目前荧光粉加有机材料的封装模式,从而有效解决有机封装材料散热差,持续高温引起的光效降低和色漂移的问题,可大幅度延长白光LED器件寿命。
本发明的技术方案为:一种荧光陶瓷材料,其化学式为(A2-xRexM)(Mg2D3)O12,中,A为Y、Lu、Sc、Gd、Ga中的一种元素或两种以上元素的组合,Re为稀土元素Eu、Ce、Pr、Sm、Dy、Tm、Tb、Nd中的一种元素或两种以上元素的组合,M为Ca、Sr、Ba中的一种元素或两种以上元素的组合,D为Ti、Si、Ge中的一种元素或两种以上元素的组合;并且,0.001≤x≤0.2,作为优选,0.01≤x≤0.1。
所述荧光陶瓷材料为石榴石结构,属于立方晶系,空间群为Ia3d。
所述荧光陶瓷材料的激发波长在400-550nm,可被蓝光有效激发,在蓝光激发下发射波长范围为500-700nm。
可通过调节基质组分及稀土元素的种类与浓度调整所述荧光陶瓷材料的光谱,达到低色温高显色。
本发明还提供了一种制备上述荧光陶瓷材料的方法,包括如下步骤:
(1)按(A2-xRexM)(Mg2D3)O12的化学计量比,将A的氧化物或者相应的盐、Re的氧化物或者相应的盐、M的氧化物或者相应的盐、D的氧化物或者相应的盐、氧化镁或者镁相应的盐进行混合,得到纳米或者亚微米级别的粉体;
(2)将所述粉体煅烧,去除粉体中的有机物及挥发物,并进行压片制作陶瓷素坯;
(3)将所述陶瓷素坯进行烧结以及退火,得到荧光陶瓷;
(4)将所述荧光陶瓷进行抛光处理,以提高透过率、控制厚度。
所述步骤(1)中,得到粉体的方法不限,包括球磨法、溶胶凝胶法或均匀沉淀法等。
所述步骤(2)中,作为优选,煅烧温度为600℃-1200℃。
所述步骤(2)中,素坯制作方法不限,包括等轴单向、等轴双向施压以及冷等静压等。
所述步骤(3)中,烧结方法不限,包括真空烧结、还原气氛烧结、热压烧结以及热等静压烧结等。作为优选,烧结过程为升温至600℃-1200℃,保温1h-24h,然后升温至1300℃-1450℃,保温2h-24h之后冷却到室温。
所述步骤(3)中,退火方法不限,包括在空气中、还原气氛中、氧气气氛中进行,退火温度优选为900℃-1300℃,保温时间优选2h-20h,之后冷却到室温,得到荧光陶瓷。
与现有技术相比,本发明具有如下有益效果:
(1)通过基质组分及稀土元素的种类与浓度的调整得到块体状荧光陶瓷材料,与荧光粉相比,该荧光陶瓷材料具有优异的机械与力学性能,可以直接与蓝光芯片进行封装,替代目前荧光粉加有机材料的封装模式,从而有效解决了有机封装材料散热差,持续高温引起的光效降低和色漂移的问题,可大幅度延长白光LED器件寿命。同时,与荧光粉相比,荧光陶瓷的封装方式具有更好的均匀性,保证光源出光均匀。
(2)该荧光陶瓷材料与蓝光芯片组装得到的白光LED器件色温较低,在2600-3000K之间,与白炽灯灯光色温相近,显色指数与YAG:Ce3+荧光陶瓷相比有显著提升,在大功率高性能白光LED领域中有着很好的应用前景。
附图说明
图1为本发明实施例1中荧光陶瓷片的激发和发射光谱图;
图2为本发明实施例1中荧光陶瓷片的XRD谱图;
图3为本发明实施例2中荧光陶瓷片的激发和发射光谱图;
图4为本发明实施例3中荧光陶瓷片的激发和发射光谱图;
图5为本发明实施例4中的荧光陶瓷片的实物图。
具体实施方式
下面结合实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
荧光陶瓷片(Lu1.99Ce0.01Ca)(Mg2Si3)O12的制备方法如下:
(1)按化学计量比称取Lu2O3:3.9594g,CeO2:0.0172g,CaCO3:1.0087g,MgO:0.8061g,SiO2:1.8025g;用研磨罐加玛瑙球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中1000℃保温2h,去除粉体中的有机物,并让CaCO3充分分解;将所得粉体过筛后利用等轴单向施加10Mpa压力保持2min,干压成型,将其在冷等静压设备中压制成素坯,压力200MPa,保压时间2min;
(3)将所得陶瓷素坯在真空炉中进行烧结,升温速率1℃/min,在1200℃保温4h,在1350℃保温10h,完成固相反应,排除气孔达到致密化;将真空烧结后样品在5%H2/95%N2的还原气氛下1200℃保温6h,对稀土元素进行还原;
(4)将步骤(3)退火后的荧光陶瓷材料进行抛光处理,得到(Lu1.99Ce0.01Ca)(Mg2Si3)O12荧光陶瓷片,其厚度为1mm。
上述制得的荧光陶瓷片的激发和发射光谱图如图1所示,激发峰显示该荧光陶瓷可被蓝光有效激发,发射峰位置在585nm,蓝光激发下为橙黄色,色温较低,显色指数较高。
上述制得的荧光陶瓷片的XRD谱图如图2所示,显示该陶瓷材料为石榴石结构,属于立方晶系,空间群为Ia3d。
对上述制得的荧光陶瓷片进行数据检测,结果为:色品坐标:x=0.5261,y=0.4689,色温2347K,显色指数62。
实施例2:
荧光陶瓷片(Lu1.99Ce0.01Ca0.9Ba0.1)(Mg2Si3)O12的制备方法如下:
(1)按化学计量比称取Lu2O3:3.9594g,CeO2:0.0172g,CaCO3:0.9074g,BaCO3:0.0164g,MgO:0.8061g,SiO2:1.8025g。用研磨罐加玛瑙球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中1000℃保温2h,去除粉体中的有机物,并让CaCO3充分分解;将所得粉体过筛后利用等轴单向施加10Mpa压力保持2min,干压成型,将其在冷等静压设备中压制成素坯,压力200MPa,保压时间2min;
(3)将所得陶瓷素坯在真空炉中进行烧结,升温速率1℃/min,在900℃保温4h,在1450℃保温10h,完成固相反应,排除气孔达到致密化;将真空烧结后样品在还原气氛下5%H2/95%N2,1300℃保温6h,对激活剂进行还原;
(4)将步骤(3)退火后的荧光陶瓷材料进行抛光处理,得到(Lu1.99Ce0.01Ca0.9Ba0.1)(Mg2Si3)O12荧光陶瓷片,其厚度为1mm。
上述制得的荧光陶瓷片的XRD谱图类似图2所示,显示该陶瓷材料为石榴石结构,属于立方晶系,空间群为Ia3d。
上述制得的荧光陶瓷片的激发和发射光谱图如图3所示,激发峰显示该荧光陶瓷可被蓝光有效激发,发射峰位置在581nm,蓝光激发下为橙黄色,色温较低,显色指数较高。
对上述制得的荧光陶瓷片进行数据检测,结果为:色品坐标为:x=0.5230,y=0.4711,色温为2384K,显色指数为64。
实施例3:
荧光陶瓷片(Lu1.99Ce0.005Pr0.005Ca)(Mg2Si3)O12的制备方法如下:
(1)按化学计量比称取Lu2O3:3.9594g,CeO2:0.0086,Pr6O11:0.0085g,CaCO3:1.0087g,MgO:0.8061g,SiO2:1.8025g。用研磨罐加玛瑙球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中900℃保温2h,去除粉体中的有机物,并让CaCO3充分分解;将所得粉体过筛后利用等轴单向施加10Mpa压力保持2min,干压成型,将其在冷等静压设备中压制成素坯,压力200MPa,保压时间2min;
(3)将所得陶瓷素坯在真空炉中进行烧结,升温速率1℃/min,在600℃保温2h,在1350℃保温10h,完成固相反应,排除气孔达到致密化;将烧结后样品在还原气氛下5%H2/95%N2,1200℃保温6h,对激活剂进行还原;
(4)将步骤(3)退火后的荧光陶瓷进行抛光处理,得到(Lu1.99Ce0.005Pr0.005Ca)(Mg2Si3)O12荧光陶瓷片,其厚度为1mm。
上述制得的荧光陶瓷片的XRD谱图类似图2所示,显示该陶瓷材料为石榴石结构,属于立方晶系,空间群为Ia3d。
上述荧光陶瓷的激发和发射光谱图如图4所示,激发峰显示该荧光陶瓷可被蓝光有效激发,发射峰位置在563nm,且有Pr离子的特征峰,蓝光激发下为淡橙黄色,色温较低,显色指数较高。
对上述制得的荧光陶瓷片进行数据检测,结果为:色品坐标为:x=0.5084,y=0.4528,色温2412K,显色指数为56。
实施例4:
荧光陶瓷片(Lu1.99Ce0.01Ca)(Mg2Si1Ge2)O12的制备方法如下:
(1)按化学计量比称取Lu2O3:3.9594g,CeO2:0.0172g,CaCO3:1.0087g,MgO:0.8061g,SiO2:0.6008g,GeO2:2.0928。用研磨罐加玛瑙球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中1000℃保温2h,去除粉体中的有机物,并让CaCO3充分分解;将所得粉体过筛后利用等轴单向施加10Mpa压力保持2min,干压成型,将其在冷等静压设备中压制成素坯,压力200MPa,保压时间2min;
(3)将所得陶瓷素坯在真空炉中进行烧结,升温速率1℃/min,在1100℃保温4h,在1400℃保温10h,完成固相反应,排除气孔达到致密化;将烧结后样品在空气中,1200℃保温6h退火;
