CN104465004B - Method for manufacturing high-saturation-flux-density soft magnetic composite material according to alkaline bluing technique - Google Patents
Method for manufacturing high-saturation-flux-density soft magnetic composite material according to alkaline bluing technique Download PDFInfo
- Publication number
- CN104465004B CN104465004B CN201410684479.5A CN201410684479A CN104465004B CN 104465004 B CN104465004 B CN 104465004B CN 201410684479 A CN201410684479 A CN 201410684479A CN 104465004 B CN104465004 B CN 104465004B
- Authority
- CN
- China
- Prior art keywords
- magnetic
- powder
- alkaline
- composite material
- bluing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000002131 composite material Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title abstract description 6
- 239000006247 magnetic powder Substances 0.000 claims abstract description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 230000004907 flux Effects 0.000 claims abstract description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 23
- 239000000843 powder Substances 0.000 claims description 16
- 239000011230 binding agent Substances 0.000 claims description 10
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 6
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229920002050 silicone resin Polymers 0.000 claims description 4
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 239000011253 protective coating Substances 0.000 claims 3
- 239000003513 alkali Substances 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 235000013312 flour Nutrition 0.000 claims 1
- LCDFWRDNEPDQBV-UHFFFAOYSA-N formaldehyde;phenol;urea Chemical compound O=C.NC(N)=O.OC1=CC=CC=C1 LCDFWRDNEPDQBV-UHFFFAOYSA-N 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 229910052756 noble gas Inorganic materials 0.000 claims 1
- 150000002835 noble gases Chemical class 0.000 claims 1
- 229920001296 polysiloxane Polymers 0.000 claims 1
- 239000000696 magnetic material Substances 0.000 abstract description 5
- 238000011065 in-situ storage Methods 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 abstract 8
- 238000005253 cladding Methods 0.000 abstract 4
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 230000005294 ferromagnetic effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 10
- 238000003756 stirring Methods 0.000 description 9
- 238000009835 boiling Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- VAKIVKMUBMZANL-UHFFFAOYSA-N iron phosphide Chemical compound P.[Fe].[Fe].[Fe] VAKIVKMUBMZANL-UHFFFAOYSA-N 0.000 description 2
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- -1 Barium fatty acid Chemical class 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 239000002902 ferrimagnetic material Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
技术领域technical field
本发明涉及磁性材料领域,尤其涉及一种碱性烤蓝工艺制备高饱和磁通密度软磁复合材料的方法。The invention relates to the field of magnetic materials, in particular to a method for preparing a soft magnetic composite material with high saturation magnetic flux density by an alkaline roasting process.
背景技术Background technique
软磁复合材料是采用粉末冶金工艺制造的一种软磁材料,其特殊的磁性能使得其在许多应用场合具有其它材料难以比拟的优势,至今这种材料已经成为软磁材料的重要组成部分。软磁复合材料生产历史悠久,但真正形成产业化是从二十世纪八十年代开始,随着逆变技术的快速发展和广泛应用,伴随着EMC的需求,软磁复合材料得到了广泛的应用;进入二十一世纪,随着逆变电路的高频、高功率密度化和EMC的更高要求,加上人们对软磁复合材料的认识的进一步加深,软磁复合材料的产业化发展速度超过了其它任何软磁材料。Soft magnetic composite material is a kind of soft magnetic material manufactured by powder metallurgy process. Its special magnetic properties make it incomparable to other materials in many applications. So far, this material has become an important part of soft magnetic materials. The production of soft magnetic composite materials has a long history, but the real industrialization began in the 1980s. With the rapid development and wide application of inverter technology, along with the demand for EMC, soft magnetic composite materials have been widely used ; Entering the 21st century, with the high frequency and high power density of the inverter circuit and the higher requirements of EMC, coupled with the further deepening of people's understanding of soft magnetic composite materials, the industrialization of soft magnetic composite materials has developed rapidly More than any other soft magnetic material.
铁粉芯能在高的磁化场下不被饱和,具有良好的直流叠加稳定性。而且其产生工艺简单,价格在各类金属软磁粉芯中是最低的。一般在能满足使用要求的情况下,可优先选用铁粉芯。目前在各类金属软磁粉芯中,是使用最普及,用量最大的一种。The iron powder core can not be saturated under high magnetization field, and has good DC superposition stability. Moreover, its production process is simple, and its price is the lowest among all kinds of metal soft magnetic powder cores. Generally, iron powder cores can be preferred if the requirements of use can be met. At present, among all kinds of metal soft magnetic powder cores, it is the most widely used and the most used one.
传统的软磁复合材料的制备工艺是用磷酸钝化形成铁的磷化物,然后添加粘结剂、压制成型,在较低的温度下退火或不退火,得到软磁粉芯。因为铁的磷化物在较高的温度下会分解,导致绝缘性能下降,因此退火温度较低,使得压制时产生的内应力不能够完全消除,因此不利于减小磁滞损耗,因此,近年来出现了不同的用氧化物来进行包覆的磁粉芯制备方法,如三菱公司发明了一种蒸镀法在铁粉表面包覆一层MgO绝缘层,另外,近几年来,也出现了用溶胶凝胶法制备氧化物包覆磁粉芯的报道,利用以上方法制备的磁粉芯可以在较高的温度下退火,因此有利于消除压制成型的内应力,但这几种方法制备的绝缘层都是非磁性相,因此会造成磁稀释,导致磁粉芯的饱和磁感应强度下降。The traditional preparation process of soft magnetic composite materials is to passivate with phosphoric acid to form iron phosphide, then add binder, press molding, and anneal or not anneal at a lower temperature to obtain soft magnetic powder core. Because the iron phosphide will decompose at a higher temperature, resulting in a decrease in insulation performance, so the annealing temperature is lower, so that the internal stress generated during pressing cannot be completely eliminated, which is not conducive to reducing the hysteresis loss. Therefore, in recent years, There have been different methods of preparing magnetic powder cores coated with oxides. For example, Mitsubishi Corporation has invented an evaporation method to coat a layer of MgO insulating layer on the surface of iron powder. In addition, in recent years, there has also been the use of sol There are reports on the preparation of oxide-coated magnetic powder cores by the gel method. The magnetic powder cores prepared by the above methods can be annealed at a higher temperature, so it is beneficial to eliminate the internal stress of compression molding, but the insulating layers prepared by these methods are non-conductive. The magnetic phase, therefore, will cause magnetic dilution, resulting in a decrease in the saturation magnetic induction of the magnetic powder core.
发明内容Contents of the invention
本发明的目的是针对上述现象,提供一种碱性烤蓝工艺制备高饱和磁通密度软磁复合材料的方法。通过碱性烤蓝工艺使磁粉表面氧化生成一层均匀的Fe3O4的绝缘层,由于Fe3O4是一种亚铁磁性的合金,能有效降低合金的磁稀释,有利于提高合金的磁导率及饱和磁通密度。同时碱性烤蓝工艺进行绝缘包覆是一种原位反应过程,因此制备的Fe3O4是与磁粉表面的Fe直接反应产生,因此具有更高的结合度,并容易生成一层致密的绝缘保护层。The object of the present invention is to provide a method for preparing soft magnetic composite materials with high saturation magnetic flux density by alkaline baking blueing process in view of the above phenomenon. Oxidize the surface of the magnetic powder to form a uniform insulating layer of Fe 3 O 4 through the alkaline baking blueing process. Since Fe 3 O 4 is a ferrimagnetic alloy, it can effectively reduce the magnetic dilution of the alloy and is beneficial to improve the alloy’s magnetic properties. Permeability and saturation flux density. At the same time, the insulation coating of the alkaline blueing process is an in-situ reaction process, so the prepared Fe 3 O 4 is produced by direct reaction with the Fe on the surface of the magnetic powder, so it has a higher degree of binding and is easy to form a dense layer. Insulation protective layer.
一种碱性烤蓝工艺制备高饱和磁通密度软磁复合材料的方法步骤如下:A method for preparing a soft magnetic composite material with high saturation magnetic flux density by an alkaline roasting process is as follows:
1) 磁粉的绝缘包覆:取NaOH、NaNO3、NaNO2溶于H2O中配置成碱性烤蓝液,控制NaOH、NaNO3、NaNO2的浓度分别为0.4~0.7 g/ml、0.06~0.15 g/ml、0.02~0.05 g/ml,将配制好的碱性烤蓝液加热煮沸,加入磁粉,并保证磁粉的浓度小于0.75 g/ml,继续加热保持煮沸状态5~35 min,使得磁粉表面包覆一层绝缘层,然后过滤,干燥,得到软磁合金粉末;1) Insulation coating of magnetic powder: Dissolve NaOH, NaNO 3 , and NaNO 2 in H 2 O to prepare an alkaline bluing solution, and control the concentrations of NaOH, NaNO 3 , and NaNO 2 to 0.4~0.7 g/ml, 0.06 ~0.15 g/ml, 0.02~0.05 g/ml, heat the prepared alkaline bluish liquid to boil, add magnetic powder, and ensure that the concentration of magnetic powder is less than 0.75 g/ml, continue heating and keep boiling for 5~35 min, so that The surface of the magnetic powder is coated with an insulating layer, then filtered and dried to obtain soft magnetic alloy powder;
2) 添加粘结剂:将磁粉质量百分比0.5% - 2%的粘结剂倒入包覆好的软磁合金粉末中,加热并充分搅拌至混合物干燥、混合均匀;2) Add binder: pour 0.5% - 2% binder of magnetic powder into the coated soft magnetic alloy powder, heat and stir until the mixture is dry and evenly mixed;
3) 压制成型:将上述混合均匀后的合金粉末加入磁粉质量百分比0.25%的硬脂酸锌、0.25%的硬脂酸钡作为润滑剂,在400~2000 MPa的压力下压成磁芯;3) Compression molding: add the alloy powder mixed uniformly above to the magnetic powder with 0.25% zinc stearate and 0.25% barium stearate as lubricants, and press it into a magnetic core under a pressure of 400-2000 MPa;
4) 热处理:在惰性气体的保护下在400 ~ 700oC的温度下热处理0.5~2 h,以消除压制产生的内应力,得到软磁复合材料。4) Heat treatment: heat treatment at 400-700 o C for 0.5-2 h under the protection of inert gas to eliminate the internal stress generated by pressing and obtain a soft magnetic composite material.
所述的粘结剂为硅树脂、三聚氰胺树脂、酚醛树脂、环氧树脂、硅酮树脂、低熔点玻璃粉、SiO2中的一种或多种。The binder is one or more of silicone resin, melamine resin, phenolic resin, epoxy resin, silicone resin, low-melting glass powder, and SiO2 .
所述的磁粉为铁粉或铁硅粉。The magnetic powder is iron powder or iron silicon powder.
利用该方法制备的软磁复合材料由于磁粉表面包覆的一层Fe3O4为亚铁磁性材料,不会对软磁复合材料的饱和磁通密度造成太大的损失,可以进一步提高软磁复合材料的饱和磁通密度,另外,碱性烤蓝工艺与蒸镀、溶胶凝胶法等方法相较,工艺简单,制备成本低,更有利于实现大规模的工业化生产。The soft magnetic composite material prepared by this method will not cause too much loss to the saturation magnetic flux density of the soft magnetic composite material because the layer of Fe 3 O 4 coated on the surface of the magnetic powder is a ferrimagnetic material, and the soft magnetic composite material can be further improved. The saturation magnetic flux density of the composite material. In addition, compared with evaporation, sol-gel method and other methods, the alkaline baking blueing process has simple process and low preparation cost, which is more conducive to realizing large-scale industrial production.
附图说明Description of drawings
图1为用碱性烤蓝工艺及传统的磷酸钝化工艺制备的铁粉芯的磁滞回线。Figure 1 shows the hysteresis loops of iron powder cores prepared by alkaline blueing process and traditional phosphoric acid passivation process.
具体实施方式detailed description
本发明的软磁复合材料是将磁粉进行碱性烤蓝处理在铁粉表面生成一层Fe3O4作为绝缘层,然后添加粘结剂、压制成型后退火制成软磁复合材料。In the soft magnetic composite material of the present invention, a layer of Fe 3 O 4 is formed on the surface of iron powder as an insulating layer by subjecting the magnetic powder to alkaline bluing treatment, then adding a binder, pressing and forming, and then annealing to form the soft magnetic composite material.
软磁复合材料制备方法的步骤如下:The steps of the soft magnetic composite material preparation method are as follows:
1) 磁粉的绝缘包覆:取NaOH、NaNO3、NaNO2溶于H2O中配置成碱性烤蓝液,控制NaOH、NaNO3、NaNO2的浓度分别为0.4~0.7 g/ml、0.06~0.15 g/ml、0.02~0.05 g/ml,将配制好的碱性烤蓝液加热煮沸,加入磁粉,并保证磁粉的浓度小于0.75 g/ml,继续加热保持煮沸状态5~35 min,使得磁粉表面包覆一层绝缘层,然后过滤,干燥,得到软磁合金粉末;1) Insulation coating of magnetic powder: Dissolve NaOH, NaNO 3 , and NaNO 2 in H 2 O to prepare an alkaline bluing solution, and control the concentrations of NaOH, NaNO 3 , and NaNO 2 to 0.4~0.7 g/ml, 0.06 ~0.15 g/ml, 0.02~0.05 g/ml, heat the prepared alkaline bluish liquid to boil, add magnetic powder, and ensure that the concentration of magnetic powder is less than 0.75 g/ml, continue heating and keep boiling for 5~35 min, so that The surface of the magnetic powder is coated with an insulating layer, then filtered and dried to obtain soft magnetic alloy powder;
2) 添加粘结剂:将磁粉质量百分比0.5% - 2%的粘结剂倒入包覆好的软磁合金粉末中,加热并充分搅拌至混合物干燥、混合均匀;2) Add binder: pour 0.5% - 2% binder of magnetic powder into the coated soft magnetic alloy powder, heat and stir until the mixture is dry and evenly mixed;
3) 压制成型:将上述混合均匀后的合金粉末加入磁粉质量百分比0.25%的硬脂酸锌、0.25%的硬脂酸钡作为润滑剂,在400~2000 MPa的压力下压成磁芯;3) Compression molding: add the alloy powder mixed uniformly above to the magnetic powder with 0.25% zinc stearate and 0.25% barium stearate as lubricants, and press it into a magnetic core under a pressure of 400-2000 MPa;
4) 热处理:在惰性气体的保护下在400 ~ 700oC的温度下热处理0.5~2 h,以消除压制产生的内应力,得到软磁复合材料。4) Heat treatment: heat treatment at 400-700 o C for 0.5-2 h under the protection of inert gas to eliminate the internal stress generated by pressing and obtain a soft magnetic composite material.
以下结合实例对本发明作进一步详细描述:The present invention is described in further detail below in conjunction with example:
实施例1:Example 1:
将50 g NaOH、10 g NaNO3及3 g NaNO2溶于100 ml H2O中,搅拌均匀,加热至沸腾,然后加入60g Fe粉,继续加热使溶液保持沸腾状态10 min,然后过滤,用无水乙醇反复洗涤3次,在80oC条件下搅拌直至得到的铁粉干燥。Dissolve 50 g NaOH, 10 g NaNO 3 and 3 g NaNO 2 in 100 ml H 2 O, stir evenly, heat to boiling, then add 60 g Fe powder, continue heating to keep the solution boiling for 10 min, then filter, use Wash with absolute ethanol three times repeatedly, and stir at 80 o C until the obtained iron powder is dry.
将得到的铁粉加入2wt%硅树脂与10wt%的乙二醇溶液中,在80oC条件下搅拌直至粉末干燥,然后加入0.25wt%的硬脂酸锌与0.25wt%的硬脂酸钡,在800 MPa的条件下压制成致密的环形,对环形样品在450oC条件下退火1 h,制成软磁复合材料。Add the obtained iron powder into 2wt% silicone resin and 10wt% ethylene glycol solution, stir at 80 o C until the powder is dry, then add 0.25wt% zinc stearate and 0.25wt% barium stearate , pressed into a dense ring under the condition of 800 MPa, and annealed the ring sample at 450 o C for 1 h to make a soft magnetic composite material.
经检测,软磁合金的饱和磁通密度为1.6 T,磁导率为83。图1为用碱性烤蓝工艺及传统的磷酸钝化工艺制备的铁粉芯的磁滞回线。从图1中可以看出,采用碱性烤蓝工艺制备的铁粉芯具有更高的饱和磁通密度及磁导率。After testing, the saturation magnetic flux density of the soft magnetic alloy is 1.6 T, and the magnetic permeability is 83. Figure 1 shows the hysteresis loops of iron powder cores prepared by alkaline blueing process and traditional phosphoric acid passivation process. It can be seen from Figure 1 that the iron powder core prepared by the alkaline baking blueing process has higher saturation magnetic flux density and magnetic permeability.
实施例2:Example 2:
将40 g NaOH、6 g NaNO3及5 g NaNO2溶于100 ml H2O中,搅拌均匀,加热至沸腾,然后加入75gFe粉,继续加热使溶液保持沸腾状态5 min,然后过滤,用无水乙醇反复洗涤3次,在80oC条件下搅拌直至得到的铁粉干燥。Dissolve 40 g NaOH, 6 g NaNO 3 and 5 g NaNO 2 in 100 ml H 2 O, stir evenly, heat to boiling, then add 75 g Fe powder, continue heating to keep the solution boiling for 5 min, then filter, use Water and ethanol were washed repeatedly for 3 times, and stirred at 80 o C until the obtained iron powder was dry.
将得到的铁粉加入0.5wt%环氧树脂与10wt%的丙酮溶液中,在80oC条件下搅拌直至粉末干燥,然后加入0.25wt%的硬脂酸锌与0.25wt%的硬脂酸钡,在400 MPa的条件下压制成致密的环形,对环形样品在400oC条件下退火2 h,制成软磁复合材料。Add the obtained iron powder into 0.5wt% epoxy resin and 10wt% acetone solution, stir at 80 o C until the powder is dry, then add 0.25wt% zinc stearate and 0.25wt% barium stearate , pressed into a dense ring under the condition of 400 MPa, and annealed the ring sample at 400 o C for 2 h to make a soft magnetic composite material.
经检测,软磁合金的饱和磁通密度为1.5 T,磁导率为78。After testing, the saturation magnetic flux density of the soft magnetic alloy is 1.5 T, and the magnetic permeability is 78.
实施例3:Example 3:
将70 g NaOH、15 g NaNO3及2 g NaNO2溶于100 ml H2O中,搅拌均匀,加热至沸腾,然后加入50 g 铁硅粉,继续加热使溶液保持沸腾状态35 min,然后过滤,用无水乙醇反复洗涤3次,在80oC条件下搅拌直至得到的铁粉干燥。Dissolve 70 g NaOH, 15 g NaNO 3 and 2 g NaNO 2 in 100 ml H 2 O, stir evenly, heat to boiling, then add 50 g iron silicon powder, continue heating to keep the solution boiling for 35 min, then filter , washed three times with absolute ethanol, and stirred at 80 o C until the obtained iron powder was dry.
将得到的铁粉加入1wt%酚醛树脂、1wt%SiO2与10wt%的丙酮溶液中,在80oC条件下搅拌直至粉末干燥,然后加入0.25wt%的硬脂酸锌与0.25wt%的硬脂酸钡,在2000 MPa的条件下压制成致密的环形,对环形样品在700oC条件下退火0.5 h,制成软磁复合材料。Add the obtained iron powder into 1wt% phenolic resin, 1wt% SiO 2 and 10wt% acetone solution, stir at 80 o C until the powder is dry, then add 0.25wt% zinc stearate and 0.25wt% hard Barium fatty acid was pressed into a dense ring under the condition of 2000 MPa, and the ring sample was annealed at 700 o C for 0.5 h to make a soft magnetic composite material.
经检测,软磁合金的饱和磁通密度为1.6 T,磁导率为95。After testing, the saturation magnetic flux density of the soft magnetic alloy is 1.6 T, and the magnetic permeability is 95.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410684479.5A CN104465004B (en) | 2014-11-25 | 2014-11-25 | Method for manufacturing high-saturation-flux-density soft magnetic composite material according to alkaline bluing technique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410684479.5A CN104465004B (en) | 2014-11-25 | 2014-11-25 | Method for manufacturing high-saturation-flux-density soft magnetic composite material according to alkaline bluing technique |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104465004A CN104465004A (en) | 2015-03-25 |
CN104465004B true CN104465004B (en) | 2017-02-01 |
Family
ID=52910928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410684479.5A Active CN104465004B (en) | 2014-11-25 | 2014-11-25 | Method for manufacturing high-saturation-flux-density soft magnetic composite material according to alkaline bluing technique |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104465004B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106782982B (en) * | 2016-12-31 | 2019-02-01 | 浙江工业大学 | A kind of soft-magnetic composite material and preparation method thereof |
CN109727745A (en) * | 2018-12-17 | 2019-05-07 | 北京康普锡威科技有限公司 | Iron-based soft magnetic composite material and preparation method |
CN110295362B (en) * | 2019-07-10 | 2021-05-18 | 湖南三泰新材料股份有限公司 | Online alkaline bluing method for hot-rolled steel bars |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1282291A (en) * | 1997-12-16 | 2001-01-31 | 材料革新公司 | Ferromagnetic powder for low core loss, well-bonded parts |
CN101896632A (en) * | 2007-12-13 | 2010-11-24 | 杜费里特有限责任公司 | Method for producing corrosion-resistant surfaces of nitrated or nitrocarburated steel components |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19945592A1 (en) * | 1999-09-23 | 2001-04-12 | Bosch Gmbh Robert | Soft magnetic material and process for its production |
JP3748425B2 (en) * | 2002-09-04 | 2006-02-22 | パーカー熱処理工業株式会社 | Salt bath nitriding method for metal members with enhanced corrosion resistance |
CN102212815B (en) * | 2011-06-20 | 2015-01-28 | 南昌大学 | Method for preparing ferroferric oxide coating on surface of iron-based amorphous strip by using high-temperature oxidation method |
CN104028762B (en) * | 2014-05-28 | 2016-08-24 | 浙江大学 | A kind of preparation method of soft-magnetic composite material |
-
2014
- 2014-11-25 CN CN201410684479.5A patent/CN104465004B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1282291A (en) * | 1997-12-16 | 2001-01-31 | 材料革新公司 | Ferromagnetic powder for low core loss, well-bonded parts |
CN101896632A (en) * | 2007-12-13 | 2010-11-24 | 杜费里特有限责任公司 | Method for producing corrosion-resistant surfaces of nitrated or nitrocarburated steel components |
Also Published As
Publication number | Publication date |
---|---|
CN104465004A (en) | 2015-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108269670B (en) | Insulation and packaging treatment method for Fe-Si-Al soft magnetic alloy powder | |
CN109273235B (en) | Double-shell insulation coating method for metal soft magnetic composite material | |
CN104028762B (en) | A kind of preparation method of soft-magnetic composite material | |
CN104505209B (en) | A kind of soft magnetic metal composite core and preparation method thereof | |
CN104070161A (en) | Preparation method for inorganic-organic composite adhesive-coated soft magnetic composite | |
CN103666364B (en) | Soft magnetic metal matrix material organic insulation binding agent and prepare soft magnetic metal composite process | |
CN104031601A (en) | Insulative adhesive for preparing metallic and soft magnetic composite material and using method thereof | |
CN104934180A (en) | Preparation method of soft magnetic composite material with high saturation magnetic flux density and high magnetic conductivity | |
CN104036907A (en) | Method for preparing soft magnetic metal composite via warm compaction | |
JP5715614B2 (en) | Powder magnetic core and manufacturing method thereof | |
CN106782982B (en) | A kind of soft-magnetic composite material and preparation method thereof | |
CN108711482A (en) | Preparation method of organic-inorganic composite material insulation coated iron powder core | |
CN102623121A (en) | Method for manufacturing iron-silicon material and Mu-90 iron-silicon magnetic powder core | |
CN108183012A (en) | A kind of insulating wrapped processing method for improving iron-based soft magnetic composite material pressed density | |
CN111128537B (en) | Preparation method of soft magnetic composite material based on fluorozirconic acid hydrolysis | |
CN104028747A (en) | Inhomogeneous nucleation insulation coating processing method of metal soft magnetic composite material | |
CN108447642A (en) | A kind of preparation method of soft magnetic composite material | |
CN104465003B (en) | Acidity is given a protective coating to metal objects the method that technique prepares high saturation magnetic flux density soft-magnetic composite material | |
CN104465004B (en) | Method for manufacturing high-saturation-flux-density soft magnetic composite material according to alkaline bluing technique | |
CN113410021A (en) | Coated magnetic powder core of thermoplastic resin and epoxy resin composite adhesive and preparation method thereof | |
CN111029126A (en) | All-inorganic high-temperature-resistant insulating bonding method for iron-based metal soft magnetic composite material | |
CN103377786A (en) | Preparation method for iron-silicon-aluminum alloy magnetic powder core | |
CN107958762A (en) | A kind of Fe/FeSiB composite magnetic powder cores and preparation method thereof | |
CN113658769A (en) | A high-frequency high-Q FeSiAl@MnZn ferrite soft magnetic composite magnetic powder core and preparation method thereof | |
CN113223844A (en) | Powder coating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |