[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN107942198A - A kind of apparatus and method of the cable local defect assessment based on impedance spectrum analysis - Google Patents

A kind of apparatus and method of the cable local defect assessment based on impedance spectrum analysis Download PDF

Info

Publication number
CN107942198A
CN107942198A CN201711154670.9A CN201711154670A CN107942198A CN 107942198 A CN107942198 A CN 107942198A CN 201711154670 A CN201711154670 A CN 201711154670A CN 107942198 A CN107942198 A CN 107942198A
Authority
CN
China
Prior art keywords
signal
mrow
cable
msub
under test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711154670.9A
Other languages
Chinese (zh)
Inventor
惠兆宇
刘韬
魏巍
池志远
王春晖
安英辉
李晓蔚
张涛
刘士立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China General Nuclear Power Corp
CGN Power Co Ltd
Daya Bay Nuclear Power Operations and Management Co Ltd
Guangdong Nuclear Power Joint Venture Co Ltd
Suzhou Nuclear Power Research Institute Co Ltd
Original Assignee
China General Nuclear Power Corp
CGN Power Co Ltd
Daya Bay Nuclear Power Operations and Management Co Ltd
Guangdong Nuclear Power Joint Venture Co Ltd
Suzhou Nuclear Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China General Nuclear Power Corp, CGN Power Co Ltd, Daya Bay Nuclear Power Operations and Management Co Ltd, Guangdong Nuclear Power Joint Venture Co Ltd, Suzhou Nuclear Power Research Institute Co Ltd filed Critical China General Nuclear Power Corp
Priority to CN201711154670.9A priority Critical patent/CN107942198A/en
Publication of CN107942198A publication Critical patent/CN107942198A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明涉及传输线阻抗频谱的测量与分析技术领域,具体涉及一种基于阻抗频谱分析的电缆局部缺陷评估的装置和方法,所述装置至少包括信号发生单元、信号采集单元、分析控制单元和数据存储单元,信号发生单元用于向被测电缆的一端发射入射信号以及用于发射参考信号,所述入射信号和所述参考信号具有相同的幅值和相位;所述信号采集单元用于同步的采集所述入射信号和反射信号,所述反射信号为由所述入射信号经过被测电缆后反射的信号,本发明通过扫频方法测量并计算扫频段内被测电缆阻抗的频谱,并在频域内对谱函数进行变换,在变换后的新域中实现对缺陷的定位并评估其严重程度,本发明与现有的电缆故障定位技术相比,抗噪性强、适用性广、可实现定量评估。

The invention relates to the technical field of measurement and analysis of transmission line impedance spectrum, in particular to a device and method for evaluating cable local defects based on impedance spectrum analysis. The device at least includes a signal generation unit, a signal acquisition unit, an analysis control unit and a data storage unit. unit, the signal generation unit is used to transmit an incident signal to one end of the cable under test and a reference signal, the incident signal and the reference signal have the same amplitude and phase; the signal acquisition unit is used for synchronous acquisition The incident signal and the reflection signal, the reflection signal is the signal reflected by the incident signal after passing through the cable under test, the present invention measures and calculates the frequency spectrum of the impedance of the cable under test in the frequency sweep section through the frequency sweep method, and in the frequency domain Transform the spectral function, realize the location of the defect and evaluate its severity in the new domain after the transformation. Compared with the existing cable fault location technology, the present invention has strong noise resistance, wide applicability, and quantitative evaluation .

Description

一种基于阻抗频谱分析的电缆局部缺陷评估的装置和方法A Device and Method for Evaluating Cable Local Defects Based on Impedance Spectrum Analysis

技术领域technical field

本发明涉及传输线阻抗频谱的测量与分析技术领域,具体涉及一种通过频谱测量、频域变换和分析从而实现电缆局部缺陷评估的装置和方法。The invention relates to the technical field of measurement and analysis of transmission line impedance spectrum, in particular to a device and method for evaluating local defects of cables through spectrum measurement, frequency domain transformation and analysis.

背景技术Background technique

传输线是输送电磁能的线状结构,位于信号源和负载之间,电缆是一种典型的传输线。传输线理论是一套比较成熟的理论,较多地应用于通信工程、电子电路等专业领域。传输线的特性取决于它的长度和所承载电信号的波长之间的差异,当传输线长度远小于信号波长时,传输线几乎不会影响电气回路的行为,此时从信号源侧看,线路阻抗Zin与负载的阻抗是相等的;但是当传输线长度大于电信号波长时,传输线将对电气回路的行为产生影响,此时从信号源侧看,除了一些特殊情况,线路阻抗与负载阻抗是不同的。A transmission line is a linear structure that transmits electromagnetic energy, located between a signal source and a load, and a cable is a typical transmission line. Transmission line theory is a relatively mature theory, which is widely used in professional fields such as communication engineering and electronic circuits. The characteristics of a transmission line depend on the difference between its length and the wavelength of the electrical signal it carries. When the length of the transmission line is much smaller than the signal wavelength, the transmission line hardly affects the behavior of the electrical circuit. At this time, viewed from the signal source side, the line impedance Z In is equal to the impedance of the load; but when the length of the transmission line is greater than the wavelength of the electrical signal, the transmission line will affect the behavior of the electrical circuit. At this time, from the signal source side, except for some special cases, the line impedance and load impedance are different. .

电缆作为传输线,沿长度方向上的电压矢量V和电流矢量I服从以下微分方程:The cable is used as a transmission line, and the voltage vector V and current vector I along the length direction obey the following differential equation:

其中ω为信号的径向频率,R为导体电阻,L为电感,C为电容,G为绝缘电导率,后四个电气参数均为电缆在单位长度下的数值。使用这四个电气参数可以完整刻画电缆通入高频信号时的行为特征。在传输线理论中,通常使用两个复变函数描述传输线的行为,第一个是传递方程:Where ω is the radial frequency of the signal, R is the conductor resistance, L is the inductance, C is the capacitance, G is the insulation conductivity, and the last four electrical parameters are the values of the cable per unit length. These four electrical parameters can be used to fully characterize the behavior of the cable when passing high frequency signals. In transmission line theory, the behavior of a transmission line is usually described using two functions of a complex variable, the first being the transfer equation:

通常简写成以下形式:Usually abbreviated as follows:

γ=α+jβ (0-04)γ=α+jβ (0-04)

其中实部α称为衰减常数,虚部β称为传递常数,β与信号的相速度ν、径向频率ω和波长λ的关系如下:Among them, the real part α is called the attenuation constant, and the imaginary part β is called the transfer constant. The relationship between β and the phase velocity ν, radial frequency ω and wavelength λ of the signal is as follows:

第二个是特性阻抗:The second is the characteristic impedance:

将(0-03)~(0-06)式代入微分方程组(0-01)和(0-02),可得从电缆一端沿长度方向d相关的阻抗表达式为:Substituting (0-03)~(0-06) into the differential equations (0-01) and (0-02), the impedance expression related to the length direction d from one end of the cable can be obtained as follows:

其中Γd为广义反射系数,展开式如下:where Γ d is the generalized reflection coefficient, and the expansion formula is as follows:

Γd=ΓL·e-2γd (0-08)Γ d = Γ L e -2γd (0-08)

其中ΓL为负载反射系数,展开式如下:Where Γ L is the load reflection coefficient, and the expansion formula is as follows:

其中ZL为的电缆终端负载的阻抗。where Z L is the impedance of the cable termination load.

从方程式(0-07)~(0-09)可以看出当负载与特性阻抗相匹配时,在任意长度任意频率下,都有ΓL=Γd=0,Zd=Z0=ZL。传输线阻抗可由式(0-07)来描述,它是一个复变量,幅值和相位随信号频率变化的曲线如附图1所示。From the equations (0-07)~(0-09), it can be seen that when the load matches the characteristic impedance, at any length and any frequency, there are Γ L =Γ d =0, Z d =Z 0 =Z L . The transmission line impedance can be described by formula (0-07), which is a complex variable, and the curve of amplitude and phase changing with signal frequency is shown in Figure 1.

现有基于传输线理论试图定位电缆局部缺陷的方法,使用固定频率的入射信号,通过测量方程(0-01)中的电压矢量V随时间的变化来确定入射信号与反射信号之间的时延。然而在现场条件下,信号在电缆中的衰减以及环境噪声(特别是对于长度超过1000米的电缆)限制了这种方法的灵敏度,难以探测到电缆局部缺陷的初期状态,更无法反映出局部缺陷的发展趋势。The existing method based on the transmission line theory tries to locate the local defect of the cable, using a fixed frequency incident signal, and determining the time delay between the incident signal and the reflected signal by measuring the change of the voltage vector V in the equation (0-01) with time. However, under field conditions, signal attenuation in the cable and environmental noise (especially for cables longer than 1000 meters) limit the sensitivity of this method, making it difficult to detect the initial state of local defects in the cable, let alone reflect local defects. development trend.