(4)将步骤(3)退火后的荧光陶瓷进行抛光处理,得到(Lu1.99Ce0.01Ca)(Mg2Si1Ge2)O12荧光陶瓷片,其厚度为1mm。
上述制得的荧光陶瓷片的XRD谱图类似图2所示,显示该陶瓷材料为石榴石结构,属于立方晶系,空间群为Ia3d。
图5中的圆形部分即为上述荧光陶瓷片的实物,如图5所示,该陶瓷片具有较高的透过率,透过该陶瓷片能够看到方形纸上的图案。
得到的陶瓷片经过检测均可制备低色温高显色的暖白光LED器件。
实施例5:
荧光陶瓷片(YLu0.99Ce0.01Ca)(Mg2Si3)O12的制备方法如下:
(1)按化学计量比称取Y2O3:1.129g,Lu2O3:1.9698g,CeO2:0.0172g,CaCO3:1.0087g,MgO:0.8061g,SiO2:1.8025g。用研磨罐加玛瑙球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中1000℃保温2h,去除粉体中的有机物,并让CaCO3充分分解;将所得粉体过筛后利用等轴单向施加10Mpa压力保持2min,干压成型,将其在冷等静压设备中压制成素坯,压力200MPa,保压时间2min;
(3)将所得陶瓷素坯在真空炉中进行烧结,升温速率1℃/min,在1350℃保温10h,完成固相反应,排除气孔达到致密化;将真空烧结后样品在还原气氛下5%H2/95%N2,在1000℃保温2h,1300℃保温6h,对激活剂进行还原;
(4)将步骤(3)退火后的荧光陶瓷进行抛光处理,得到(YLu0.99Ce0.01Ca)(Mg2Si3)O12荧光陶瓷片,其厚度为2mm。
上述制得的荧光陶瓷片的XRD谱图类似图2所示,显示该陶瓷材料为石榴石结构,属于立方晶系,空间群为Ia3d。
得到的陶瓷片经过检测均可制备低色温高显色的暖白光LED器件。
实施例6:
荧光陶瓷片(Lu1.8Ce0.1Pr0.05Tb0.05Ca)(Mg2Si3)O12的制备方法如下:
(1)按化学计量比称取Lu2O3:3.5768g,CeO2:0.172g,Pr6O11:0.085g,Tb2O3:0.0914g,CaCO3:1.0087g,MgO:0.8061g,SiO2:1.8025g。用研磨罐加玛瑙球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中1000℃保温2h,去除粉体中的有机物,并让CaCO3充分分解;将所得粉体过筛后利用等轴单向施加10Mpa压力保持2min,干压成型,将其在冷等静压设备中压制成素坯,压力200MPa,保压时间2min;
(3)将所得陶瓷素坯在真空炉中进行烧结,升温速率1℃/min,在800℃保温3h,在1450℃保温12h,完成固相反应,排除气孔达到致密化;将真空烧结后样品在氨分解气中,1100℃保温6h,对激活剂进行还原;
(4)将步骤(3)退火后的荧光陶瓷进行抛光处理,得到(Lu1.8Ce0.1Pr0.05Tb0.05Ca)(Mg2Si3)O12荧光陶瓷片,其厚度为1mm。
上述制得的荧光陶瓷片的XRD谱图类似图2所示,显示该陶瓷材料为石榴石结构,属于立方晶系,空间群为Ia3d。
得到的陶瓷片经过检测均可制备低色温高显色的暖白光LED器件。
实施例7:
荧光陶瓷片(Lu1.999Ce0.001Ca)(Mg2Si3)O12的制备方法如下:
(1)按化学计量比称取Lu2O3:3.9773g,CeO2:0.00172g,CaCO3:1.0087g,MgO:0.8061g,SiO2:1.8025g。用研磨罐加玛瑙球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中1000℃保温2h,去除粉体中的有机物,并让CaCO3充分分解;将所得粉体过筛后利用等轴单向施加10Mpa压力保持2min,干压成型,将其在冷等静压设备中压制成素坯,压力200MPa,保压时间2min;
(3)将所得陶瓷素坯在真空炉中进行烧结,升温速率1℃/min,在1200℃保温4h,在1350℃保温10h,完成固相反应,排除气孔达到致密化;将真空烧结后样品在还原气氛下5%H2/95%N2,1100℃保温6h,对激活剂进行还原;
(4)将步骤(3)退火后的荧光陶瓷进行抛光处理,得到(Lu1.999Ce0.001Ca)(Mg2Si3)O12荧光陶瓷片,其厚度为2mm。
上述制得的荧光陶瓷片的XRD谱图类似图2所示,显示该陶瓷材料为石榴石结构,属于立方晶系,空间群为Ia3d。
得到的陶瓷片经过检测均可制备低色温高显色的暖白光LED器件。
实施例8:
荧光陶瓷片(GdLu0.99Ce0.01Ca)(Mg2Si3)O12的制备方法如下:
(1)按化学计量比称取Gd2O3:1.8125g,Lu2O3:1.9698g,CeO2:0.0172g,CaCO3:1.0087g,MgO:0.8061g,SiO2:1.8025g。用研磨罐加玛瑙球,以无水乙醇为研磨介质进行研磨与混合,直至粉体平均粒径小于1μm;
(2)将所得浆料干燥并过筛,将过筛后的粉体在空气中1000℃保温2h,去除粉体中的有机物,并让CaCO3充分分解;将所得粉体过筛后利用等轴单向施加10Mpa压力保持2min,干压成型,将其在冷等静压设备中压制成素坯,压力200MPa,保压时间2min;
(3)将所得陶瓷素坯在真空炉中进行烧结,升温速率1℃/min,在700℃保温2h,在1350℃保温10h,完成固相反应,排除气孔达到致密化;将真空烧结后样品在空气中,1200℃保温6h;
(4)将步骤(3)退火后的荧光陶瓷进行抛光处理,得到(GdLu0.99Ce0.01Ca)(Mg2Si3)O12荧光陶瓷片,其厚度为1mm。
上述制得的荧光陶瓷片的XRD谱图类似图2所示,显示该陶瓷材料为石榴石结构,属于立方晶系,空间群为Ia3d。
得到的陶瓷片经过检测均可制备低色温高显色的暖白光LED器件。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种荧光陶瓷材料,其特征在于,其化学式为:
(A2-xRexM)(Mg2D3)O12
其中,A为Y、Lu、Sc、Gd、Ga中的一种元素或两种以上元素的组合;Re为稀土元素Eu、Ce、Pr、Sm、Dy、Tm、Tb、Nd中的一种元素或两种以上元素的组合;M为Ca、Sr、Ba中的一种元素或两种以上元素的组合;D为Ti、Si、Ge中的一种元素或两种以上元素的组合;并且,0.001≤x<2。
2.根据权利要求1所述的荧光陶瓷,其特征在于,0.001≤x≤0.2,优选为0.01≤x≤0.1。
3.根据权利要求1所述的荧光陶瓷,其特征在于,所述荧光陶瓷材料的激发波长在400-550nm范围内。
4.根据权利要求1所述的荧光陶瓷,其特征在于,所述荧光陶瓷材料在蓝光激发下发射波长在500-700nm范围内。
5.根据权利要求1所述的荧光陶瓷,其特征在于,所述荧光陶瓷的发射峰位置可以通过改变所述化学式中的元素及稀土元素种类和浓度进行调控。
6.根据权利要求1-5中所述的荧光陶瓷的制备方法,其特征在于,包括如下步骤:
(1)按(A2-xRexM)(Mg2D3)O12的化学计量比,将A的氧化物或者相应的盐、Re的氧化物或者相应的盐、M的氧化物或者相应的盐、D的氧化物或者相应的盐、氧化镁或者镁相应的盐进行混合,得到纳米或者亚微米级别的粉体;
(2)将所述粉体煅烧,去除粉体中的有机物及挥发物,并进行压片制作陶瓷素坯;
(3)将所述陶瓷素坯进行烧结以及退火,得到荧光陶瓷;
(4)将所述荧光陶瓷进行抛光处理。
7.根据权利要求6所述的荧光陶瓷的制备方法,其特征在于,所述步骤(1)中,得到粉体的方法包括球磨法、溶胶凝胶法或均匀沉淀法;
作为优选,所述步骤(2)中,煅烧温度为600℃-1200℃,保温1h-24h。
作为优选,所述步骤(2)中,素坯制作方法包括等轴单向、等轴双向施压以及冷等静压。
8.根据权利要求6所述的荧光陶瓷的制备方法,其特征在于,所述步骤(3)中,烧结方法包括真空烧结、还原气氛烧结、热压烧结以及热等静压烧结;
作为优选,烧结过程为升温至600℃-1200℃,保温1h-24h,然后升温至1300℃-1450℃,保温2h-24h之后冷却到室温;
作为优选,所述步骤(3)中,退火温度为900℃-1300℃,保温时间优选2h-20h。
9.一种白光LED,由权利要求1-5中任一权利要求所述的荧光陶瓷材料与蓝光芯片组装得到。
10.根据权利要求9所述的白光LED,其特征在于,其特征在于,色温在2600-3000K之间。
CN201711321597.XA 2017-12-12 2017-12-12 一种荧光陶瓷材料、其制备方法以及一种低色温白光led Pending CN108018040A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711321597.XA CN108018040A (zh) 2017-12-12 2017-12-12 一种荧光陶瓷材料、其制备方法以及一种低色温白光led

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711321597.XA CN108018040A (zh) 2017-12-12 2017-12-12 一种荧光陶瓷材料、其制备方法以及一种低色温白光led

Publications (1)

Publication Number Publication Date
CN108018040A true CN108018040A (zh) 2018-05-11

Family

ID=62073210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711321597.XA Pending CN108018040A (zh) 2017-12-12 2017-12-12 一种荧光陶瓷材料、其制备方法以及一种低色温白光led

Country Status (1)

Country Link
CN (1) CN108018040A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437900A (zh) * 2018-12-12 2019-03-08 中国科学院宁波材料技术与工程研究所 一种荧光陶瓷块体、制备方法及其在激光照明中的应用
CN110642624A (zh) * 2019-10-31 2020-01-03 中国科学院长春光学精密机械与物理研究所 一种蓝绿光发射的荧光透明陶瓷及其制备方法
CN111285682A (zh) * 2018-12-07 2020-06-16 上海航空电器有限公司 用于激光照明与显示的全光谱复相荧光陶瓷及制备方法
CN113683398A (zh) * 2020-05-18 2021-11-23 中国科学院宁波材料技术与工程研究所 一种近红外荧光陶瓷块、制备方法及应用
CN116874301A (zh) * 2023-07-20 2023-10-13 江苏师范大学 一种红色长余辉透明陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1922286A (zh) * 2003-10-29 2007-02-28 吉尔科有限公司 具有增强光谱特性的石榴石磷光体
US20110227476A1 (en) * 2010-03-19 2011-09-22 Nitto Denko Corporation Light emitting device using orange-red phosphor with co-dopants
TW201139621A (en) * 2010-03-19 2011-11-16 Nitto Denko Corp Garnet-based phosphor ceramic sheets for light emitting device
CN102618274A (zh) * 2012-03-13 2012-08-01 湖南信多利新材料有限公司 一种led用绿色荧光粉及其制备方法
CN103834406A (zh) * 2012-11-23 2014-06-04 石胜利 一种荧光材料晶体及其制备方法
CN106518037A (zh) * 2016-11-03 2017-03-22 中国科学院长春光学精密机械与物理研究所 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1922286A (zh) * 2003-10-29 2007-02-28 吉尔科有限公司 具有增强光谱特性的石榴石磷光体
US20110227476A1 (en) * 2010-03-19 2011-09-22 Nitto Denko Corporation Light emitting device using orange-red phosphor with co-dopants
TW201139621A (en) * 2010-03-19 2011-11-16 Nitto Denko Corp Garnet-based phosphor ceramic sheets for light emitting device
CN102618274A (zh) * 2012-03-13 2012-08-01 湖南信多利新材料有限公司 一种led用绿色荧光粉及其制备方法
CN103834406A (zh) * 2012-11-23 2014-06-04 石胜利 一种荧光材料晶体及其制备方法
CN106518037A (zh) * 2016-11-03 2017-03-22 中国科学院长春光学精密机械与物理研究所 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANANT A. SETLUR ET AL.: "Crystal Chemistry and Luminescence of Ce3+-Doped Lu2CaMg2(Si,Ge)3O12 and Its Use in LED Based Lighting", 《CHEM. MATER.》 *
WEI XIA ET AL.: "Synthesis and luminescence properties of (Lu0.95-xCe0.05)2Ca1+2xMg2Si3O12 silicate garnet phosphors and its applications", 《FUNCTIONAL MATERIALS LETTERS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285682A (zh) * 2018-12-07 2020-06-16 上海航空电器有限公司 用于激光照明与显示的全光谱复相荧光陶瓷及制备方法
CN109437900A (zh) * 2018-12-12 2019-03-08 中国科学院宁波材料技术与工程研究所 一种荧光陶瓷块体、制备方法及其在激光照明中的应用
CN110642624A (zh) * 2019-10-31 2020-01-03 中国科学院长春光学精密机械与物理研究所 一种蓝绿光发射的荧光透明陶瓷及其制备方法
CN113683398A (zh) * 2020-05-18 2021-11-23 中国科学院宁波材料技术与工程研究所 一种近红外荧光陶瓷块、制备方法及应用
CN116874301A (zh) * 2023-07-20 2023-10-13 江苏师范大学 一种红色长余辉透明陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN108018040A (zh) 一种荧光陶瓷材料、其制备方法以及一种低色温白光led
WO2019223023A1 (zh) 一种yag荧光陶瓷及其制备方法和应用
CN106497555A (zh) 硅酸盐长余辉发光材料及其制备方法
CN108753296B (zh) 一种可由近紫外或蓝光芯片激发的红光发光材料及其制备方法和应用
CN108947516A (zh) 一种(Cu,Ce):YAG透明荧光陶瓷及其制备方法与应用
CN111056847B (zh) 一种白光led用高光效、高显指的氮氧化物荧光陶瓷及其制备方法
CN105778913B (zh) 一种单基质三掺杂白色荧光材料及其制备方法与应用
CN106518037B (zh) 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
CN111205081A (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN108264899A (zh) 一种应用于led的荧光陶瓷及其制备方法
CN114686225A (zh) 一种近红外荧光粉及其制备方法和应用
CN105331364A (zh) 一种YAG:Mn红色荧光粉以及其制备方法和应用
Dai et al. Fabrication and properties of transparent Tb: YAG fluorescent ceramics with different doping concentrations
CN111234814A (zh) 一种Mn4+掺杂的氮氧化物红色荧光粉及制备方法
CN115838286B (zh) 一种高显指白光led/ld用荧光陶瓷制备与应用
CN106753327B (zh) 一种荧光粉的表面热处理修饰方法以及由其制成的cob光源
CN111995398A (zh) 一种用于高显指激光照明的荧光陶瓷及其制备方法
WO2022199623A1 (zh) 一种增强单基质白光led陶瓷荧光体及其制备方法和应用
CN107325813B (zh) 一种蓝绿色荧光材料及其制备方法
CN103468249B (zh) 一种Eu2+激活的硅酸钠钙绿色荧光粉、制备及应用
CN105623660B (zh) 一种紫外led激发的暖白色荧光粉
CN112094644A (zh) 一种紫外激发的Eu(Ⅱ)离子单掺单相全光谱荧光粉及其制备和应用
CN104496474B (zh) 一种紫外转换白光led透明陶瓷材料及其制备方法
CN115521785B (zh) 一种氧化物近红外发光材料及其制备方法与发光装置
CN102660262A (zh) 一种Eu2+激活的氯硅酸钙荧光粉、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180511