CN107785776B - Curved conical photonic crystal laser, array and array light source set - Google Patents
Curved conical photonic crystal laser, array and array light source set Download PDFInfo
- Publication number
- CN107785776B CN107785776B CN201710997431.3A CN201710997431A CN107785776B CN 107785776 B CN107785776 B CN 107785776B CN 201710997431 A CN201710997431 A CN 201710997431A CN 107785776 B CN107785776 B CN 107785776B
- Authority
- CN
- China
- Prior art keywords
- photonic crystal
- curved
- light source
- array
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004038 photonic crystal Substances 0.000 title claims abstract description 112
- 230000003287 optical effect Effects 0.000 claims abstract description 37
- 230000003321 amplification Effects 0.000 claims abstract description 32
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 32
- 238000003384 imaging method Methods 0.000 claims abstract description 20
- 238000003491 array Methods 0.000 claims description 17
- 239000004065 semiconductor Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000005452 bending Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 239000002096 quantum dot Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- 239000004744 fabric Substances 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 230000006835 compression Effects 0.000 abstract description 5
- 238000007906 compression Methods 0.000 abstract description 5
- 238000009510 drug design Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 34
- 230000008859 change Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- NRVSXNNYQUIXRV-UHFFFAOYSA-N [Au][Ni][Ge][Au] Chemical compound [Au][Ni][Ge][Au] NRVSXNNYQUIXRV-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明公开了一种弯曲锥形光子晶体激光器及阵列、阵列光源组。其中,弯曲锥形光子晶体激光器包括:依次相连的脊波导部分,弯曲波导部分和锥形光放大部分;其中,脊波导部分为直波导,弯曲波导部分具有一弧度,锥形光放大部分沿着光输出的方向渐扩。通过引入光子晶体结构,调控腔内模式实现较窄的垂直和水平发散角,简化了光学准直、压缩系统,并且通过合理设计波导结构,使不同部分的波导模式匹配,在不需要旋转机台的情况下便可实现多角度、宽范围的激光输出,且增加了激光辐照和扫描的范围和精度,具有可调的、较低的角分辨率,结构紧凑,稳定性高,成本低,在激光测距、激光成像、激光雷达等领域中具有广阔的应用前景。
The invention discloses a curved conical photonic crystal laser, an array and an array light source group. Wherein, the curved tapered photonic crystal laser includes: a ridge waveguide part, a curved waveguide part and a tapered optical amplification part which are connected in sequence; wherein, the ridge waveguide part is a straight waveguide, the curved waveguide part has a radian, and the tapered optical amplification part is along the The direction of the light output is gradually expanded. By introducing the photonic crystal structure, the intra-cavity mode can be controlled to achieve narrower vertical and horizontal divergence angles, which simplifies the optical collimation and compression system, and through the rational design of the waveguide structure, the waveguide modes of different parts can be matched without the need for a rotating machine. It can realize multi-angle and wide-range laser output under the condition of high precision, and increase the range and precision of laser irradiation and scanning. It has adjustable and low angular resolution, compact structure, high stability and low cost. It has broad application prospects in the fields of laser ranging, laser imaging, and lidar.
Description
技术领域technical field
本公开属于半导体光电子器件技术领域,涉及一种弯曲锥形光子晶体激光器及阵列、阵列光源组。The present disclosure belongs to the technical field of semiconductor optoelectronic devices, and relates to a curved tapered photonic crystal laser, an array, and an array light source group.
背景技术Background technique
半导体激光器是电光转换效率最高的光源,具有覆盖波段范围广、寿命长、能直接调制、体积小、成本低等优点。在激光测距、激光成像、光信息存储等领域具有广泛的应用。早期用于激光测距和激光成像的光源为红宝石激光器和CO2气体激光器,但是固体激光器和气体激光器相比于半导体激光器面临体积大、效率低和可靠性差等缺点。并且随着半导体激光器制造工艺的成熟,半导体激光器的输出功率不断提高,成本不断降低,促使以半导体激光器为光源的激光雷达迅速发展,成为激光雷达研究和发展的热点。Semiconductor lasers are light sources with the highest electro-optical conversion efficiency, and have the advantages of wide coverage, long life, direct modulation, small size, and low cost. It has a wide range of applications in laser ranging, laser imaging, optical information storage and other fields. The early light sources used for laser ranging and laser imaging were ruby lasers and CO 2 gas lasers. However, compared with semiconductor lasers, solid-state lasers and gas lasers face the disadvantages of large volume, low efficiency and poor reliability. And with the maturity of the semiconductor laser manufacturing process, the output power of semiconductor lasers continues to increase, and the cost continues to decrease, which promotes the rapid development of laser radars using semiconductor lasers as light sources, and becomes a hot spot in the research and development of laser radars.
在激光雷达装置中,为有效进行激光成像和激光测距,需要光源进行宽角度、大范围、高精度扫描和辐照,其中,扫描范围越大,可成像范围越大,可感知周围的信息越多;用于扫描的光源发散角越小,可获得的数据点越多,成像精度越高。现阶段商用半导体激光器水平发散角在10~25度,垂直发散角约40度,可探测范围有限,并且角分辨率较差,常配合一系列压缩准直光学系统才能使用。为了增加扫描范围,一些商用激光雷达装置将半导体激光器置于可旋转的机台上,通过机台的旋转,增加半导体激光器的扫描范围,不过这显著增加了激光雷达装置的体积、系统复杂性和不稳定性,也增加了其成本。In the lidar device, in order to effectively carry out laser imaging and laser ranging, the light source needs to perform wide-angle, large-scale, high-precision scanning and irradiation. The larger the scanning range, the larger the imaging range, and the surrounding information can be perceived. The more; the smaller the divergence angle of the light source used for scanning, the more data points can be obtained and the higher the imaging accuracy. At this stage, commercial semiconductor lasers have a horizontal divergence angle of 10 to 25 degrees and a vertical divergence angle of about 40 degrees. The detection range is limited and the angular resolution is poor. It is often used with a series of compression collimation optical systems. In order to increase the scanning range, some commercial lidar devices place the semiconductor laser on a rotatable machine table, and through the rotation of the machine table, the scanning range of the semiconductor laser is increased, but this significantly increases the volume of the lidar device, system complexity and Instability also increases its cost.
发明内容SUMMARY OF THE INVENTION
(一)要解决的技术问题(1) Technical problems to be solved
本公开提供了一种一种弯曲锥形光子晶体激光器及阵列、阵列光源组,以至少部分解决以上所提出的技术问题。The present disclosure provides a curved tapered photonic crystal laser, an array, and an array light source group to at least partially solve the above-mentioned technical problems.