基于阻抗频谱分析的电缆局部缺陷评估方法在国内缺少相关工作,尚缺乏专用的研究装置和技术。The evaluation method of cable local defects based on impedance spectrum analysis lacks relevant work in China, and there is still a lack of dedicated research equipment and technology.

发明内容Contents of the invention

本发明提供一种基于阻抗频谱分析的电缆局部缺陷评估的装置,采用模块化结构设计,用于完成电缆阻抗频谱的测量、计算和分析,从而定位被测电缆中的局部缺陷并评估其严重程度。The invention provides a device for evaluating cable local defects based on impedance spectrum analysis, which adopts a modular structure design and is used to complete the measurement, calculation and analysis of cable impedance spectrum, thereby locating local defects in the tested cable and evaluating their severity .

为达到上述目的,本发明采用的技术方案是:一种基于阻抗频谱分析的电缆局部缺陷评估的装置,所述装置至少包括:In order to achieve the above object, the technical solution adopted by the present invention is: a device for evaluating local defects of cables based on impedance spectrum analysis, the device at least includes:

信号发生单元,其用于产生指定频率的正弦波信号,其中一路作为向被测电缆一端发射的入射信号,另一路作为参考信号,所述入射信号和所述参考信号具有相同的幅值和相位;A signal generating unit, which is used to generate a sine wave signal of a specified frequency, one of which is used as an incident signal transmitted to one end of the cable under test, and the other is used as a reference signal, and the incident signal and the reference signal have the same amplitude and phase ;

信号采集单元,其具有用于采集所述参考信号的第一采集通道和用于同步采集反射信号的第二采集通道,其中,所述反射信号为由所述入射信号经过所述被测电缆后反射的信号;A signal acquisition unit, which has a first acquisition channel for acquiring the reference signal and a second acquisition channel for synchronously acquiring a reflection signal, wherein the reflection signal is formed by the incident signal passing through the cable under test reflected signal;

分析控制单元,其与所述信号发生单元以及所述信号采集单元分别通信相连,包括对所述入射信号和所述参考信号的信号频率以及持续时间进行控制的控制模块,以及对所述信号采集单元采集到的所述反射信号与所述参考信号进行处理的数据分析模块;An analysis control unit, which is connected to the signal generation unit and the signal acquisition unit respectively, includes a control module that controls the signal frequency and duration of the incident signal and the reference signal, and controls the signal acquisition unit A data analysis module for processing the reflected signal collected by the unit and the reference signal;

分析控制单元,其与所述信号发生单元以及所述信号采集单元分别通信相连,包括对所述入射信号和所述参考信号的发射时间以及信号频率进行控制的控制模块,以及对所述信号采集单元采集到的所述反射信号与所述参考信号进行处理的数据分析模块;An analysis control unit, which is respectively connected to the signal generation unit and the signal acquisition unit, includes a control module that controls the transmission time and signal frequency of the incident signal and the reference signal, and controls the signal acquisition unit A data analysis module for processing the reflected signal collected by the unit and the reference signal;

数据存储单元,其与所述分析控制单元通信连接以存储所述分析控制单元获取到的信号数据及分析处理的结果数据。A data storage unit is connected in communication with the analysis control unit to store the signal data acquired by the analysis control unit and the result data of analysis processing.

进一步的,所述装置还包括与所述数据存储单元通信连接用于发送和接收数据的通讯单元。Further, the device further includes a communication unit communicating with the data storage unit for sending and receiving data.

进一步的,所述装置还包括分别与所述分析控制单元、所述数据存储单元和所述通讯单元分别通信连接的人机交互单元,所述人机交互单元具有人机交互接口和显示界面,用于接收输入的信息并由所述显示界面显示信息。Further, the device further includes a human-computer interaction unit that is respectively communicatively connected to the analysis control unit, the data storage unit, and the communication unit, and the human-computer interaction unit has a human-computer interaction interface and a display interface, It is used to receive input information and display the information through the display interface.

进一步的,所述入射信号和所述参考信号为不高于100MHz的扫频正弦波信号,所述信号采集单元为双通道数字示波器。Further, the incident signal and the reference signal are swept sine wave signals not higher than 100MHz, and the signal acquisition unit is a dual-channel digital oscilloscope.

本发明还提供一种基于阻抗频谱分析的电缆局部缺陷评估的方法,包括如下步骤:The present invention also provides a method for evaluating cable local defects based on impedance spectrum analysis, comprising the following steps:

(1)采用所述信号发生单元产生所述入射信号和所述参考信号,所述入射信号从所述被测电缆的一端射入,采用所述信号采集单元的所述第一采集通道采集所述入射信号经过所述被测电缆后的反射信号,同步的,采用所述信号采集单元的所述第二采集通道采集所述参考信号;(1) Using the signal generation unit to generate the incident signal and the reference signal, the incident signal is injected from one end of the cable under test, and the first acquisition channel of the signal acquisition unit is used to collect the incident signal Synchronously, using the second acquisition channel of the signal acquisition unit to acquire the reference signal as the reflected signal after the incident signal passes through the cable under test;

(2)根据所述反射信号和所述参考信号计算扫频段内所述被测电缆的阻抗;(2) Calculate the impedance of the cable under test in the frequency sweep section according to the reflected signal and the reference signal;

(3)定义一个新的域变换,将步骤(2)计算得到的阻抗的频谱函数变换为沿所述被测电缆长度方向的功率谱函数;(3) define a new domain transformation, transform the spectral function of the impedance that step (2) calculates into the power spectral function along the length direction of the cable under test;

(4)将步骤(3)中所述功率谱函数大于0dB的点视为沿所述被测电缆长度方向上因存在电气性能不连续而产生了回波,所述电气性能不连续的位置即为所述被测电缆的局部缺陷位置。(4) The point where the power spectrum function is greater than 0dB in the step (3) is regarded as an echo due to the presence of electrical performance discontinuity along the length direction of the tested cable, and the position of the electrical performance discontinuity is is the local defect position of the tested cable.

进一步的,所述步骤(2)中,所述被测电缆的阻抗计算方法如下:Further, in the step (2), the impedance calculation method of the tested cable is as follows:

其中,ZDUT是所述被测电缆的阻抗,Z1是用于采集所述反射信号的所述第一采集通道的阻抗,V1为所述第一采集通道处测得的电压矢量值,V0为所述第二采集通道处测得的电压矢量值。Wherein, ZDUT is the impedance of the cable under test, Z1 is the impedance of the first acquisition channel used to collect the reflected signal, and V1 is the voltage vector value measured at the first acquisition channel place, V 0 is the voltage vector value measured at the second acquisition channel.

进一步的,所述步骤(3)中,将计算得到的频谱函数变换为功率谱函数的方法如下:Further, in the step (3), the method for transforming the calculated spectral function into a power spectral function is as follows:

f→t′ (1-02)f→t′ (1-02)

其中,νr=ν/ν0where ν r =ν/ν 0 ;

f是所述入射信号的频率,f为独立变量;f is the frequency of the incident signal, and f is an independent variable;

d为被测电缆的长度;d is the length of the cable under test;

ν是所述入射信号在所述被测电缆中传播的相速度;ν is the phase velocity at which the incident signal propagates in the cable under test;

νr是所述入射信号在所述被测电缆中的相对相速度;ν r is the relative phase velocity of the incident signal in the cable under test;

ν0是光在真空中的传播速度。 ν0 is the speed of light in vacuum.

进一步的,所述步骤(4)中缺陷位置的定位方法如下:Further, the location method of defect position in described step (4) is as follows:

计算在t′域中函数的频率f′,Calculate the frequency f' of the function in the domain t',

f′是t′域中相位函数的基波频率,也是所述入射信号从所述被测电缆的入射点传播至所述被测电缆的终端后再返回所述入射点的时间;f' is the fundamental frequency of the phase function in the t' domain, and is also the time when the incident signal propagates from the incident point of the cable under test to the terminal of the cable under test and then returns to the incident point;

当距离所述入射点距离为x处存在局部缺陷时,该处产生回波,使阻抗相位的功率谱中产生一个新的频率分量,这个频率为:When there is a local defect at a distance x from the incident point, an echo is generated there, so that a new frequency component is generated in the power spectrum of the impedance phase, and this frequency is:

在t′域中通过识别所述阻抗相位功率谱中的f′和f″,计算由于电气参数不连续而产生回波的位置:By identifying f' and f" in the impedance phase power spectrum in the t' domain, the position of the echo due to the electrical parameter discontinuity is calculated:

上述计算得到的x即为所述被测电缆的缺陷位置距离所述入射点的距离。The x obtained by the above calculation is the distance between the defect position of the tested cable and the incident point.

进一步的,当所述被测电缆沿其长度方向有多个局部缺陷时,每个缺陷位置都对应了功率谱中的一个频率分量,通过频率分量fn计算与其对应的缺陷位置xnFurther, when the tested cable has multiple local defects along its length direction, each defect position corresponds to a frequency component in the power spectrum, and the corresponding defect position x n is calculated by the frequency component f n :

上述计算得到的xn即为频率分量fn对应的缺陷与所述入射点之间的距离。The x n obtained by the above calculation is the distance between the defect corresponding to the frequency component f n and the incident point.

进一步的,所述评估方法还包括如下步骤:(5)找出功率谱图中缺陷部位在所述被测电缆终端的另一侧产生的镜像峰,其中,所述镜像峰所在的位置到所述被测电缆终端的距离与缺陷部位到所述被测电缆终端的距离相等,将缺陷部位的峰顶与所述镜像峰峰顶用一条直线相连作为回波信号沿所述被测电缆长度方向上衰减的趋势线,该趋势线与以所述被测电缆终端位置为横坐标的纵向辅助线之间有一个交点,使用所述交点与所述终端峰峰值之间的距离用于评估所述电缆局部缺陷的严重程度。Further, the evaluation method also includes the following steps: (5) find out the mirror image peak generated by the defect in the power spectrum on the other side of the cable terminal under test, wherein the mirror image peak is located at the same position as the The distance from the terminal of the cable under test is equal to the distance from the defect part to the terminal of the cable under test, and the peak of the defect part is connected with the peak of the mirror image with a straight line as the echo signal along the length direction of the cable under test. There is an intersection point between the trend line and the vertical auxiliary line with the terminal position of the tested cable as the abscissa, and the distance between the intersection point and the peak-to-peak value of the terminal is used to evaluate the The severity of local defects in the cable.

采用以上技术方案后,本发明与现有技术相比具有如下优点:After adopting the above technical scheme, the present invention has the following advantages compared with the prior art:

1、无损检测。本发明可使用电压低至5V的入射信号进行检测,不会损坏被测电缆及终端负载。1. Non-destructive testing. The invention can use an incident signal with a voltage as low as 5V for detection, without damaging the tested cable and terminal load.

2、抗噪性强。本发明使用的阻抗计算方法通过窗函数进行滤波,可以有效消除现场噪声对测量结果的影响。2. Strong noise resistance. The impedance calculation method used in the present invention performs filtering through a window function, which can effectively eliminate the influence of field noise on measurement results.

3、适用性范围广。本发明适用于各种类型的电缆,特别是同轴电缆和金属铠装单芯动力电缆。本发明适用于长度从20米至数千米的电缆,可为发电厂及输配电等电力企业提供技术支持。3. Wide range of applicability. The invention is applicable to various types of cables, especially coaxial cables and metal armored single-core power cables. The invention is suitable for cables with a length ranging from 20 meters to several thousand meters, and can provide technical support for electric power enterprises such as power plants and power transmission and distribution.

4、组装简单,适用于现场恶劣环境。本发明采用模块化结构设计,其中的信号发生单元和信号采集单元可使用矢量网络分析仪和数字示波器等商业产品模块,系统控制和数据分析可通过编程在PC机上实现,装置集成度较高,可在条件较为恶劣的环境下使用。4. Simple assembly, suitable for harsh environment on site. The present invention adopts a modular structure design, wherein the signal generation unit and the signal acquisition unit can use commercial product modules such as vector network analyzers and digital oscilloscopes, and the system control and data analysis can be realized on a PC through programming, and the device integration degree is high. Can be used in harsh environments.

5、评估结论定量化。本发明可以精确定位电缆局部缺陷,同时可定量评估缺陷的严重程度,在电缆老化管理与预测性维修活动中具有极高的应用价值。5. Quantification of evaluation conclusions. The invention can accurately locate the local defect of the cable, and can quantitatively evaluate the severity of the defect at the same time, and has extremely high application value in cable aging management and predictive maintenance activities.

附图说明Description of drawings

附图1为本发明的技术背景中传输线(电缆)阻抗示意图;Accompanying drawing 1 is transmission line (cable) impedance schematic diagram in the technical background of the present invention;

附图2为本发明中检测装置的结构模块图;Accompanying drawing 2 is the structural block diagram of detection device among the present invention;

附图3为本发明中被测电缆阻抗测量接线图;Accompanying drawing 3 is tested cable impedance measurement wiring diagram among the present invention;

附图4为被测电缆沿长度方向的功率谱图;Accompanying drawing 4 is the power spectrum figure along the length direction of tested cable;

附图5为被测电缆局部缺陷严重程度的计算方法示意图。Figure 5 is a schematic diagram of the calculation method for the severity of local defects of the tested cable.

其中,1、信号发生单元;2、信号采集单元;3、分析控制单元;4、数据存储单元;5、通讯单元;6、人机交互单元;7、被测电缆。Among them, 1. Signal generation unit; 2. Signal acquisition unit; 3. Analysis control unit; 4. Data storage unit; 5. Communication unit; 6. Human-computer interaction unit; 7. Tested cable.

具体实施方式Detailed ways

下面结合附图及实施例对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

一种基于阻抗频谱分析的电缆局部缺陷评估的装置,如附图2所示,至少包括信号发生单元1、信号采集单元2、分析控制单元3和数据存储单元4。A device for evaluating cable local defects based on impedance spectrum analysis, as shown in Figure 2, at least includes a signal generation unit 1, a signal acquisition unit 2, an analysis control unit 3 and a data storage unit 4.

信号发生单元1用于产生指定频率的正弦波信号,该正弦波信号被分成两路,其中一路作为向被测电缆一端发射的入射信号CH0’,另一路作为参考信号CH0,入射信号CH0’和参考信号CH0具有相同的幅值和相位。The signal generation unit 1 is used to generate a sine wave signal of a specified frequency. The sine wave signal is divided into two paths, one of which is used as the incident signal CH0' transmitted to one end of the cable under test, and the other as the reference signal CH0. The incident signal CH0' and The reference signal CH0 has the same amplitude and phase.

信号采集单元2具有用于采集参考信号CH0的第一采集通道和用于同步的采集反射信号CH1的第二采集通道,反射信号CH1为由入射信号CH0’经过被测电缆7后反射的信号。The signal acquisition unit 2 has a first acquisition channel for acquiring a reference signal CH0 and a second acquisition channel for synchronously acquiring a reflected signal CH1, the reflected signal CH1 is a signal reflected after the incident signal CH0' passes through the cable 7 under test.

分析控制单元3与信号发生单元1以及信号采集单元2分别通信相连,分析控制单元3包括对参考信号CH0和入射信号CH0’的信号频率以及持续时间进行控制的控制模块,以及对信号采集单元2采集到的参考信号CH0与反射信号CH1进行处理的数据分析模块。The analysis control unit 3 is connected to the signal generation unit 1 and the signal acquisition unit 2 respectively. The analysis control unit 3 includes a control module that controls the signal frequency and duration of the reference signal CH0 and the incident signal CH0', and controls the signal acquisition unit 2. A data analysis module for processing the collected reference signal CH0 and reflected signal CH1.

数据存储单元4与分析控制单元3通信连接用于存储数据。本实施例中,数据存储单元4使用合理的数据结构存储被测电缆7的信息、检测到的数据和分析结果,并具有历史数据检索功能。The data storage unit 4 is communicatively connected with the analysis control unit 3 for storing data. In this embodiment, the data storage unit 4 uses a reasonable data structure to store the information of the tested cable 7, detected data and analysis results, and has a historical data retrieval function.

本实施例中,参考信号CH0和入射信号CH0’为频率不高于100MHz的扫频正弦波信号。In this embodiment, the reference signal CH0 and the incident signal CH0' are sweeping sine wave signals with a frequency not higher than 100 MHz.

本实施例中,信号采集单元2为双通道数字示波器。In this embodiment, the signal acquisition unit 2 is a dual-channel digital oscilloscope.

本实施例中,该装置还包括通讯单元5和人机交互单元6,各单元模块之间的关联参见附图2所示。In this embodiment, the device also includes a communication unit 5 and a human-computer interaction unit 6 , and the association between each unit module is shown in FIG. 2 .

通讯单元5与数据存储单元4通信连接,用于发送和接收数据,使得本申请的装置可以与其他装置实现数据交换和共享。The communication unit 5 communicates with the data storage unit 4 for sending and receiving data, so that the device of the present application can exchange and share data with other devices.

人机交互单元6与分析控制单元3、数据存储单元4和通讯单元5分别通信连接,人机交互单元6具有人机交互接口和显示界面,用于接收用户输入的被测电缆7的信息和检测指令,并显示被测电缆7的阻抗频谱图、被测电缆7的功率谱图等分析数据,并提供当前与历史的数据比较结果。The human-computer interaction unit 6 is connected to the analysis control unit 3, the data storage unit 4 and the communication unit 5 respectively. The human-computer interaction unit 6 has a human-computer interaction interface and a display interface, and is used to receive the information and information of the tested cable 7 input by the user. Detect instructions, and display the analysis data such as the impedance spectrum diagram of the tested cable 7, the power spectrum diagram of the tested cable 7, and provide the current and historical data comparison results.

实际操作时,参考信号CH0和入射信号CH0’的扫频范围和扫描点数由操作者指定,例如设置扫频范围1~100MHz,扫频点数为1000000,则入射信号CH0’和参考信号CH0的步进频率依次为1Hz,100Hz,200Hz,300Hz,400Hz,……每个频率至少持续10个完整周期的正弦波。为了保证检测结果的精度,采样频率应大于参考信号频率的100倍。In actual operation, the frequency sweep range and number of sweep points of the reference signal CH0 and the incident signal CH0' are specified by the operator. For example, if the frequency sweep range is set to 1-100MHz and the number of sweep points is 1,000,000, then the step of the incident signal CH0' and the reference signal CH0 The input frequency is 1Hz, 100Hz, 200Hz, 300Hz, 400Hz, ... Each frequency lasts at least 10 complete cycles of sine wave. In order to ensure the accuracy of the detection results, the sampling frequency should be greater than 100 times the frequency of the reference signal.

本发明还提供采用上述装置用以进行电缆局部缺陷评估的方法,包括如下步骤:The present invention also provides a method for evaluating local defects of cables using the above-mentioned device, including the following steps:

(1)采用信号发生单元1发射入射信号CH0’和参考信号CH0,入射信号CH0’从被测电缆7的一端射入,采用信号采集单元2的第一采集通道采集入射信号CH0’经过被测电缆7后的反射信号CH1,同步的,采用信号采集单元2的第二采集通道采集参考信号CH0;(1) Use the signal generation unit 1 to transmit the incident signal CH0' and the reference signal CH0, the incident signal CH0' is injected from one end of the cable 7 under test, and the first acquisition channel of the signal acquisition unit 2 is used to collect the incident signal CH0' through the measured The reflected signal CH1 behind the cable 7 is synchronized, and the second acquisition channel of the signal acquisition unit 2 is used to acquire the reference signal CH0;

(2)根据反射信号CH1和参考信号CH0计算扫频段内被测电缆7的阻抗;(2) Calculate the impedance of the cable 7 under test in the frequency sweep section according to the reflected signal CH1 and the reference signal CH0;

(3)定义一个新的域变换,将步骤(2)计算得到的阻抗的频谱函数变换为沿被测电缆7长度方向的功率谱函数;(3) define a new domain transform, transform the spectral function of the impedance that step (2) calculates into the power spectral function along the 7 length directions of the cable under test;

(4)将步骤(3)中功率谱函数大于0dB的点视为沿被测电缆7长度方向上因存在电气性能不连续而产生了回波,电气性能不连续的位置即为被测电缆的局部缺陷位置。(4) The point where the power spectrum function is greater than 0dB in step (3) is regarded as an echo due to the existence of electrical performance discontinuity along the length direction of the tested cable 7, and the position of the electrical performance discontinuity is the measured cable. local defect location.

参考信号CH0选择从ω1到ω2的扫频信号,ω2的确定取决于被测电缆7的长度,一般地,被测电缆7越短,ω2取值越大;反射信号CH1是入射信号CH0’经过被测电缆7的阻抗ZDUT后的信号,其幅值和相位均发生了改变;使用反射信号CH1和参考信号CH0计算的被测电缆7的阻抗ZDUT,它是入射信号CH0’的频率的函数,计算公式如下:The reference signal CH0 selects the frequency sweep signal from ω 1 to ω 2 , and the determination of ω 2 depends on the length of the tested cable 7. Generally, the shorter the tested cable 7, the larger the value of ω 2 ; the reflected signal CH1 is the incident After the signal CH0' passes through the impedance Z DUT of the cable under test 7, its amplitude and phase have changed; the impedance Z DUT of the cable under test 7 calculated using the reflected signal CH1 and the reference signal CH0 is the incident signal CH0 'The function of the frequency, the calculation formula is as follows:

其中,ZDUT是被测电缆7的阻抗,Z1是用于采集反射信号CH1的第一采集通道的阻抗,可根据被测电缆7特性阻抗选择20欧姆或50欧姆;V1为第一采集通道处测得的电压矢量值;V0为第二采集通道处测得的电压矢量值。Among them, Z DUT is the impedance of the cable 7 under test, and Z 1 is the impedance of the first acquisition channel used to collect the reflected signal CH1, which can be selected from 20 ohms or 50 ohms according to the characteristic impedance of the cable 7 under test; V 1 is the first acquisition The voltage vector value measured at the channel; V 0 is the voltage vector value measured at the second acquisition channel.

测量电路示意图如附图3所示,其中Rb为信号发生单元1的内阻,Rg为电路上的寄生阻抗。上式(1-01)表明ZDUT与电阻Rb和Rg无关,ZDUT仅是一个V0至V1的传递函数。The schematic diagram of the measurement circuit is shown in Fig. 3, wherein Rb is the internal resistance of the signal generating unit 1, and Rg is the parasitic impedance on the circuit. The above formula (1-01) shows that Z DUT has nothing to do with resistors Rb and Rg, and Z DUT is only a transfer function from V 0 to V 1 .

通过选择适当的窗函数(如汉明窗)来消除噪声,根据式(1-01)可以计算扫频段内ω1至ω2之间被测电缆7阻抗的频谱。By selecting an appropriate window function (such as a Hamming window) to eliminate noise, according to formula (1-01), the frequency spectrum of the impedance of the tested cable 7 between ω 1 and ω 2 in the frequency sweep can be calculated.

根据被测电缆7的阻抗谱函数,可以计算以下参数:According to the impedance spectrum function of the tested cable 7, the following parameters can be calculated:

(1)谐振频率,在阻抗相位角为零处的频率值。(1) Resonant frequency, the frequency value at which the impedance phase angle is zero.

(2)计算被测电缆7的阻抗ZDUT,在阻抗相位角的任意局部最大值(或最小值)处对应阻抗的幅值。(2) Calculate the impedance Z DUT of the cable under test 7 , and correspond to the magnitude of the impedance at any local maximum value (or minimum value) of the impedance phase angle.

本发明还提供一种通过被测电缆7阻抗ZDUT用以定位被测电缆7局部缺陷位置的方法。The present invention also provides a method for locating the local defect position of the tested cable 7 through the impedance Z DUT of the tested cable 7 .

式(0-07)是附图1的复变函数表达式,图中显示了阻抗的幅值和相位随入射信号CH0’频率的变化。阻抗谱函数的伪周期性是来源于Γd的周期性,Γd方程式(0-08)也可以写为:Equation (0-07) is the expression of the complex variable function in Fig. 1, in which the magnitude and phase of the impedance vary with the frequency of the incident signal CH0'. The pseudo-periodicity of the impedance spectrum function is derived from the periodicity of Γ d , and the Γ d equation (0-08) can also be written as:

Γd=ΓL·e-2γd=ΓL·e-2αd·e-2jβd (0-10)Γ d = Γ L · e -2γd = Γ L · e -2αd · e -2jβd (0-10)

由于衰减系数α,阻抗的幅值沿电缆长度d下降。若以d为独立变量时,Γd的伪周期为1/2β。Due to the attenuation factor α, the magnitude of the impedance drops along the cable length d. If d is taken as an independent variable, the pseudo-period of Γ d is 1/2β.

将方程式(0-05)代入方程式(0-10)有Substituting equation (0-05) into equation (0-10) has

其中f是入射信号CH0’的频率,ν是被测电缆7中信号传播的相速度。设定f为独立变量,定义一个新变换:where f is the frequency of the incident signal CH0' and ν is the phase velocity of signal propagation in the cable 7 under test. Let f be the independent variable and define a new transformation:

f→t′ (1-02)f→t′ (1-02)

其中νr=ν/ν0,νr是入射信号CH0’在被测电缆7中的相对相速度,ν0是光在真空中的传播速度。Wherein ν r =ν/ν 0 , ν r is the relative phase velocity of the incident signal CH0' in the cable 7 under test, and ν 0 is the propagation speed of light in vacuum.

将ΓL·e-2αd设为A,则方程式(0-11)经t′变换为:Set Γ L e -2αd as A, then the equation (0-11) is transformed by t′ into:

Γd=A·e-jω′t′ (0-12)Γ d =A·e -jω′t′ (0-12)

式(0-12)给出了一个径向频率为ω′和振幅为A的伪周期函数。在实际有损耗的被测电缆7中,衰减系数α使得振A随t′递减,从而产生如附图1中的阻尼振荡。在t′域中,该函数的频率f′是:Equation (0-12) gives a pseudo-periodic function with radial frequency ω' and amplitude A. In the actual lossy cable 7 under test, the attenuation coefficient α makes the vibration A decrease gradually with t′, thus producing damped oscillation as shown in FIG. 1 . In the t' domain, the frequency f' of this function is:

其中f′是t′域中相位函数的基波频率,也是入射信号CH0’从入射点传播至被测电缆7终端d后再返回入射点的时间,因此f′还具有时间维度。如附图4所示,在t′域中,阻抗相位的傅里叶变换(功率谱)横轴的终端d处对应了方程式(1-04)中给出的基波频率f′。Where f' is the fundamental frequency of the phase function in the t' domain, and it is also the time for the incident signal CH0' to propagate from the incident point to the terminal d of the cable 7 under test and then return to the incident point, so f' also has a time dimension. As shown in Figure 4, in the t' domain, the terminal d of the horizontal axis of the Fourier transform (power spectrum) of the impedance phase corresponds to the fundamental frequency f' given in equation (1-04).

当距离被测电缆7入射点x处存在局部缺陷(通常表现为电气参数不连续,例如绝缘的介电特性发生微小变化)时,该处将产生另一个回波,这会在阻抗相位的功率谱中产生一个新的频率分量,根据方程式(1-04),这个频率为:When there is a local defect (usually manifested as a discontinuity in electrical parameters, such as a small change in the dielectric properties of the insulation) at a distance from the incident point x of the tested cable 7, another echo will be generated there, which will cause the power of the impedance phase A new frequency component is generated in the spectrum. According to equation (1-04), this frequency is:

如果已知被测电缆7长度d,在t′域中通过识别阻抗相位功率谱中的f′和f″,根据方程式(1-04)和(1-05),可以计算电缆存在电气不连续性(即x处)的位置:If the length d of the tested cable 7 is known, by identifying f' and f" in the impedance phase power spectrum in the t' domain, according to the equations (1-04) and (1-05), the electrical discontinuity of the cable can be calculated Sex (i.e. the position at x):

通过以上方法可以计算出任何由于电气参数不连续性而产生回波的位置,传输线阻抗谱函数中的处基波频率之外的频率分量都表征了某个位置产生了回波。如附图4所示,在t′域中,阻抗相位的功率谱横轴的x处(即距离入射点x处)因被测电缆7存在电气参数不连续而发生了回波。The above method can be used to calculate any position where an echo is generated due to the discontinuity of the electrical parameters, and the frequency components other than the fundamental frequency in the transmission line impedance spectrum function represent an echo generated at a certain position. As shown in FIG. 4 , in the t′ domain, an echo occurs at x on the horizontal axis of the power spectrum of the impedance phase (that is, at a distance from the incident point x) due to the electrical parameter discontinuity of the tested cable 7 .

当对被测电缆7进行状态监测时,通常会计算出若干电气参数不连续的位置,每个位置都对应了功率谱中一个频率分量fn,根据以下方法计算与其对应的缺陷位置xnWhen performing state monitoring on the cable 7 under test, usually a number of positions where the electrical parameters are discontinuous are calculated, each position corresponds to a frequency component f n in the power spectrum, and the corresponding defect position x n is calculated according to the following method:

上述计算得到的xn即为频率分量fn对应的缺陷与所述入射点之间的距离。The x n obtained by the above calculation is the distance between the defect corresponding to the frequency component f n and the incident point.

本发明还提供一种评估被测电缆7局部缺陷严重程度的方法。如附图4所示的功率谱中任何高于0dB的尖峰均可认定其所在位置存在局部缺陷。但是该处的峰值不能直接用于评估局部缺陷的严重程度,因为峰值还会受缺陷点与入射点的距离、信号在被测电缆7中的衰减以及扫频信号带宽的影响。The present invention also provides a method for evaluating the severity of local defects of the tested cable 7 . Any peak higher than 0dB in the power spectrum shown in Fig. 4 can be determined to have a local defect at its location. However, the peak value here cannot be directly used to evaluate the severity of the local defect, because the peak value is also affected by the distance between the defect point and the incident point, the attenuation of the signal in the tested cable 7 and the bandwidth of the sweep signal.

定义一个状态指标DNORM(degree of normalized degradation)用于评估被测电缆7缺陷的严重程度。附图5使用功率谱图像给出了DNORM的定义:任何局部缺陷处的尖峰都会在被测电缆7终端的另一侧产生一个镜像峰,这个镜像峰是由缺陷处与被测电缆7终端之间的二次反射产生的,该镜像峰所在的位置与被测电缆7终端之间的距离与局部缺陷与被测电缆7终端之间的距离相等,已知被测电缆7长度为d,局部缺陷的位置为x,则这个镜像峰距离被测电缆7入射点的距离为2×d-x。缺陷位置产生的峰的峰顶与镜像峰的峰顶通过一条直线相连,该直线的斜率用于表征回波峰的幅值沿电缆长度方向的变化趋势。设TP为被测电缆7终端的峰值,DNORM定义为缺陷峰沿趋势线至终端峰处与TP的差值。该方法可以有效补偿缺陷处产生的回波沿被测电缆7长度方向的衰减量,DNORM的绝对值越大,则表明缺陷处产生的回波越强,缺陷越严重。通常将DNORM绝对值大于10作为被测电缆7局部缺陷的判据。对同一根电缆,不同时间检测到的DNORM可以用于跟踪缺陷部位的劣化趋势。A state indicator DNORM (degree of normalized degradation) is defined for evaluating the severity of the defect of the tested cable 7 . Accompanying drawing 5 has given the definition of DNORM with the power spectrum image: any peak at the local defect will produce a mirror image peak on the other side of the terminal of the cable 7 under test, and this mirror peak is caused by the difference between the defect and the terminal of the cable 7 under test. The distance between the position of the image peak and the terminal of the tested cable 7 is equal to the distance between the local defect and the terminal of the tested cable 7. It is known that the length of the tested cable 7 is d, and the local The position of the defect is x, then the distance between the image peak and the incident point of the tested cable 7 is 2×d-x. The peak top of the peak generated by the defect position is connected with the peak top of the mirror image peak by a straight line, and the slope of the straight line is used to represent the variation trend of the amplitude of the echo peak along the length of the cable. Let TP be the peak value of the terminal of the tested cable 7, and DNORM is defined as the difference between the defect peak along the trend line to the terminal peak and TP. This method can effectively compensate the attenuation of the echo generated at the defect along the length direction of the tested cable 7. The larger the absolute value of DNORM, the stronger the echo generated at the defect and the more serious the defect. Usually, the absolute value of DNORM greater than 10 is used as the criterion for the local defect of the tested cable 7 . For the same cable, the DNORM detected at different times can be used to track the deterioration trend of the defect.

参见附图4和附图5,在本实施例中,被测电缆7的长度为d=30.5米,测得局部缺陷的位置与入射点的距离x=22.3米,则镜像峰的位置为2×d-x=38.7米,连接功率谱图中横坐标为22.3米以及38.7米处两峰的峰顶形成趋势线,DNORM定义为在横坐标为30.5米处,该趋势线与电缆终端的峰值在纵坐标上的差值。Referring to accompanying drawing 4 and accompanying drawing 5, in the present embodiment, the length of tested cable 7 is d=30.5 meters, and the distance x=22.3 meters of the position of recorded local defect and incident point, then the position of mirror image peak is 2 ×d-x=38.7 meters, the abscissa in the connecting power spectrum is 22.3 meters and the peaks of the two peaks at 38.7 meters form a trend line, DNORM is defined as the abscissa at 30.5 meters, the trend line and the peak value of the cable terminal are in the vertical direction difference in coordinates.

本发明通过扫频方法测量并计算扫频段内被测电缆7阻抗的频谱,并在频域内对谱函数进行变换,在新域中实现对缺陷的定位,本发明与现有的电缆故障定位技术相比,抗噪性强、适用性广,并且能评估被测电缆7缺陷的严重程度。The present invention measures and calculates the frequency spectrum of the measured cable 7 impedance in the sweeping frequency band by means of a frequency sweeping method, and transforms the spectral function in the frequency domain to realize the location of defects in the new domain. The present invention is compatible with the existing cable fault location technology Compared with the invention, it has strong noise resistance, wide applicability, and can evaluate the severity of the defect of the tested cable 7 .

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。The above-mentioned embodiments are only to illustrate the technical concept and characteristics of the present invention, and the purpose is to enable those skilled in the art to understand the content of the present invention and implement it accordingly, and not to limit the protection scope of the present invention. All equivalent changes or modifications made according to the spirit of the present invention shall fall within the protection scope of the present invention.

Claims (10)

1.一种基于阻抗频谱分析的电缆局部缺陷评估的装置,其特征在于,所述装置至少包括:1. A device for cable local defect assessment based on impedance spectrum analysis, characterized in that said device at least includes: 信号发生单元,其用于产生指定频率的正弦波信号,其中一路作为向被测电缆一端发射的入射信号,另一路作为参考信号,所述入射信号和所述参考信号具有相同的幅值和相位;A signal generating unit, which is used to generate a sine wave signal of a specified frequency, one of which is used as an incident signal transmitted to one end of the cable under test, and the other is used as a reference signal, and the incident signal and the reference signal have the same amplitude and phase ; 信号采集单元,其具有用于采集所述参考信号的第一采集通道和用于同步采集反射信号的第二采集通道,其中,所述反射信号为由所述入射信号经过所述被测电缆后反射的信号;A signal acquisition unit, which has a first acquisition channel for acquiring the reference signal and a second acquisition channel for synchronously acquiring a reflection signal, wherein the reflection signal is formed by the incident signal passing through the cable under test reflected signal; 分析控制单元,其与所述信号发生单元以及所述信号采集单元分别通信相连,包括对所述入射信号和所述参考信号的信号频率以及持续时间进行控制的控制模块,以及对所述信号采集单元采集到的所述反射信号与所述参考信号进行处理的数据分析模块;An analysis control unit, which is connected to the signal generation unit and the signal acquisition unit respectively, includes a control module that controls the signal frequency and duration of the incident signal and the reference signal, and controls the signal acquisition unit A data analysis module for processing the reflected signal collected by the unit and the reference signal; 数据存储单元,其与所述分析控制单元通信连接以存储所述分析控制单元获取到的信号数据及分析处理的结果数据。A data storage unit is connected in communication with the analysis control unit to store the signal data acquired by the analysis control unit and the result data of analysis processing. 2.根据权利要求1所述的一种基于阻抗频谱分析的电缆局部缺陷评估的装置,其特征在于:所述装置还包括与所述数据存储单元通信连接用于发送和接收数据的通讯单元。2. A device for evaluating cable local defects based on impedance spectrum analysis according to claim 1, characterized in that said device further comprises a communication unit communicating with said data storage unit for sending and receiving data. 3.根据权利要求2所述的一种基于阻抗频谱分析的电缆局部缺陷评估的装置,其特征在于:所述装置还包括分别与所述分析控制单元、所述数据存储单元和所述通讯单元分别通信连接的人机交互单元,所述人机交互单元具有人机交互接口和显示界面,用于接收输入的信息并由所述显示界面显示信息。3. A device for evaluating cable local defects based on impedance spectrum analysis according to claim 2, characterized in that: said device also includes a device that communicates with said analysis control unit, said data storage unit and said communication unit respectively A human-computer interaction unit connected by communication, the human-computer interaction unit has a human-computer interaction interface and a display interface, and is used to receive input information and display the information through the display interface. 4.根据权利要求1所述的一种基于阻抗频谱分析的电缆局部缺陷评估的装置,其特征在于:所述入射信号和所述参考信号为不高于100MHz的扫频正弦波信号,所述信号采集单元为双通道数字示波器。4. A device for evaluating cable local defects based on impedance spectrum analysis according to claim 1, characterized in that: said incident signal and said reference signal are sweeping sine wave signals not higher than 100MHz, said The signal acquisition unit is a dual-channel digital oscilloscope. 5.一种采用如权利要求1至4任一项所述的装置进行电缆局部缺陷评估的方法,其特征在于,包括如下步骤:5. A method for evaluating cable local defects using the device according to any one of claims 1 to 4, characterized in that it comprises the steps of: (1)采用所述信号发生单元产生所述入射信号和所述参考信号,所述入射信号从所述被测电缆的一端射入,采用所述信号采集单元的所述第一采集通道采集所述入射信号经过所述被测电缆后的反射信号,同步的,采用所述信号采集单元的所述第二采集通道采集所述参考信号;(1) Using the signal generation unit to generate the incident signal and the reference signal, the incident signal is injected from one end of the cable under test, and the first acquisition channel of the signal acquisition unit is used to collect the incident signal Synchronously, using the second acquisition channel of the signal acquisition unit to acquire the reference signal as the reflected signal after the incident signal passes through the cable under test; (2)根据所述反射信号和所述参考信号计算扫频段内所述被测电缆的阻抗;(2) Calculate the impedance of the cable under test in the frequency sweep section according to the reflected signal and the reference signal; (3)定义一个新的域变换,将步骤(2)计算得到的阻抗的频谱函数变换为沿所述被测电缆长度方向的功率谱函数;(3) define a new domain transformation, transform the spectral function of the impedance that step (2) calculates into the power spectral function along the length direction of the cable under test; (4)将步骤(3)中所述功率谱函数大于0dB的点视为沿所述被测电缆长度方向上因存在电气性能不连续而产生了回波,所述电气性能不连续的位置即为所述被测电缆的局部缺陷位置。(4) The point where the power spectrum function is greater than 0dB in the step (3) is regarded as an echo due to the presence of electrical performance discontinuity along the length direction of the tested cable, and the position of the electrical performance discontinuity is is the local defect position of the tested cable. 6.根据权利要求5所述的电缆局部缺陷评估的方法,其特征在于:所述步骤(2)中,所述被测电缆阻抗的计算方法如下:6. The method for cable local defect assessment according to claim 5, characterized in that: in the step (2), the calculation method of the measured cable impedance is as follows: <mrow> <msub> <mi>Z</mi> <mrow> <mi>D</mi> <mi>U</mi> <mi>T</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mi>V</mi> <mn>0</mn> </msub> <msub> <mi>V</mi> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>01</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>Z</mi><mrow><mi>D</mi><mi>U</mi><mi>T</mi></mrow></msub><mo>=</mo><msub><mi>Z</mi><mn>1</mn></msub><mo>&amp;CenterDot;</mo><mrow><mo>(</mo><mfrac><msub><mi>V</mi><mn>0</mn></msub><msub><mi>V</mi><mn>1</mn></msub></mfrac><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>01</mn><mo>)</mo></mrow></mrow> 其中,ZDUT是所述被测电缆的阻抗,Z1是用于采集所述反射信号的所述第一采集通道的阻抗,V1为所述第一采集通道处测得的电压矢量值,V0为所述第二采集通道处测得的电压矢量值。Wherein, ZDUT is the impedance of the cable under test, Z1 is the impedance of the first acquisition channel used to collect the reflected signal, and V1 is the voltage vector value measured at the first acquisition channel place, V 0 is the voltage vector value measured at the second acquisition channel. 7.根据权利要求6所述的电缆局部缺陷评估的方法,其特征在于:所述步骤(3)中,将计算得到的频谱函数变换为功率谱函数的方法如下:7. the method for cable local defect assessment according to claim 6, is characterized in that: in described step (3), the method that the spectrum function that calculates is transformed into power spectrum function is as follows: f→t′ (1-02)f→t′ (1-02) <mrow> <mfrac> <mrow> <mn>4</mn> <mi>&amp;pi;</mi> <mi>d</mi> </mrow> <mrow> <msub> <mi>v</mi> <mi>r</mi> </msub> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>&amp;RightArrow;</mo> <msup> <mi>&amp;omega;</mi> <mo>&amp;prime;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>03</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfrac><mrow><mn>4</mn><mi>&amp;pi;</mi><mi>d</mi></mrow><mrow><msub><mi>v</mi><mi>r</mi></msub><msub><mi>v</mi><mn>0</mn></msub></mrow></mfrac><mo>&amp;RightArrow;</mo><msup><mi>&amp;omega;</mi><mo>&amp;prime;</mo></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>03</mn><mo>)</mo></mrow></mrow> 其中,νr=ν/ν0where ν r =ν/ν 0 ; f是所述入射信号的频率,f为独立变量;f is the frequency of the incident signal, and f is an independent variable; d为被测电缆的长度;d is the length of the cable under test; ν是所述入射信号在所述被测电缆中传播的相速度;ν is the phase velocity at which the incident signal propagates in the cable under test; νr是所述入射信号在所述被测电缆中的相对相速度;ν r is the relative phase velocity of the incident signal in the cable under test; ν0是光在真空中的传播速度。 ν0 is the speed of light in vacuum. 8.根据权利要求7所述的电缆局部缺陷评估的方法,其特征在于:所述步骤(4)中缺陷位置的定位方法如下:8. The method for cable local defect assessment according to claim 7, characterized in that: the positioning method of the defect position in the step (4) is as follows: 计算在t′域中函数的频率f′,Calculate the frequency f' of the function in the domain t', <mrow> <msup> <mi>f</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <msup> <mi>&amp;omega;</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>d</mi> </mrow> <mrow> <msub> <mi>v</mi> <mi>r</mi> </msub> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>04</mn> <mo>)</mo> </mrow> </mrow> <mrow><msup><mi>f</mi><mo>&amp;prime;</mo></msup><mo>=</mo><mfrac><msup><mi>&amp;omega;</mi><mo>&amp;prime;</mo></msup><mrow><mn>2</mn><mi>&amp;pi;</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><msub><mi>v</mi><mi>r</mi></msub><msub><mi>v</mi><mn>0</mn></msub></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>04</mn><mo>)</mo></mrow></mrow> f′是t′域中相位函数的基波频率,也是所述入射信号从所述被测电缆的入射点传播至所述被测电缆的终端后再返回所述入射点的时间;f' is the fundamental frequency of the phase function in the t' domain, and is also the time when the incident signal propagates from the incident point of the cable under test to the terminal of the cable under test and then returns to the incident point; 当距离所述入射点距离为x处存在局部缺陷时,该处产生回波,使阻抗相位的功率谱中产生一个新的频率分量,这个频率为:When there is a local defect at a distance x from the incident point, an echo is generated there, so that a new frequency component is generated in the power spectrum of the impedance phase, and this frequency is: <mrow> <msup> <mi>f</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>x</mi> </mrow> <mrow> <msub> <mi>v</mi> <mi>r</mi> </msub> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>05</mn> <mo>)</mo> </mrow> </mrow> <mrow><msup><mi>f</mi><mrow><mo>&amp;prime;</mo><mo>&amp;prime;</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msub><mi>v</mi><mi>r</mi></msub><msub><mi>v</mi><mn>0</mn></msub></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>05</mn><mo>)</mo></mrow></mrow> 在t′域中通过识别所述阻抗相位功率谱中的f′和f″,计算由于电气参数不连续而产生回波的位置:By identifying f' and f" in the impedance phase power spectrum in the t' domain, the position of the echo due to the electrical parameter discontinuity is calculated: <mrow> <mi>x</mi> <mo>=</mo> <mi>d</mi> <mo>&amp;CenterDot;</mo> <mfrac> <msup> <mi>f</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <msup> <mi>f</mi> <mo>&amp;prime;</mo> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>06</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>x</mi><mo>=</mo><mi>d</mi><mo>&amp;CenterDot;</mo><mfrac><msup><mi>f</mi><mrow><mo>&amp;prime;</mo><mo>&amp;prime;</mo></mrow></msup><msup><mi>f</mi><mo>&amp;prime;</mo></msup></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>06</mn><mo>)</mo></mrow></mrow> 上述计算得到的x即为所述被测电缆的缺陷位置距离所述入射点之间的距离。The x obtained by the above calculation is the distance between the defect position of the tested cable and the incident point. 9.根据权利要求8所述的电缆局部缺陷评估的方法,其特征在于:当所述被测电缆沿其长度方向有多个局部缺陷时,每个缺陷位置都对应了功率谱中的一个频率分量,通过频率分量fn计算与其对应的缺陷位置xn9. The method for cable local defect assessment according to claim 8, characterized in that: when the cable under test has a plurality of local defects along its length direction, each defect position corresponds to a frequency in the power spectrum Component, calculate the defect position x n corresponding to it through the frequency component f n : <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>=</mo> <mi>d</mi> <mo>&amp;CenterDot;</mo> <mfrac> <msub> <mi>f</mi> <mi>n</mi> </msub> <msup> <mi>f</mi> <mo>&amp;prime;</mo> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>07</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>x</mi><mi>n</mi></msub><mo>=</mo><mi>d</mi><mo>&amp;CenterDot;</mo><mfrac><msub><mi>f</mi><mi>n</mi></msub><msup><mi>f</mi><mo>&amp;prime;</mo></msup></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>07</mn><mo>)</mo></mrow></mrow> 上述计算得到的xn即为频率分量fn对应的缺陷与所述入射点的距离。The x n obtained by the above calculation is the distance between the defect corresponding to the frequency component f n and the incident point. 10.根据权利要求5所述的电缆局部缺陷评估的方法,其特征在于,所述评估方法还包括如下步骤:(5)找出功率谱图中缺陷部位在所述被测电缆终端的另一侧产生的镜像峰,其中,所述镜像峰所在的位置到所述被测电缆终端的距离与缺陷部位到所述被测电缆终端的距离相等,将缺陷部位的峰顶与所述镜像峰峰顶用一条直线相连作为回波信号沿所述被测电缆长度方向上衰减的趋势线,该趋势线与以所述被测电缆终端位置为横坐标的纵向辅助线之间有一个交点,使用所述交点与所述终端峰峰值之间的距离用于评估所述电缆局部缺陷的严重程度。10. The method for cable local defect evaluation according to claim 5, characterized in that, said evaluation method also comprises the steps of: (5) find out the defect position in the other end of said tested cable terminal in the power spectrum. The mirror image peak generated on the side, wherein, the distance from the position of the mirror image peak to the terminal of the tested cable is equal to the distance from the defect site to the terminal of the cable under test, and the peak of the defect site is compared with the peak of the mirror image peak The top is connected with a straight line as the trend line of the attenuation of the echo signal along the length direction of the tested cable, and there is an intersection point between the trend line and the longitudinal auxiliary line with the terminal position of the tested cable as the abscissa, using the The distance between the intersection point and the peak-to-peak value of the terminal is used to evaluate the severity of local defects of the cable.
CN201711154670.9A 2017-11-20 2017-11-20 A kind of apparatus and method of the cable local defect assessment based on impedance spectrum analysis Pending CN107942198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711154670.9A CN107942198A (en) 2017-11-20 2017-11-20 A kind of apparatus and method of the cable local defect assessment based on impedance spectrum analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711154670.9A CN107942198A (en) 2017-11-20 2017-11-20 A kind of apparatus and method of the cable local defect assessment based on impedance spectrum analysis

Publications (1)

Publication Number Publication Date
CN107942198A true CN107942198A (en) 2018-04-20

Family

ID=61931966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711154670.9A Pending CN107942198A (en) 2017-11-20 2017-11-20 A kind of apparatus and method of the cable local defect assessment based on impedance spectrum analysis

Country Status (1)

Country Link
CN (1) CN107942198A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828015A (en) * 2018-09-10 2018-11-16 西南石油大学 A kind of method and device for the local faint physical damnification positioning of cable
CN109061397A (en) * 2018-10-11 2018-12-21 南方电网科学研究院有限责任公司 Line fault area identification method
CN109959845A (en) * 2019-04-04 2019-07-02 中国电力科学研究院有限公司 A method and system for locating local defects in cable lines
CN110333425A (en) * 2019-07-22 2019-10-15 上海仁童电子科技有限公司 A kind of cable detection method and device
CN110763931A (en) * 2019-10-10 2020-02-07 华中科技大学 Method and system for testing high frequency transmission characteristics of coaxial cable
CN112748306A (en) * 2020-12-09 2021-05-04 国网上海市电力公司 Method and system for positioning cable fault based on Kalman filtering
CN112763843A (en) * 2020-12-21 2021-05-07 西安交通大学 Cable multi-section defect positioning method and device based on Chebyshev window
CN112924751A (en) * 2021-01-27 2021-06-08 西安航天动力试验技术研究所 Method for detecting reliability of measuring line based on spectrum analysis
CN113074620A (en) * 2021-05-11 2021-07-06 北京理工大学 Metal pipeline composite parameter measuring method and system based on elevation intersection point
CN113075501A (en) * 2021-03-26 2021-07-06 华中科技大学 Cable fault positioning method and system based on impedance spectrum periodic characteristics
CN113281612A (en) * 2021-05-18 2021-08-20 国网江苏省电力有限公司无锡供电分公司 Local defect aging diagnosis and evaluation method for power cable
CN113281614A (en) * 2021-05-18 2021-08-20 国网江苏省电力有限公司无锡供电分公司 Power cable broadband impedance spectrum testing method
CN113567828A (en) * 2021-06-15 2021-10-29 中国电子科技集团公司第十三研究所 Nondestructive failure detection method for multilayer low-temperature co-fired ceramic substrate
CN114397548A (en) * 2022-03-28 2022-04-26 广东电网有限责任公司惠州供电局 A cable insulation state detection system and method based on FPGA chip
CN115032496A (en) * 2022-05-06 2022-09-09 苏州热工研究院有限公司 Distance compensation method and system for instrument-controlled multi-core cable defect detection
CN115577736A (en) * 2022-09-16 2023-01-06 北京燃气平谷有限公司 Gas leakage evaluation system and leakage evaluation method
CN117517783A (en) * 2024-01-02 2024-02-06 成都迅翼卫通科技有限公司 Single-port impedance detection device and method and electronic equipment
CN118152936A (en) * 2024-05-09 2024-06-07 广东电网有限责任公司阳江供电局 Cable analysis method and system based on impedance spectrum
US12352799B2 (en) * 2022-03-28 2025-07-08 Huizhou Power Supply Bureau Of Guangdong Power Grid Co., Ltd. FPGA chip-based system and method for detecting cable insulation state

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090228222A1 (en) * 2005-10-03 2009-09-10 Fantoni Paolo F Line Resonance Analysis System
CN104937427A (en) * 2012-10-24 2015-09-23 维尔斯坎有限公司 Method and system for monitoring a condition of electrical cables

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090228222A1 (en) * 2005-10-03 2009-09-10 Fantoni Paolo F Line Resonance Analysis System
CN104937427A (en) * 2012-10-24 2015-09-23 维尔斯坎有限公司 Method and system for monitoring a condition of electrical cables

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828015A (en) * 2018-09-10 2018-11-16 西南石油大学 A kind of method and device for the local faint physical damnification positioning of cable
CN108828015B (en) * 2018-09-10 2021-04-13 西南石油大学 Method and device for positioning local weak physical damage of cable
CN109061397A (en) * 2018-10-11 2018-12-21 南方电网科学研究院有限责任公司 Line fault area identification method
CN109061397B (en) * 2018-10-11 2020-07-28 南方电网科学研究院有限责任公司 Line fault area identification method
CN109959845A (en) * 2019-04-04 2019-07-02 中国电力科学研究院有限公司 A method and system for locating local defects in cable lines
CN110333425A (en) * 2019-07-22 2019-10-15 上海仁童电子科技有限公司 A kind of cable detection method and device
CN110333425B (en) * 2019-07-22 2021-03-23 上海仁童电子科技有限公司 Cable detection method and device
CN110763931A (en) * 2019-10-10 2020-02-07 华中科技大学 Method and system for testing high frequency transmission characteristics of coaxial cable
CN112748306A (en) * 2020-12-09 2021-05-04 国网上海市电力公司 Method and system for positioning cable fault based on Kalman filtering
CN112748306B (en) * 2020-12-09 2024-01-09 国网上海市电力公司 Method and system for positioning cable faults based on Kalman filtering
CN112763843A (en) * 2020-12-21 2021-05-07 西安交通大学 Cable multi-section defect positioning method and device based on Chebyshev window
CN112924751A (en) * 2021-01-27 2021-06-08 西安航天动力试验技术研究所 Method for detecting reliability of measuring line based on spectrum analysis
CN113075501A (en) * 2021-03-26 2021-07-06 华中科技大学 Cable fault positioning method and system based on impedance spectrum periodic characteristics
CN113075501B (en) * 2021-03-26 2021-12-17 华中科技大学 A cable fault location method and system based on periodic characteristics of impedance spectrum
CN113074620A (en) * 2021-05-11 2021-07-06 北京理工大学 Metal pipeline composite parameter measuring method and system based on elevation intersection point
CN113074620B (en) * 2021-05-11 2022-04-08 北京理工大学 A method and system for measuring composite parameters of metal pipes based on elevation angle intersections
CN113281614A (en) * 2021-05-18 2021-08-20 国网江苏省电力有限公司无锡供电分公司 Power cable broadband impedance spectrum testing method
CN113281612B (en) * 2021-05-18 2023-03-07 国网江苏省电力有限公司无锡供电分公司 A local defect aging diagnosis and evaluation method for power cables
CN113281612A (en) * 2021-05-18 2021-08-20 国网江苏省电力有限公司无锡供电分公司 Local defect aging diagnosis and evaluation method for power cable
CN113567828A (en) * 2021-06-15 2021-10-29 中国电子科技集团公司第十三研究所 Nondestructive failure detection method for multilayer low-temperature co-fired ceramic substrate
CN114397548A (en) * 2022-03-28 2022-04-26 广东电网有限责任公司惠州供电局 A cable insulation state detection system and method based on FPGA chip
WO2023185311A1 (en) * 2022-03-28 2023-10-05 广东电网有限责任公司惠州供电局 Cable insulation state detection system and method employing fpga chip
US20250110170A1 (en) * 2022-03-28 2025-04-03 Huizhou Power Supply Bureau Of Guangdong Power Grid Co., Ltd. Cable insulation state detection system and method employing fpga chip
US12352799B2 (en) * 2022-03-28 2025-07-08 Huizhou Power Supply Bureau Of Guangdong Power Grid Co., Ltd. FPGA chip-based system and method for detecting cable insulation state
CN115032496A (en) * 2022-05-06 2022-09-09 苏州热工研究院有限公司 Distance compensation method and system for instrument-controlled multi-core cable defect detection
CN115577736A (en) * 2022-09-16 2023-01-06 北京燃气平谷有限公司 Gas leakage evaluation system and leakage evaluation method
CN117517783A (en) * 2024-01-02 2024-02-06 成都迅翼卫通科技有限公司 Single-port impedance detection device and method and electronic equipment
CN118152936A (en) * 2024-05-09 2024-06-07 广东电网有限责任公司阳江供电局 Cable analysis method and system based on impedance spectrum

Similar Documents

Publication Publication Date Title
CN107942198A (en) A kind of apparatus and method of the cable local defect assessment based on impedance spectrum analysis
RU2650717C2 (en) Method and system for monitoring condition of electrical cables
US7966137B2 (en) Line resonance analysis system
CN110514959B (en) Positioning method of cable fault FDR positioning system considering cable attenuation characteristics
CN107390100B (en) A time-reversal-based partial discharge localization method for power cables
CN113916989B (en) Method and system for detecting internal defects of high-performance epoxy insulator of power system
CN108333476A (en) A kind of cable fault TDR localization methods and system considering cable attenuation characteristic
US7940056B2 (en) Time-domain reflectometry
CN1666109A (en) Time-frequency domain reflectometry apparatus and method
CN103487727A (en) High-voltage power cable outer sheath fault online positioning method
CN113702754A (en) Distribution cable defect positioning algorithm adopting windowed Fourier transform
CN110763931A (en) Method and system for testing high frequency transmission characteristics of coaxial cable
Shi et al. Detection and location of single cable fault by impedance spectroscopy
CN115015709B (en) A method for online positioning of cable partial discharge source
CN110261739A (en) A kind of cable soft fault positioning device and localization method
Alam et al. Rod insertion TDR for detecting corrosion damage in vertical grounding electrodes
CN103439580A (en) Time domain measurement method for impedance broadband characteristic of large-scale electric equipment
Giaquinto et al. Accuracy analysis in the estimation of ToF of TDR signals
CN114545159A (en) Cable defect detection system and method
Hashmi et al. Comparing wave propagation characteristics of MV XLPE cable and covered-conductor overhead line using time domain reflectometry technique
Miroshnyk et al. Graphical Models for Defectoscopy of Dielectrics
Lee et al. Diagnosis of cables in nuclear power plants using joint time-frequency domain reflectometry
Liu et al. The propagation of partial discharge pulses in a high voltage cable
Ragusa et al. Practical Evaluation of Electromagnetic Time Reversal to Locate Partial Discharges on Power Networks in the Presence of Noise
Shi et al. A new method of locating the single wire fault

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420