(二)技术方案(2) Technical solutions
根据本公开的一个方面,提供了一种弯曲锥形光子晶体激光器,包括:依次相连的脊波导部分,弯曲波导部分和锥形光放大部分;其中,脊波导部分为直波导,弯曲波导部分具有一弧度,锥形光放大部分沿着光输出的方向渐扩。According to one aspect of the present disclosure, there is provided a curved tapered photonic crystal laser, comprising: a ridge waveguide portion, a curved waveguide portion and a tapered optical amplification portion connected in sequence; wherein the ridge waveguide portion is a straight waveguide, and the curved waveguide portion has A radian, the tapered light amplifying portion gradually expands in the direction of the light output.
在本公开的一些实施例中,脊波导部分、弯曲波导部分和锥形光放大部分的外延结构为叠层结构,该叠层结构自下而上依次包括:N型衬底,N型限制层,光子晶体层,有源层,P型限制层,P型盖层;该依次相连的脊波导部分、弯曲波导部分和锥形光放大部分是从叠层结构上表面对P型盖层进行刻蚀形成的,该脊波导部分、弯曲波导部分和锥形光放大部分成为凸出的部分,其余凹陷的部分为刻蚀后剩下的P型盖层。In some embodiments of the present disclosure, the epitaxial structure of the ridge waveguide portion, the curved waveguide portion, and the tapered optical amplification portion is a stacked structure, and the stacked structure sequentially includes: an N-type substrate, an N-type confinement layer from bottom to top , photonic crystal layer, active layer, P-type confinement layer, P-type cap layer; the successively connected ridge waveguide part, curved waveguide part and tapered light amplification part are engraved on the P-type cap layer from the upper surface of the laminated structure formed by etching, the ridge waveguide part, the curved waveguide part and the tapered light amplification part become the protruding parts, and the remaining concave parts are the remaining P-type cap layers after etching.
在本公开的一些实施例中,弯曲锥形光子晶体激光器,还包括:下电极,形成于N型衬底的下方;电绝缘层,位于凹陷的部分之上;以及上电极,位于凸出的部分之上。In some embodiments of the present disclosure, a curved tapered photonic crystal laser further includes: a lower electrode formed under the N-type substrate; an electrically insulating layer over the recessed portion; and an upper electrode over the raised portion part above.
在本公开的一些实施例中,脊波导部分为直波导,该脊波导部分的宽度介于300nm~200μm之间;和/或该脊波导的剖面包括:矩形、梯形或者三角形;和/或弯曲波导部分的宽度介于300nm~200μm之间,弯曲半径介于50μm~500μm之间,长度介于50μm~500μm之间;和/或锥形光放大部分的起始端宽度介于300nm~50μm之间,开口角θ1介于0°~15°之间,倾斜角θ2介于0°~15°之间,长度介于50μm~500μm之间。In some embodiments of the present disclosure, the ridge waveguide portion is a straight waveguide, and the width of the ridge waveguide portion is between 300 nm and 200 μm; and/or the cross section of the ridge waveguide includes: rectangle, trapezoid or triangle; and/or curved The width of the waveguide part is between 300nm and 200μm, the bending radius is between 50μm and 500μm, and the length is between 50μm and 500μm; and/or the width of the initial end of the tapered light amplification part is between 300nm and 50μm. , the opening angle θ 1 is between 0° and 15°, the inclination angle θ 2 is between 0° and 15°, and the length is between 50 μm and 500 μm.
在本公开的一些实施例中,有源层的结构包括:量子阱、量子线或量子点,有源层的材料为III-V族半导体材料或II-VI族半导体材料,该有源层的增益谱峰值波长范围覆盖近紫外到红外波段;和/或电绝缘层的材料包括:SiO2、SiN4或Al2O3。In some embodiments of the present disclosure, the structure of the active layer includes: quantum wells, quantum wires or quantum dots, the material of the active layer is a III-V group semiconductor material or a II-VI group semiconductor material, and the active layer has a The peak wavelength range of the gain spectrum covers near ultraviolet to infrared; and/or the material of the electrical insulating layer includes: SiO 2 , SiN 4 or Al 2 O 3 .
根据本公开的另一个方面,提供了一种弯曲锥形光子晶体激光器阵列,包括:至少两个本公开提到的任一种弯曲锥形光子晶体激光器。According to another aspect of the present disclosure, a curved tapered photonic crystal laser array is provided, comprising: at least two curved tapered photonic crystal lasers of any one mentioned in the present disclosure.
在本公开的一些实施例中,通过改变每个弯曲锥形光子晶体激光器中脊波导的长度,弯曲波导部分的半径和长度,以及锥形光放大部分的开口角和倾斜角,在保证不同部分的波导模式匹配的条件下,实现不同偏角的侧向远场输出。In some embodiments of the present disclosure, by changing the length of the ridge waveguide in each curved tapered photonic crystal laser, the radius and length of the curved waveguide portion, and the opening angle and the inclination angle of the tapered light amplifying portion, it is possible to ensure that the different portions are Under the condition of waveguide mode matching, the lateral far-field output of different declination angles can be realized.
在本公开的一些实施例中,各个弯曲锥形光子晶体激光器之间的间距介于300nm~500μm之间,这里的间距含义为脊波导部分之间的间距。In some embodiments of the present disclosure, the spacing between the respective curved tapered photonic crystal lasers is between 300 nm and 500 μm, and the spacing here means the spacing between the ridge waveguide portions.
根据本公开的又一个方面,提供了一种阵列光源组,包括至少两个上、下排布的弯曲锥形光子晶体激光器阵列,通过空间上的移位和各自弯曲锥形光子晶体激光器的不同排布,以实现上、下至少两个光子晶体激光器阵列远场侧向偏角呈交错分布。According to yet another aspect of the present disclosure, an array light source group is provided, comprising at least two curved tapered photonic crystal laser arrays arranged above and below, through spatial displacement and differences between the respective curved tapered photonic crystal lasers Arrangement, so that the upper and lower at least two photonic crystal laser array far-field lateral deflection angles are staggered.
在本公开的一些实施例中,弯曲锥形光子晶体激光器阵列的个数为N个,包括:第一光源阵列,第二光源阵列,...,第i个光源阵列,...,第N个光源阵列;其中,N≥2;第一光源阵列中发光单元的侧向偏角输出包括:...,-4°,0°,4°,8°,...;在第i个光源阵列中发光单元的侧向偏角输出包括:...,(ki-4)°,ki°,(ki+4)°,(ki+8)°,...;其中,i=1,2,...,N,N为阵列的总个数;ki为第i个光源阵列与前一个光源阵列的偏角错位值。In some embodiments of the present disclosure, the number of curved tapered photonic crystal laser arrays is N, including: a first light source array, a second light source array, ..., the ith light source array, ..., the ith light source array N light source arrays; wherein, N≥2; the lateral deflection output of the light-emitting units in the first light source array includes: ..., -4°, 0°, 4°, 8°, ...; The lateral deflection output of the light-emitting units in the light source arrays includes: ..., ( ki -4)°, ki °, ( ki +4)°, ( ki +8)°, ...; Among them, i =1, 2, .
在本公开的一些实施例中,阵列光源组的成像区域覆盖-30°至30°的范围,且该阵列光源组的角分辨率优于2°。In some embodiments of the present disclosure, the imaging area of the array light source group covers a range of -30° to 30°, and the angular resolution of the array light source group is better than 2°.
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本公开提供的弯曲锥形光子晶体激光器及阵列、阵列光源组,具有以下有益效果:It can be seen from the above technical solutions that the curved tapered photonic crystal laser, array, and array light source group provided by the present disclosure have the following beneficial effects:
通过引入光子晶体结构,调控腔内模式实现较窄的垂直和水平发散角,简化了光学准直、压缩系统,并且通过合理设计波导结构,使不同部分的波导模式匹配,在不需要旋转机台的情况下便可实现多角度、宽范围的激光输出,且增加了激光辐照和扫描的范围和精度,具有可调的、较低的角分辨率,结构紧凑,稳定性高,成本低,在激光测距、激光成像、激光雷达等领域中具有广阔的应用前景。By introducing the photonic crystal structure, the intra-cavity mode can be controlled to achieve narrower vertical and horizontal divergence angles, which simplifies the optical collimation and compression system, and through the rational design of the waveguide structure, the waveguide modes of different parts can be matched without rotating the machine. It can realize multi-angle and wide-range laser output under the condition of high precision, and increase the range and precision of laser irradiation and scanning. It has adjustable, low angular resolution, compact structure, high stability and low cost. It has broad application prospects in the fields of laser ranging, laser imaging, and lidar.
附图说明Description of drawings
图1为根据本公开实施例面向激光成像的弯曲锥形光子晶体激光器阵列的俯视图。1 is a top view of a curved tapered photonic crystal laser array for laser imaging according to an embodiment of the present disclosure.
图2为根据本公开实施例面向激光成像的阵列光源组的主视图。FIG. 2 is a front view of an array light source group for laser imaging according to an embodiment of the present disclosure.
图3为根据本公开实施例面向激光成像的弯曲锥形光子晶体激光器的水平远场图。3 is a horizontal far-field diagram of a curved tapered photonic crystal laser for laser imaging according to an embodiment of the present disclosure.
图4为根据本公开实施例面向激光成像的弯曲锥形光子晶体激光器的垂直远场图。4 is a vertical far-field view of a curved tapered photonic crystal laser for laser imaging according to an embodiment of the present disclosure.
图5A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置0°角处示意图。5A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 0° from a horizontal position according to an embodiment of the present disclosure.
图6A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置4°角处示意图。6A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 4° from a horizontal position according to an embodiment of the present disclosure.
图7A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置8°角处示意图。7A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 8° from a horizontal position according to an embodiment of the present disclosure.
图8A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置12°角处示意图。8A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 12° from a horizontal position according to an embodiment of the present disclosure.
图9A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置16°角处示意图。9A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 16° from a horizontal position according to an embodiment of the present disclosure.
图10A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置20°角处示意图。10A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 20° from a horizontal position according to an embodiment of the present disclosure.
图11A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置24°角处示意图。11A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 24° from a horizontal position according to an embodiment of the present disclosure.
图12A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置28°角处示意图。12A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 28° from a horizontal position according to an embodiment of the present disclosure.
图5B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置2°角处示意图。5B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in the second light source array located at an angle of 2° from a horizontal position according to an embodiment of the present disclosure.
图6B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置6°角处示意图。6B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a second light source array located at an angle of 6° from a horizontal position according to an embodiment of the present disclosure.
图7B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置10°角处示意图。7B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a second light source array located at an angle of 10° from a horizontal position according to an embodiment of the present disclosure.
图8B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置14°角处示意图。8B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a second light source array located at an angle of 14° from a horizontal position according to an embodiment of the present disclosure.
图9B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置18°角处示意图。9B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a second light source array located at an angle of 18° from a horizontal position according to an embodiment of the present disclosure.
图10B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置22°角处示意图。10B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in the second light source array located at an angle of 22° from a horizontal position according to an embodiment of the present disclosure.
图11B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置26°角处示意图。11B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in the second light source array located at an angle of 26° from a horizontal position according to an embodiment of the present disclosure.
图12B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置30°角处示意图。12B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a second light source array located at an angle of 30° from a horizontal position according to an embodiment of the present disclosure.
【符号说明】【Symbol Description】
101-下电极; 102-N型衬底;101-lower electrode; 102-N type substrate;
103-N型限制层; 104-光子晶体层;103-N-type confinement layer; 104-photonic crystal layer;
105-有源层; 106-P型限制层;105-active layer; 106-P-type confinement layer;
107-P型盖层; 108-电绝缘层;107-P type cover layer; 108-electrical insulating layer;
109-上电极;109-upper electrode;
3-脊波导部分; 4-弯曲波导部分;3-ridge waveguide part; 4-curved waveguide part;
5-锥形光放大部分。5- Conical light magnification section.
具体实施方式Detailed ways
本公开提供了一种弯曲锥形光子晶体激光器及阵列、阵列光源组,通过引入光子晶体结构,调控腔内模式实现较窄的垂直和水平发散角,简化了光学准直、压缩系统,并且通过合理设计波导结构,使不同部分的波导模式匹配,在不需要旋转机台的情况下便可实现多角度、宽范围的激光输出,且增加了激光辐照和扫描的范围和精度,具有可调的、较低的角分辨率,结构紧凑,稳定性高,成本低,在激光测距、激光成像、激光雷达等领域中具有广阔的应用前景。The present disclosure provides a curved tapered photonic crystal laser, an array, and an array light source group. By introducing a photonic crystal structure, the intra-cavity mode is controlled to achieve narrower vertical and horizontal divergence angles, which simplifies the optical collimation and compression system. Reasonable design of the waveguide structure to match the waveguide modes of different parts, multi-angle and wide-range laser output can be achieved without the need for a rotating machine, and the range and accuracy of laser irradiation and scanning are increased. It has the advantages of low angular resolution, compact structure, high stability and low cost, and has broad application prospects in the fields of laser ranging, laser imaging, and lidar.
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。In order to make the objectives, technical solutions and advantages of the present disclosure clearer, the present disclosure will be further described in detail below with reference to the specific embodiments and the accompanying drawings.
本公开通过合理设计和优化波导结构,使激光出射方向偏离轴向方向一定的角度,并且改变波导结构可以实现不同的角度出射,从而实现多角度宽范围的激光输出,增加激光的辐照和扫描范围。同时光子晶体可以调控腔内模式实现水平发散角仅为4度,垂直发散角小于10度,可以有效简化光学系统的复杂度。In the present disclosure, by rationally designing and optimizing the waveguide structure, the laser output direction deviates from the axial direction by a certain angle, and changing the waveguide structure can achieve different angles of output, thereby realizing multi-angle and wide-range laser output, and increasing laser irradiation and scanning. scope. At the same time, the photonic crystal can control the intracavity mode to achieve a horizontal divergence angle of only 4 degrees and a vertical divergence angle of less than 10 degrees, which can effectively simplify the complexity of the optical system.
在本公开的第一个示例性实施例中,提供了一种弯曲锥形光子晶体激光器。In a first exemplary embodiment of the present disclosure, a curved tapered photonic crystal laser is provided.
图1为根据本公开实施例面向激光成像的弯曲锥形光子晶体激光器阵列的俯视图。图2为根据本公开实施例面向激光成像的阵列光源组的主视图。1 is a top view of a curved tapered photonic crystal laser array for laser imaging according to an embodiment of the present disclosure. FIG. 2 is a front view of an array light source group for laser imaging according to an embodiment of the present disclosure.
参照图1和图2中某一个发光单元所示,本公开的弯曲锥形光子晶体激光器,包括:依次相连的脊波导部分3,弯曲波导部分4和锥形(Taper)光放大部分5;其中,脊波导部分3为直波导,弯曲波导部分具有一弧度,锥形光放大部分沿着光输出的方向渐扩。1 and 2, the curved tapered photonic crystal laser of the present disclosure includes: a ridge waveguide portion 3, a curved waveguide portion 4 and a tapered (Taper)
下面结合图1和图2,对本公开的弯曲锥形光子晶体激光器的各个部分进行详细介绍。Each part of the curved tapered photonic crystal laser of the present disclosure will be described in detail below with reference to FIG. 1 and FIG. 2 .
参照图2所示,脊波导部分3、弯曲波导部分4和锥形光放大部分5的外延结构为叠层结构,包括:N型衬底102;下电极101,形成于N型衬底102的下表面;N型限制层103,形成于N型衬底102的上表面;光子晶体层104,形成于N型限制层103之上;有源层105,形成于光子晶体层104之上;P型限制层106,形成于有源层105之上;及P型盖层107,形成于P型限制层106之上;该依次相连的脊波导部分3、弯曲波导部分4和Taper光放大部分5是从叠层结构上表面对P型盖层107进行刻蚀形成的,凸出的部分包括:脊波导部分3、弯曲波导部分4和锥形光放大部分5,凹陷的部分为刻蚀后剩下的P型盖层107上表面;电绝缘层108,位于凹陷的部分之上;上电极109,位于凸出的部分中的P型盖层107之上。Referring to FIG. 2 , the epitaxial structure of the ridge waveguide portion 3 , the curved waveguide portion 4 and the tapered optical amplifying
参照图1所示,脊波导部分3的长度为d1,该长度表示脊波导部分3沿着y方向的长度;弯曲波导部分4具有一弧度,其弧长对应的半径为R,该弯曲波导部分4沿着v方向的长度为d2;锥形光放大部分5沿着光输出的方向渐扩,具有一开口角θ1,一倾斜角θ2,其中,开口角为该锥形光放大部分的两边形成的张角,倾斜角为较为倾斜的一边与y轴正方向的夹角,通过这两个参数可以确定该锥形光放大部分5的走向和张口大小;该锥形光放大部分5沿着y方向的长度为d3。Referring to FIG. 1 , the length of the ridge waveguide portion 3 is d 1 , which represents the length of the ridge waveguide portion 3 along the y direction; the curved waveguide portion 4 has an arc, and the radius corresponding to the arc length is R, and the curved waveguide portion 4 has an arc. The length of the portion 4 along the v direction is d 2 ; the tapered
本实施例中,脊波导部分3为直波导,脊波导部分3的宽度介于300nm~200μm之间;该脊波导的剖面包括但不限于是:矩形、梯形或者三角形。In this embodiment, the ridge waveguide portion 3 is a straight waveguide, and the width of the ridge waveguide portion 3 is between 300 nm and 200 μm; the cross section of the ridge waveguide includes but is not limited to: rectangle, trapezoid or triangle.
本实施例中,弯曲波导部分4的宽度介于300nm~200μm之间,弯曲半径介于50μm~500μm之间,长度介于50μm~500μm之间。In this embodiment, the width of the curved waveguide portion 4 is between 300 nm and 200 μm, the bending radius is between 50 μm and 500 μm, and the length is between 50 μm and 500 μm.
本实施例中,锥形光放大部分5的起始端宽度介于300nm~50μm之间,开口角θ1介于0°15°之间,倾斜角θ2介于0°~15°之间,其长度介于50μm~500μm之间。In this embodiment, the width of the initial end of the tapered
本实施例中,光子晶体层104为常见的光子晶体结构,但本公开不限于此,也可以是其他对称和非对称波导结构。In this embodiment, the photonic crystal layer 104 is a common photonic crystal structure, but the present disclosure is not limited thereto, and other symmetric and asymmetric waveguide structures may also be used.
本实施例中,有源层105采用的结构包括:量子阱、量子线或量子点,采用的材料为III-V族半导体材料或II-VI族半导体材料,增益谱峰值波长范围覆盖近紫外到红外波段。In this embodiment, the structure used in the active layer 105 includes: quantum wells, quantum wires or quantum dots, the materials used are III-V semiconductor materials or II-VI semiconductor materials, and the peak wavelength range of the gain spectrum covers near ultraviolet to Infrared band.
本实施例中,电绝缘层108的材料包括:SiO2、SiN4或Al2O3等。In this embodiment, the material of the electrical insulating layer 108 includes: SiO 2 , SiN 4 or Al 2 O 3 and the like.
本实施例中,采用发射波长是980nm的GaAs衬底的光子晶体半导体激光器的外延片进行该弯曲锥形光子晶体激光器的制作。制作过程主要包括:一、制作外延片:在GaAs衬底上依次生长N型限制层、光子晶体层、有源层、P型限制层以及P型盖层,制备出外延片;二、制作脊波导部分,弯曲波导部分和taper光放大部分:通过基本的光刻、感应耦合等离子体刻蚀(ICP)工艺刻蚀出脊波导部分,弯曲波导部分和taper光放大部分;三、制作电极和电绝缘层:在整个外延片上沉积一层二氧化硅绝缘材料,再通过光刻和湿法刻蚀将注入区台面上的二氧化硅刻蚀掉,形成注入窗口,最后在p面生长Ti/Pt/Au材料作为正面电极,衬底减薄之后在n面生长金锗镍金材料作为背面电极。In this embodiment, an epitaxial wafer of a photonic crystal semiconductor laser on a GaAs substrate with an emission wavelength of 980 nm is used to manufacture the curved tapered photonic crystal laser. The production process mainly includes: 1. Making an epitaxial wafer: sequentially growing an N-type confinement layer, a photonic crystal layer, an active layer, a P-type confinement layer and a P-type cap layer on a GaAs substrate to prepare an epitaxial wafer; 2. Making a ridge Waveguide part, curved waveguide part and taper optical amplification part: The ridge waveguide part, curved waveguide part and taper optical amplification part are etched by basic photolithography, inductively coupled plasma etching (ICP) process; Insulation layer: A layer of silicon dioxide insulating material is deposited on the entire epitaxial wafer, and then the silicon dioxide on the mesa of the implanted area is etched away by photolithography and wet etching to form an implantation window, and finally Ti/Pt is grown on the p-side /Au material is used as the front electrode, and after the substrate is thinned, gold-germanium-nickel-gold material is grown on the n-side as the back electrode.
该脊波导部分3、弯曲波导部分4和Taper光放大部分5,可以一致进行电注入形成Taper激光器,或者通过在电极109上,在弯曲波导部分4和Taper光放大部分5之间制作电隔离区,形成主控振荡器的功率放大器(MOPA)结构。The ridge waveguide portion 3, the curved waveguide portion 4 and the Taper optical amplifying
在本公开的第二个示例性实施例中,提供了一种弯曲锥形光子晶体激光器阵列,一个弯曲锥形光子晶体激光器阵列中至少包括2个第一实施例所示的弯曲锥形光子晶体激光器;通过改变每个弯曲锥形光子晶体激光器中脊波导部分3的长度、弯曲波导部分4的半径和长度,以及Taper光放大部分5的开口角和倾斜角,在保证不同部分的波导模式匹配的条件下,实现不同偏角的侧向远场输出。In a second exemplary embodiment of the present disclosure, a curved tapered photonic crystal laser array is provided, and a curved tapered photonic crystal laser array includes at least two curved tapered photonic crystals shown in the first embodiment Laser; by changing the length of the ridge waveguide section 3, the radius and length of the curved waveguide section 4, and the opening angle and tilt angle of the Taper
每个弯曲锥形光子晶体激光器之间的间距相同或不同,形成的阵列以均匀或不均匀的方式进行排布;各个发光单元之间的间距介于300nm~500μm之间,这里以脊波导之间的间距为准。The spacing between each curved tapered photonic crystal laser is the same or different, and the formed array is arranged in a uniform or non-uniform way; The distance between them shall prevail.
本实施例中,弯曲锥形光子晶体激光器阵列中有17个弯曲锥形光子晶体激光器,其中从左至右位于中间的第9个发光单元,其光束指向0度角处,其他16个发光单元成镜像对称分布于该发光单元两侧,成像区域覆盖-30度至30度范围区域。In this embodiment, there are 17 curved tapered photonic crystal lasers in the curved tapered photonic crystal laser array, of which the 9th light-emitting unit located in the middle from left to right has its beam pointing at an angle of 0 degrees, and the other 16 light-emitting units The mirrors are symmetrically distributed on both sides of the light-emitting unit, and the imaging area covers a range from -30 degrees to 30 degrees.
图3为根据本公开实施例面向激光成像的弯曲锥形光子晶体激光器的水平远场图。图4为根据本公开实施例面向激光成像的弯曲锥形光子晶体激光器的垂直远场图。3 is a horizontal far-field diagram of a curved tapered photonic crystal laser for laser imaging according to an embodiment of the present disclosure. 4 is a vertical far-field view of a curved tapered photonic crystal laser for laser imaging according to an embodiment of the present disclosure.
参照图3和图4可知,本实施例中的弯曲锥形光子晶体激光器阵列通过调控腔内模式,实现的水平发散角仅为4°,如图3中半峰宽的值为4°所示;垂直发散角小于10°,如图4中半峰宽的值为9.2°所示。Referring to FIG. 3 and FIG. 4 , it can be seen that the curved tapered photonic crystal laser array in this embodiment achieves a horizontal divergence angle of only 4° by adjusting the intra-cavity mode, as shown in FIG. 3 where the value of the half-peak width is 4° ; The vertical divergence angle is less than 10°, as shown in Figure 4, where the value of the half-peak width is 9.2°.
那么由上可知,一个弯曲锥形光子晶体激光器阵列在水平方向能够实现的角度精度最小为4°,为了能够实现更低精度的角度调控,本公开提供了第三个实施例所示的包含多个上、下排布弯曲锥形光子晶体激光器阵列的光子晶体激光器,通过将每个弯曲锥形光子晶体激光器阵列中进行空间上的移位和各自弯曲锥形光子晶体激光器的不同排布,以实现上下两个光子晶体激光器阵列的远场侧向偏角呈交错分布,进而实现更小精度的角度输出调节。Then it can be seen from the above that the minimum angular accuracy that a curved tapered photonic crystal laser array can achieve in the horizontal direction is 4°. A photonic crystal laser with a curved tapered photonic crystal laser array arranged above and below, by spatially shifting each curved tapered photonic crystal laser array and different arrangements of the respective curved tapered photonic crystal lasers, to achieve The far-field lateral declination angles of the upper and lower photonic crystal laser arrays are staggered, thereby realizing angular output adjustment with smaller precision.
在本公开的第三个示例性实施例中,提供了包括两个弯曲锥形光子晶体激光器阵列的阵列光源组,这两个弯曲锥形光子晶体激光器阵列上、下排布,通过空间上的移位和各自弯曲锥形光子晶体激光器的不同排布,以实现上、下两个弯曲锥形光子晶体激光器阵列的远场侧向偏角呈交错分布,进而实现更小精度的角分辨率调节。In the third exemplary embodiment of the present disclosure, an array light source group including two curved tapered photonic crystal laser arrays is provided, and the two curved tapered photonic crystal laser arrays are arranged above and below, and are arranged through spatial Displacement and different arrangements of the respective curved tapered photonic crystal lasers to achieve a staggered distribution of the far-field lateral deflection angles of the upper and lower curved tapered photonic crystal laser arrays, thereby achieving smaller precision angular resolution adjustment .
参照图2所示,在本实施例中,上、下两个弯曲锥形光子晶体激光器阵列对应排布,将图2所示的上方的光源阵列称为第一光源阵列,下方的光源阵列称为第二光源阵列,其中,在第一光源阵列中,包括15个弯曲锥形光子晶体激光器,该第一光源阵列的发光单元的侧向偏角输出为:0°,4°,8°,...,28°;在第二光源阵列中,包括16个弯曲锥形光子晶体激光器,该第二光源阵列的发光单元的侧向偏角输出为:2°,6°,10°,...,30°。这两个弯曲锥形光子晶体激光器阵列的侧向偏角输出存在一个偏角错位值,本实施例中为2°,从而实现了更低的角分辨率。Referring to FIG. 2, in this embodiment, the upper and lower curved tapered photonic crystal laser arrays are arranged correspondingly. The upper light source array shown in FIG. 2 is called the first light source array, and the lower light source array is called the first light source array. is the second light source array, wherein the first light source array includes 15 curved conical photonic crystal lasers, and the lateral deflection angle outputs of the light-emitting units of the first light source array are: 0°, 4°, 8°, ..., 28°; in the second light source array, including 16 curved conical photonic crystal lasers, the output of the lateral deflection angle of the light-emitting units of the second light source array is: 2°, 6°, 10°, . .., 30°. The lateral deflection angle outputs of the two curved tapered photonic crystal laser arrays have a deflection angle offset value, which is 2° in this embodiment, thereby achieving a lower angular resolution.
由此,为实现更低的角分辨率,光子晶体阵列光源可拓展至多个阵列。按照上述类似的方式,在第一光源阵列中发光单元的侧向偏角输出包括:0°,4°,8°,...;在第i个光源阵列中发光单元的侧向偏角输出包括:ki°,(ki+4)°,(ki+8)°,...;其中,i=1,2,...,N,N为阵列的总个数;ki为第i个光源阵列与前一个光源阵列的偏角错位值,只要符合实际的器件的参数和需求,可以进行相应的偏角错位值和阵列个数的匹配选择;另外,参照第二个实施例中的情形,该输出角也可以是负的角度,按照镜像对称分布的形式进行发光单元的排布便可实现。Therefore, in order to achieve lower angular resolution, the photonic crystal array light source can be extended to multiple arrays. In a similar manner to the above, the output of the lateral deflection angle of the light-emitting unit in the first light source array includes: 0°, 4°, 8°, . . . ; the output of the lateral deflection angle of the light-emitting unit in the i-th light source array Including: ki °, ( ki +4)°, ( ki +8)°, ...; where, i=1, 2, ..., N, N is the total number of arrays; ki is As long as the declination misalignment value of the i-th light source array and the previous light source array meets the actual device parameters and requirements, the corresponding declination misalignment value and the number of arrays can be matched and selected; in addition, refer to the second embodiment. In the case of , the output angle can also be a negative angle, which can be achieved by arranging the light-emitting units in the form of mirror-symmetrical distribution.
图5A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置0°角处示意图。参照图5A所示,本实施例中,远场输出光斑位于水平位置0°角处,其中脊波导部分的长度为800nm,无弯曲波导部分,taper光放大部分的长度为400nm,开口角为2°,无倾斜角。5A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 0° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 5A , in this embodiment, the far-field output light spot is located at an angle of 0° from the horizontal position, the length of the ridge waveguide part is 800 nm, there is no curved waveguide part, the length of the taper optical amplification part is 400 nm, and the opening angle is 2 °, without tilt angle.
图6A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置4°角处示意图。参照图6A所示,本实施例中,远场输出光斑位于水平位置4°角处,其中脊波导部分的长度为500nm,弯曲波导部分的半径为1mm,taper光放大部分长度为400nm,开口角为2°,倾斜角为1°。6A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 4° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 6A , in this embodiment, the far-field output light spot is located at an angle of 4° from the horizontal position, the length of the ridge waveguide part is 500 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening angle is 400 nm. is 2° and the inclination angle is 1°.
图7A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置8°角处示意图。参照图7A所示,本实施例中,远场输出光斑位于水平位置8°角处,其中脊波导部分的长度为300nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为2.5°。7A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 8° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 7A , in this embodiment, the far-field output light spot is located at an angle of 8° from the horizontal position, the length of the ridge waveguide part is 300 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening is The angle is 2° and the inclination angle is 2.5°.
图8A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置12°角处示意图。参照图8A所示,本实施例中,远场输出光斑位于水平位置12°角处,其中脊波导部分的长度为200nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为3°。8A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 12° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 8A , in this embodiment, the far-field output light spot is located at an angle of 12° from the horizontal position, the length of the ridge waveguide part is 200 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening The angle is 2° and the inclination angle is 3°.
图9A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置16°角处示意图。参照图9A所示,本实施例中,远场输出光斑位于水平位置16°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为3.5°。9A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 16° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 9A , in this embodiment, the far-field output light spot is located at an angle of 16° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening is The angle is 2° and the inclination angle is 3.5°.
图10A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置20°角处示意图。参照图10A所示,本实施例中,远场输出光斑位于水平位置20°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为4.5°。10A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 20° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 10A , in this embodiment, the far-field output light spot is located at an angle of 20° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening The angle is 2° and the inclination angle is 4.5°.
图11A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置24°角处示意图。参照图11A所示,本实施例中,远场输出光斑位于水平位置24°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为5.5°。11A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 24° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 11A , in this embodiment, the far-field output light spot is located at an angle of 24° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening The angle is 2° and the inclination angle is 5.5°.
图12A为根据本公开实施例第一光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置28°角处示意图。参照图12A所示,本实施例中,远场输出光斑位于水平位置28°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为2°,倾斜角为6.5°。12A is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a first light source array located at an angle of 28° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 12A , in this embodiment, the far-field output light spot is located at an angle of 28° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening The angle is 2° and the inclination angle is 6.5°.
图5B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置2°角处示意图。参照图5B所示,本实施例中,远场输出光斑位于水平位置2°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为0.5°。5B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in the second light source array located at an angle of 2° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 5B , in this embodiment, the far-field output light spot is located at an angle of 2° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening is The angle is 1.5° and the inclination angle is 0.5°.
图6B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置6°角处示意图。参照图6B所示,本实施例中,远场输出光斑位于水平位置6°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为1.5°。6B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a second light source array located at an angle of 6° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 6B , in this embodiment, the far-field output light spot is located at an angle of 6° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening is The angle is 1.5° and the inclination angle is 1.5°.
图7B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置10°角处示意图。参照图7B所示,本实施例中,远场输出光斑位于水平位置10°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为2.5°。7B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a second light source array located at an angle of 10° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 7B, in this embodiment, the far-field output light spot is located at an angle of 10° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening is The angle is 1.5° and the inclination angle is 2.5°.
图8B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置14°角处示意图。参照图8B所示,本实施例中,远场输出光斑位于水平位置14°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为3.5°。8B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a second light source array located at an angle of 14° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 8B , in this embodiment, the far-field output light spot is located at an angle of 14° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening is The angle is 1.5° and the inclination angle is 3.5°.
图9B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置18°角处示意图。参照图9B所示,本实施例中,远场输出光斑位于水平位置18°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为4.5°。9B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a second light source array located at an angle of 18° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 9B , in this embodiment, the far-field output light spot is located at an angle of 18° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening is The angle is 1.5° and the inclination angle is 4.5°.
图10B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置22°角处示意图。参照图10B所示,本实施例中,远场输出光斑位于水平位置22°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为5°。10B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in the second light source array located at an angle of 22° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 10B , in this embodiment, the far-field output light spot is located at an angle of 22° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening The angle is 1.5° and the inclination angle is 5°.
图11B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置26°角处示意图。参照图11B所示,本实施例中,远场输出光斑位于水平位置26°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为6°。11B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in the second light source array located at an angle of 26° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 11B , in this embodiment, the far-field output light spot is located at an angle of 26° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening The angle is 1.5° and the inclination angle is 6°.
图12B为根据本公开实施例第二光源阵列中单个弯曲锥形光子晶体激光器的远场输出光斑位于水平位置30°角处示意图。参照图12B所示,本实施例中,远场输出光斑位于水平位置30°角处,其中脊波导部分的长度为100nm,弯曲波导部分的半径为1mm,taper光放大部分的长度为400nm,开口角为1.5°,倾斜角为6.5°。12B is a schematic diagram of a far-field output light spot of a single curved tapered photonic crystal laser in a second light source array located at an angle of 30° from a horizontal position according to an embodiment of the present disclosure. Referring to FIG. 12B , in this embodiment, the far-field output light spot is located at an angle of 30° from the horizontal position, the length of the ridge waveguide part is 100 nm, the radius of the curved waveguide part is 1 mm, the length of the taper optical amplification part is 400 nm, and the opening The angle is 1.5° and the inclination angle is 6.5°.
综上所述,本公开提供了一种弯曲锥形光子晶体激光器及阵列、阵列光源组,通过引入光子晶体结构,调控腔内模式实现较窄的垂直和水平发散角,简化了光学准直、压缩系统,并且通过合理设计波导结构,使不同部分的波导模式匹配,在不需要旋转机台的情况下便可实现多角度、宽范围的激光输出,且增加了激光辐照和扫描的范围和精度,具有可调的、较低的角分辨率,结构紧凑,稳定性高,成本低,在激光测距、激光成像、激光雷达等领域中具有广阔的应用前景。In summary, the present disclosure provides a curved tapered photonic crystal laser, an array, and an array light source group. By introducing a photonic crystal structure, the intra-cavity mode can be controlled to achieve narrower vertical and horizontal divergence angles, which simplifies optical collimation, Compression system, and by rationally designing the waveguide structure to match the waveguide modes of different parts, multi-angle and wide-range laser output can be achieved without the need for a rotating machine, and the range of laser irradiation and scanning is increased. Accuracy, adjustable, low angular resolution, compact structure, high stability, low cost, and have broad application prospects in laser ranging, laser imaging, lidar and other fields.
需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。It should be noted that the directional terms mentioned in the embodiments, such as "up", "down", "front", "rear", "left", "right", etc., only refer to the directions of the drawings, not to limit the scope of protection of the present disclosure. Throughout the drawings, the same elements are denoted by the same or similar reference numbers. Conventional structures or constructions will be omitted when it may lead to obscuring the understanding of the present disclosure. Moreover, the shapes and sizes of the components in the figures do not reflect the actual size and proportion, but merely illustrate the contents of the embodiments of the present disclosure. Furthermore, in the claims, any reference signs placed between parentheses shall not be construed as limiting the claim.
除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近似值,能够根据通过本公开的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的含量、反应条件等等的数字,应理解为在所有情况中是受到「约」的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。Unless known to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained from the teachings of the present disclosure. Specifically, all numbers used in the specification and claims to indicate compositional contents, reaction conditions, etc., should be understood as being modified by the word "about" in all cases. In general, the meaning expressed is meant to include a change of ±10% in some embodiments, a change of ±5% in some embodiments, a change of ±1% in some embodiments, and a change of ±1% in some embodiments. Example ±0.5% variation.
再者,单词“包含”或“包括”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。Furthermore, the word "comprising" or "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements.
说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。The ordinal numbers such as "first", "second", "third", etc. used in the description and the claims are used to modify the corresponding elements, which themselves do not mean that the elements have any ordinal numbers, nor do they Representing the order of a certain element and another element, or the order in the manufacturing method, the use of these ordinal numbers is only used to clearly distinguish an element with a certain name from another element with the same name.
类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。Similarly, it will be appreciated that in the above description of exemplary embodiments of the disclosure, various features of the disclosure are sometimes grouped together into a single embodiment, figure, or its description. However, this method of disclosure should not be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, disclosed aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of the present disclosure.
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present disclosure in detail. It should be understood that the above-mentioned specific embodiments are only specific embodiments of the present disclosure, and are not intended to limit the present disclosure. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present disclosure should be included within the protection scope of the present disclosure.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710997431.3A CN107785776B (en) | 2017-10-17 | 2017-10-17 | Curved conical photonic crystal laser, array and array light source set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710997431.3A CN107785776B (en) | 2017-10-17 | 2017-10-17 | Curved conical photonic crystal laser, array and array light source set |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107785776A CN107785776A (en) | 2018-03-09 |
CN107785776B true CN107785776B (en) | 2020-03-17 |
Family
ID=61434870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710997431.3A Active CN107785776B (en) | 2017-10-17 | 2017-10-17 | Curved conical photonic crystal laser, array and array light source set |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107785776B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019075631A1 (en) * | 2017-10-17 | 2019-04-25 | 中国科学院半导体研究所 | Curved conical photonic crystal laser device, array, and array light source group |
US10345519B1 (en) * | 2018-04-11 | 2019-07-09 | Microsoft Technology Licensing, Llc | Integrated optical beam steering system |
CN109861079B (en) * | 2019-01-08 | 2021-02-23 | 中国科学院半导体研究所 | Microstructure laser-based one-dimensional radar scanning and transmitting device and preparation method |
CN111146691B (en) * | 2020-01-19 | 2021-08-06 | 长春理工大学 | A surface emitting laser array |
CN113258447B (en) * | 2021-05-18 | 2022-02-25 | 中国科学院长春光学精密机械与物理研究所 | Semiconductor laser array and preparation method thereof |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1560694A (en) * | 2004-03-05 | 2005-01-05 | 长春理工大学 | Master Oscillator Amplifier |
JP2005277219A (en) * | 2004-03-25 | 2005-10-06 | Kyoto Univ | Photonic crystal laser |
CN101118364A (en) * | 2007-09-12 | 2008-02-06 | 长春理工大学 | Master Oscillating Optical Amplifier with Isolation Region |
CN101471534A (en) * | 2007-12-28 | 2009-07-01 | 中国科学院半导体研究所 | Method for making high brightness semiconductor conical laser/amplifier |
CN102055135A (en) * | 2009-11-04 | 2011-05-11 | 中国科学院半导体研究所 | Tapered photonic crystal quantum cascade laser and manufacture method thereof |
WO2012035620A1 (en) * | 2010-09-14 | 2012-03-22 | キヤノン株式会社 | Photonic-crystal surface-emitting laser, laser array using said laser, and image forming device using said laser array |
CN102545056A (en) * | 2012-02-02 | 2012-07-04 | 中国科学院上海微系统与信息技术研究所 | Surface-emitting terahertz quantum cascade laser and manufacturing method thereof |
CN103326244A (en) * | 2013-06-19 | 2013-09-25 | 中国科学院半导体研究所 | Photonic crystal laser array with high brightness and horizontal far-field single distribution |
CN103904556A (en) * | 2014-03-25 | 2014-07-02 | 中国科学院半导体研究所 | Oblique side wall oblique waveguide photonic crystal semiconductor laser device |
CN104617486A (en) * | 2014-11-04 | 2015-05-13 | 中国科学院半导体研究所 | Monolithic integrated multi-wavelength semiconductor mode-locked laser |
CN104966984A (en) * | 2015-06-29 | 2015-10-07 | 中国科学院半导体研究所 | Direct frequency doubling of mode-locked photonic crystal semiconductor laser to generate short-wavelength laser device |
CN105098582A (en) * | 2015-09-16 | 2015-11-25 | 中国科学院半导体研究所 | Quasi three-dimensional photonic crystal narrow linewidth laser |
CN105449515A (en) * | 2015-12-30 | 2016-03-30 | 中国科学院半导体研究所 | Semiconductor ultra-short pulse high repetition frequency laser |
CN106159672A (en) * | 2016-08-30 | 2016-11-23 | 中国科学院半导体研究所 | Based on the narrow line wide cavity laser structure that optical fiber lens and grating are integrated |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8526103B2 (en) * | 2010-01-08 | 2013-09-03 | Oclaro Technology Limited | Laser system with highly linear output |
CN103424810A (en) * | 2012-05-14 | 2013-12-04 | 鸿富锦精密工业(深圳)有限公司 | Optical waveguide directional coupler |
CN105305229B (en) * | 2015-12-04 | 2019-02-05 | 武汉邮电科学研究院 | The integrated silicon-based laser of high coupling efficiency electrical pumping |
CN205881934U (en) * | 2016-06-30 | 2017-01-11 | 武汉光安伦光电技术有限公司 | Polarization superradiance emitting diode chip that has nothing to do |
-
2017
- 2017-10-17 CN CN201710997431.3A patent/CN107785776B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1560694A (en) * | 2004-03-05 | 2005-01-05 | 长春理工大学 | Master Oscillator Amplifier |
JP2005277219A (en) * | 2004-03-25 | 2005-10-06 | Kyoto Univ | Photonic crystal laser |
CN101118364A (en) * | 2007-09-12 | 2008-02-06 | 长春理工大学 | Master Oscillating Optical Amplifier with Isolation Region |
CN101471534A (en) * | 2007-12-28 | 2009-07-01 | 中国科学院半导体研究所 | Method for making high brightness semiconductor conical laser/amplifier |
CN102055135A (en) * | 2009-11-04 | 2011-05-11 | 中国科学院半导体研究所 | Tapered photonic crystal quantum cascade laser and manufacture method thereof |
WO2012035620A1 (en) * | 2010-09-14 | 2012-03-22 | キヤノン株式会社 | Photonic-crystal surface-emitting laser, laser array using said laser, and image forming device using said laser array |
CN102545056A (en) * | 2012-02-02 | 2012-07-04 | 中国科学院上海微系统与信息技术研究所 | Surface-emitting terahertz quantum cascade laser and manufacturing method thereof |
CN103326244A (en) * | 2013-06-19 | 2013-09-25 | 中国科学院半导体研究所 | Photonic crystal laser array with high brightness and horizontal far-field single distribution |
CN103904556A (en) * | 2014-03-25 | 2014-07-02 | 中国科学院半导体研究所 | Oblique side wall oblique waveguide photonic crystal semiconductor laser device |
CN104617486A (en) * | 2014-11-04 | 2015-05-13 | 中国科学院半导体研究所 | Monolithic integrated multi-wavelength semiconductor mode-locked laser |
CN104966984A (en) * | 2015-06-29 | 2015-10-07 | 中国科学院半导体研究所 | Direct frequency doubling of mode-locked photonic crystal semiconductor laser to generate short-wavelength laser device |
CN105098582A (en) * | 2015-09-16 | 2015-11-25 | 中国科学院半导体研究所 | Quasi three-dimensional photonic crystal narrow linewidth laser |
CN105449515A (en) * | 2015-12-30 | 2016-03-30 | 中国科学院半导体研究所 | Semiconductor ultra-short pulse high repetition frequency laser |
CN106159672A (en) * | 2016-08-30 | 2016-11-23 | 中国科学院半导体研究所 | Based on the narrow line wide cavity laser structure that optical fiber lens and grating are integrated |
Also Published As
Publication number | Publication date |
---|---|
CN107785776A (en) | 2018-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107785776B (en) | Curved conical photonic crystal laser, array and array light source set | |
KR102319348B1 (en) | Vertical Cavity Surface Emitting Laser including meta structure reflector and optical apparatus including the vertical cavity surface emitting laser | |
US11664642B2 (en) | Vertical cavity surface emitting laser including meta structure reflector and optical device including the vertical cavity surface emitting laser | |
WO2020047828A1 (en) | Tunnel junction photonic crystal laser with narrow vertical far-field divergence angle | |
WO2020078197A1 (en) | Semiconductor laser | |
US11276987B2 (en) | Vertical cavity surface-emitting laser including nanostructure reflector and optical apparatus using the vertical cavity surface-emitting laser | |
CN111029900B (en) | Three-cavity coupled laser based on parity time symmetry | |
JPH08186330A (en) | Light amplification device and semiconductor laser apparatus using it as well as their driving method | |
CN105429004A (en) | Multi-active zone epitaxial structure, semiconductor laser adopting same and manufacturing method of multi-active zone epitaxial structure | |
CN102723665A (en) | Vertical-external-cavity surface-emitting semiconductor laser with integrated micro lens | |
US20240120711A1 (en) | Laser device, laser device array, and method of producing a laser device | |
CN109038219B (en) | Tunnel junction photonic crystal laser with narrow vertical far field divergence angle | |
CN105529615B (en) | A kind of semiconductor laser and preparation method thereof | |
JP2009259857A (en) | Surface emitting laser element and surface emitting laser element array | |
CN109412019B (en) | Extended cavity surface light source VCSEL and application thereof | |
CN118748355A (en) | Semiconductor laser array structure with output line spot | |
US4796269A (en) | Two-dimensional phase-locked surface emitting semiconductor laser array | |
WO2019075631A1 (en) | Curved conical photonic crystal laser device, array, and array light source group | |
CN114825034B (en) | Single-photon source with cavity optically pumped asymmetric microdisk | |
CN110752509B (en) | VCSEL unit with asymmetric oxidation structure | |
CN111181000B (en) | Semiconductor chip and semiconductor laser | |
CN214280428U (en) | High-power semiconductor optical amplifier | |
CN209766858U (en) | Extended cavity surface light source VCSEL and optical fiber communication system | |
CN109921284B (en) | Asymmetric microdisk cavity edge emitting semiconductor laser array | |
US7477670B2 (en) | High power diode laser based source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |