CN104268579A - Hyperspectral remote sensing image classifying method based on hierarchy ensemble learning - Google Patents
Hyperspectral remote sensing image classifying method based on hierarchy ensemble learning Download PDFInfo
- Publication number
- CN104268579A CN104268579A CN201410541909.8A CN201410541909A CN104268579A CN 104268579 A CN104268579 A CN 104268579A CN 201410541909 A CN201410541909 A CN 201410541909A CN 104268579 A CN104268579 A CN 104268579A
- Authority
- CN
- China
- Prior art keywords
- classification
- pixel
- integrated
- adaboost
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000003595 spectral effect Effects 0.000 claims abstract description 58
- 238000012360 testing method Methods 0.000 claims abstract description 52
- 239000013598 vector Substances 0.000 claims description 89
- 238000012549 training Methods 0.000 claims description 36
- 238000001228 spectrum Methods 0.000 claims description 29
- 239000011159 matrix material Substances 0.000 claims description 28
- 239000003550 marker Substances 0.000 claims description 18
- 238000012706 support-vector machine Methods 0.000 claims description 9
- 239000000284 extract Substances 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims 7
- VMXUWOKSQNHOCA-UKTHLTGXSA-N ranitidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-UKTHLTGXSA-N 0.000 claims 6
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 239000000126 substance Substances 0.000 claims 2
- 238000013459 approach Methods 0.000 claims 1
- 230000010354 integration Effects 0.000 abstract description 33
- 238000011160 research Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000007635 classification algorithm Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
基于分层集成学习的高光谱遥感图像分类方法,属于高光谱遥感图像分类技术领域。本发明是为了解决高光谱遥感图像数据的分类精度低的问题。它主要是使用两层的集成结构对高光谱图像进行分类,分别是内层结构和外层结构;内层结构是通过随机波段选择构成存在差异的光谱集合;之后以光谱集合为单位,分别使用Adaboost的集成方法来训练,再对测试样本进行分类;外层结构是将内层集成中各个光谱集合的分类结果进行整合,采用权重投票的方法确定样本的最终类别;最后是将整幅图像作为测试样本,实现全图分类从而得到分类主题图。本发明用于对高光谱遥感图像分类。
The invention discloses a hyperspectral remote sensing image classification method based on layered ensemble learning, which belongs to the technical field of hyperspectral remote sensing image classification. The invention aims to solve the problem of low classification accuracy of hyperspectral remote sensing image data. It mainly uses a two-layer integrated structure to classify hyperspectral images, which are the inner layer structure and the outer layer structure; the inner layer structure is to form a spectral set with differences through random band selection; then use the spectral set as a unit, respectively use The integrated method of Adaboost is used to train, and then classify the test samples; the outer structure is to integrate the classification results of each spectral collection in the inner layer integration, and use the method of weight voting to determine the final category of the sample; finally, the whole image is used as Test the sample and realize the classification of the whole image to obtain the classified theme map. The invention is used for classifying hyperspectral remote sensing images.
Description
技术领域technical field
本发明涉及基于分层集成学习的高光谱遥感图像分类方法,属于高光谱遥感图像分类技术领域。The invention relates to a hyperspectral remote sensing image classification method based on hierarchical integrated learning, and belongs to the technical field of hyperspectral remote sensing image classification.
背景技术Background technique
随着遥感应用获取数据手段的日益改进,高光谱遥感图像以其独特的优势成为其中重点的研究内容。高光谱遥感能在电磁波谱的紫外、可见光、近红外和中红外区域获取许多非常窄而且光谱连续的图像数据,具有图像和光谱合二为一的特点。这对使用遥感图像进行目标分类、目标识别、目标跟踪等都具有重要的研究价值和应用意义。目前应用高光谱遥感数据对目标地物的分类是高光谱成像的热点应用之一。因此,对于高光谱数据分类方法的研究有着深刻而长远的意义。With the improvement of remote sensing data acquisition methods, hyperspectral remote sensing images have become the key research content due to their unique advantages. Hyperspectral remote sensing can acquire many very narrow and spectrally continuous image data in the ultraviolet, visible, near-infrared and mid-infrared regions of the electromagnetic spectrum, and has the characteristics of combining images and spectra. This has important research value and application significance for using remote sensing images for target classification, target recognition, and target tracking. At present, the classification of target objects using hyperspectral remote sensing data is one of the hot applications of hyperspectral imaging. Therefore, the research on hyperspectral data classification methods has profound and long-term significance.
目前对高光谱遥感图像进行分类的方法,由于无法克服样本数目少以及噪声和奇异值的影响,使得对图像数据的分类精度低。The current classification methods for hyperspectral remote sensing images cannot overcome the small number of samples and the influence of noise and singular values, which makes the classification accuracy of image data low.
发明内容Contents of the invention
本发明目的是为了解决高光谱遥感图像数据的分类精度低的问题,提供了一种基于分层集成学习的高光谱遥感图像分类方法。The object of the present invention is to solve the problem of low classification accuracy of hyperspectral remote sensing image data, and provide a hyperspectral remote sensing image classification method based on layered ensemble learning.
本发明所述基于分层集成学习的高光谱遥感图像分类方法,它包括以下步骤:The hyperspectral remote sensing image classification method based on layered integrated learning of the present invention, it comprises the following steps:
步骤一:读取高光谱原始数据,对其进行预处理,获得监督数据,然后根据监督数据确定标记样本,并由标记样本中选择训练样本和测试样本;Step 1: Read the hyperspectral raw data, preprocess it, obtain supervised data, then determine the labeled samples according to the supervised data, and select training samples and test samples from the labeled samples;
步骤二:对高光谱原始数据的所有的光谱波段,进行随机的波段选择,然后从每一个标记样本中抽取像素向量组合,该像素向量组合中每一个像素向量包含的波段数目与所述随机的波段数目一一对应,形成一个光谱集合;重复随机的波段选择过程并形成对应的光谱集合,构成多个存在差异的光谱集合;Step 2: Perform random band selection for all spectral bands of the hyperspectral raw data, and then extract a pixel vector combination from each marked sample, the number of bands contained in each pixel vector in the pixel vector combination is the same as that of the random The number of bands corresponds one by one to form a spectral set; repeat the random band selection process and form a corresponding spectral set to form multiple spectral sets with differences;
步骤三:以每个光谱集合为单位,使用训练样本训练Adaboost集成框架的内层结构,再对测试样本进行分类,获得由Adaboost框架构成的内层集成;Step 3: Using each spectral collection as a unit, use the training samples to train the inner layer structure of the Adaboost integration framework, and then classify the test samples to obtain the inner layer integration composed of the Adaboost framework;
步骤四:由步骤三中测试样本的分类结果及分类精度,构造Adaboost集成框架的外层结构;Step 4: Construct the outer structure of the Adaboost integration framework from the classification results and classification accuracy of the test samples in step 3;
步骤五:采用具有上述内层结构和外层结构的Adaboost集成框架对高光谱原始数据采用遍历方式进行分类,获得分类主题图。Step 5: Use the Adaboost integration framework with the above-mentioned inner structure and outer structure to classify the hyperspectral raw data in a traversal manner, and obtain the classification theme map.
步骤一中确定标记样本,并由标记样本中选择训练样本和测试样本的具体方法为:In the first step, the marked samples are determined, and the specific method of selecting training samples and test samples from the marked samples is as follows:
读取以三维矩阵形式存储的高光谱原始数据,所述三维矩阵形式包括二维的空间位置信息和一维的光谱信息;将二维的空间位置信息中各像素点空间位置对应的真实地物标记图中的地物类别分别以整数值的形式标记出来,获得二维矩阵形式的监督数据,该监督数据由一一对应的像素点空间位置数据和以整数值的形式标记的地物类别数据组成;Read the hyperspectral raw data stored in the form of a three-dimensional matrix, the three-dimensional matrix form includes two-dimensional spatial position information and one-dimensional spectral information; The object categories in the marker map are respectively marked in the form of integer values, and the supervision data in the form of a two-dimensional matrix is obtained. composition;
由高光谱原始数据及监督数据,确定真实地物标记图中的地物类别数目C、二维的空间位置信息中像素点个数M行×N列以及一维的光谱信息中有效的波段数目B;From the hyperspectral raw data and supervisory data, determine the number of feature categories C in the real feature marker map, the number of pixels in the two-dimensional spatial position information M rows × N columns, and the number of effective bands in the one-dimensional spectral information B;
将监督数据中像素点空间位置数据按照位置坐标在高光谱原始数据中从上向下并且从左向右的方式,抽取光谱信息的像素向量作为标记样本,并将标记样本按行排列成二维矩阵形式,该二维矩阵的行数为标记样本的个数,列数为像素向量包含的波段数目B;The spatial position data of pixels in the supervisory data is extracted from top to bottom and from left to right in the original hyperspectral data according to the position coordinates, and the pixel vector of spectral information is extracted as a marked sample, and the marked samples are arranged in two-dimensional rows In matrix form, the number of rows of the two-dimensional matrix is the number of marked samples, and the number of columns is the number of bands B contained in the pixel vector;
将以二维矩阵形式表示的标记样本的奇数行选择作为训练样本,偶数行选择为测试样本,并使训练样本与测试样本数目之比为1:1;The odd-numbered rows of the marked samples expressed in a two-dimensional matrix form are selected as training samples, and the even-numbered rows are selected as test samples, and the ratio of the number of training samples to the number of test samples is 1:1;
再由监督数据中抽取与二维矩阵形式表示的标记样本一一对应的地物类别数据,并排列成列向量,该列向量中地物类别数据的个数为标记样本的个数,每一个地物类别数据的数值为对应的一个标记样本的类别标号,该列向量中第奇数个元素作为训练样本的类别标号,第偶数个元素作为测试样本的类别标号。Then extract the feature category data corresponding to the marked samples expressed in the two-dimensional matrix form from the supervised data, and arrange them into a column vector. The number of feature category data in the column vector is the number of marked samples, and each The value of the feature category data is the category label of a corresponding labeled sample, the odd-numbered element in the column vector is used as the category label of the training sample, and the even-numbered element is used as the category label of the test sample.
步骤二中构成多个存在差异的光谱集合的具体方法为:The specific method for forming multiple spectral sets with differences in step 2 is as follows:
在1至B之间抽取一组含有b个随机数的组合{i1,i2,…,ib},其中1≤ik≤B,k=1,2,…,b),然后由每一个标记样本中,按照k从1到b的顺序将第ik个向量元素抽取出来,分别构成一个含有b个元素的像素向量组合,该像素向量组合的个数与标记样本的个数相同,所有含有b个元素的像素向量组合作为一个光谱集合;From 1 to B, a group of b random numbers {i 1 , i 2 ,…,i b } is drawn, where 1≤i k ≤B, k=1,2,…,b), and then In each marked sample, the i kth vector element is extracted in the order of k from 1 to b to form a pixel vector combination containing b elements respectively, and the number of the pixel vector combination is the same as the number of marked samples , all pixel vectors containing b elements are combined as a spectral set;
将形成一个光谱集合的过程重复多次,在多次重复的过程中随机数均选择为b个,并使每一次随机数的组合存在差异,得到多个存在差异的光谱集合。The process of forming a spectrum set is repeated multiple times, and b random numbers are selected in the repeated process, and each combination of random numbers is different, so as to obtain multiple spectrum sets with differences.
步骤三中获得由Adaboost框架构成的内层集成的具体方法为:The specific method to obtain the inner layer integration composed of the Adaboost framework in step 3 is:
以每个光谱集合为单位,选择支持向量机SVM作为Adaboost集成框架的弱分类器;对于第一个光谱集合,依据Adaboost的集成方法对该光谱集合内与训练样本相对应的像素向量组合进行迭代,设定迭代次数为F,则形成存在差异的系列弱分类器f(f=1,2,…,Taking each spectral set as a unit, select the support vector machine SVM as the weak classifier of the Adaboost integration framework; for the first spectral set, iterate the combination of pixel vectors corresponding to the training samples in the spectral set according to the integration method of Adaboost , set the number of iterations as F, then form a series of weak classifiers f(f=1,2,...,
首先为第一个光谱集合内与训练样本相对应的每个像素向量组合赋予相同的权值,然后通过弱分类器1对当前像素向量权重组合进行训练和测试,对于其中被错分的像素向量提高其权重,对于正确判决的像素向量降低其权重;将权重调整后的像素向量权重组合在所述当前像素向量权重组合上训练弱分类器2,依此类推,反复迭代F次,获得侧重于不同像素向量权重组合的F个弱分类器;First, assign the same weight to each pixel vector combination corresponding to the training sample in the first spectral set, and then use the weak classifier 1 to train and test the current pixel vector weight combination, for the misclassified pixel vector Increase its weight, and reduce its weight for the pixel vector of correct decision; the pixel vector weight combination after weight adjustment is used to train the weak classifier 2 on the current pixel vector weight combination, and so on, iterate F times repeatedly, and obtain the focus on F weak classifiers with different combinations of pixel vector weights;
再以每个光谱集合为单位,首先对第一个光谱集合内与测试样本相对应的每个像素向量组合使用F个弱分类器进行分类,每一个像素向量获得F个分类结果,由此获得相应的测试样本的F个分类结果,再由多数投票的方式确定相应测试样本的最终分类结果;Taking each spectral set as a unit, first use F weak classifiers to classify each pixel vector corresponding to the test sample in the first spectral set, and obtain F classification results for each pixel vector, thus obtaining F classification results of the corresponding test samples, and then the final classification results of the corresponding test samples are determined by majority voting;
设定共有T个光谱集合,对于第二个光谱集合至第T个光谱集合,重复上述分类过程,测试样本的最终分类结果构成T个由Adaboost框架构成的内层集成。Set a total of T spectral sets, repeat the above classification process for the second spectral set to the Tth spectral set, and the final classification results of the test samples constitute T internal integrations composed of the Adaboost framework.
步骤四中构造Adaboost集成框架的外层结构的具体方法为:The specific method of constructing the outer structure of the Adaboost integrated framework in step 4 is:
对T个内层集成得到的测试样本的最终分类结果进行整合,再采用权重投票的方法对整合结果进行最终类别的确定,构造出Adaboost集成框架的外层结构。Integrate the final classification results of the test samples obtained by T internal integrations, and then use the method of weight voting to determine the final category of the integration results, and construct the outer structure of the Adaboost integration framework.
步骤五中获得分类主题图的具体方法为:The specific method of obtaining the classification theme map in step five is:
采用从上到下,从左到右的遍历方式,对高光谱原始数据空间位置信息中各像素点进行上述方式中同样方法的像素向量的抽取,得到M×N个像素向量,再采用具有上述内层结构和外层结构的Adaboost集成框架对M×N个像素向量逐个进行分类,得到M×N个类别标签,再将M×N个类别标签转换为相应的M行×N列的二维矩阵,该M行×N列的二维矩阵作为二维图像显示获得分类主题图。Using the traversal method from top to bottom and from left to right, the pixel vectors in the same method as above are extracted for each pixel in the hyperspectral original data spatial position information, and M×N pixel vectors are obtained, and then the above-mentioned The Adaboost integrated framework of the inner structure and the outer structure classifies M×N pixel vectors one by one to obtain M×N category labels, and then converts the M×N category labels into corresponding two-dimensional arrays of M rows×N columns Matrix, the two-dimensional matrix of M rows×N columns is displayed as a two-dimensional image to obtain a classification theme map.
本发明的优点:本发明方法针对高光谱图像的高维度和存在噪声及异常值的数据特性,提出了基于分层的集成学习方法,有效地减少了样本数目少以及噪声和奇异值对高光谱图像分类精度的影响,该方法能够获得较高分类精度的同时,还提供了较为直观的分类主题图,更好的服务于后续的图像处理应用。Advantages of the present invention: the method of the present invention aims at the high dimensionality of hyperspectral images and the data characteristics of noise and outliers, and proposes a layered-based integrated learning method, which effectively reduces the number of samples and the impact of noise and singular values on hyperspectral images. Influenced by the accuracy of image classification, this method can not only obtain higher classification accuracy, but also provide a more intuitive classification theme map, which can better serve subsequent image processing applications.
本发明方法针对高光谱数据的内在特性,对高光谱数据进行随机的波段选择,同时利用分层的集成学习方法对高光谱数据分类,从而建立一种拥有理论根据和实际应用价值的数据分类算法。According to the inherent characteristics of hyperspectral data, the method of the present invention randomly selects bands for hyperspectral data, and at the same time classifies hyperspectral data using a layered integrated learning method, thereby establishing a data classification algorithm with theoretical basis and practical application value .
附图说明Description of drawings
图1是本发明所述基于分层集成学习的高光谱遥感图像分类方法中获得T个光谱集合的示意图。Fig. 1 is a schematic diagram of obtaining T spectral sets in the hyperspectral remote sensing image classification method based on hierarchical ensemble learning in the present invention.
具体实施方式Detailed ways
具体实施方式一:下面结合图1说明本实施方式,本实施方式所述基于分层集成学习的高光谱遥感图像分类方法,它包括以下步骤:Specific embodiment one: below in conjunction with Fig. 1, illustrate this embodiment, the hyperspectral remote sensing image classification method based on layered integrated learning described in this embodiment, it comprises the following steps:
步骤一:读取高光谱原始数据,对其进行预处理,获得监督数据,然后根据监督数据确定标记样本,并由标记样本中选择训练样本和测试样本;Step 1: Read the hyperspectral raw data, preprocess it, obtain supervised data, then determine the labeled samples according to the supervised data, and select training samples and test samples from the labeled samples;
步骤二:对高光谱原始数据的所有的光谱波段,进行随机的波段选择,然后从每一个标记样本中抽取像素向量组合,该像素向量组合中每一个像素向量包含的波段数目与所述随机的波段数目一一对应,形成一个光谱集合;重复随机的波段选择过程并形成对应的光谱集合,构成多个存在差异的光谱集合;Step 2: Perform random band selection for all spectral bands of the hyperspectral raw data, and then extract a pixel vector combination from each marked sample, the number of bands contained in each pixel vector in the pixel vector combination is the same as that of the random The number of bands corresponds one by one to form a spectral set; repeat the random band selection process and form a corresponding spectral set to form multiple spectral sets with differences;
步骤三:以每个光谱集合为单位,使用训练样本训练Adaboost集成框架的内层结构,再对测试样本进行分类,获得由Adaboost框架构成的内层集成;Step 3: Using each spectral collection as a unit, use the training samples to train the inner layer structure of the Adaboost integration framework, and then classify the test samples to obtain the inner layer integration composed of the Adaboost framework;
步骤四:由步骤三中测试样本的分类结果及分类精度,构造Adaboost集成框架的外层结构;Step 4: Construct the outer structure of the Adaboost integration framework from the classification results and classification accuracy of the test samples in step 3;
步骤五:采用具有上述内层结构和外层结构的Adaboost集成框架对高光谱原始数据采用遍历方式进行分类,获得分类主题图。Step 5: Use the Adaboost integration framework with the above-mentioned inner structure and outer structure to classify the hyperspectral raw data in a traversal manner, and obtain the classification theme map.
本实施方式主要是使用两层的集成结构对高光谱图像进行分类,分别是内层结构和外层结构。内层结构是通过随机波段选择构成存在差异的光谱集合。之后以光谱集合为单位,分别使用Adaboost的集成方法来训练,再对测试样本进行分类。外层结构是将内层集成中各个光谱集合的分类结果进行整合,采用权重投票的方法确定样本的最终类别。最后是将整幅图像作为测试样本,实现全图分类从而得到分类主题图。This embodiment mainly uses a two-layer integrated structure to classify hyperspectral images, namely an inner layer structure and an outer layer structure. The inner structure is a collection of different spectra formed by random band selection. After that, the spectrum collection is used as the unit, and the Adaboost integration method is used to train respectively, and then the test samples are classified. The outer structure integrates the classification results of each spectral set in the inner integration, and uses the method of weight voting to determine the final category of the sample. Finally, the whole image is used as a test sample to realize the classification of the whole image to obtain the classified theme map.
具体实施方式二:本实施方式对实施方式一作进一步说明,步骤一中确定标记样本,并由标记样本中选择训练样本和测试样本的具体方法为:Specific implementation mode two: this implementation mode further explains implementation mode one, the specific method of determining the marked samples in step one, and selecting training samples and test samples from the marked samples is as follows:
读取以三维矩阵形式存储的高光谱原始数据,所述三维矩阵形式包括二维的空间位置信息和一维的光谱信息;将二维的空间位置信息中各像素点空间位置对应的真实地物标记图中的地物类别分别以整数值的形式标记出来,获得二维矩阵形式的监督数据,该监督数据由一一对应的像素点空间位置数据和以整数值的形式标记的地物类别数据组成;Read the hyperspectral raw data stored in the form of a three-dimensional matrix, the three-dimensional matrix form includes two-dimensional spatial position information and one-dimensional spectral information; The object categories in the marker map are respectively marked in the form of integer values, and the supervision data in the form of a two-dimensional matrix is obtained. composition;
由高光谱原始数据及监督数据,确定真实地物标记图中的地物类别数目C、二维的空间位置信息中像素点个数M行×N列以及一维的光谱信息中有效的波段数目B;From the hyperspectral raw data and supervisory data, determine the number of feature categories C in the real feature marker map, the number of pixels in the two-dimensional spatial position information M rows × N columns, and the number of effective bands in the one-dimensional spectral information B;
将监督数据中像素点空间位置数据按照位置坐标在高光谱原始数据中从上向下并且从左向右的方式,抽取光谱信息的像素向量作为标记样本,并将标记样本按行排列成二维矩阵形式,该二维矩阵的行数为标记样本的个数,列数为像素向量包含的波段数目B;The spatial position data of pixels in the supervisory data is extracted from top to bottom and from left to right in the original hyperspectral data according to the position coordinates, and the pixel vector of spectral information is extracted as a marked sample, and the marked samples are arranged in two-dimensional rows In matrix form, the number of rows of the two-dimensional matrix is the number of marked samples, and the number of columns is the number of bands B contained in the pixel vector;
将以二维矩阵形式表示的标记样本的奇数行选择作为训练样本,偶数行选择为测试样本,并使训练样本与测试样本数目之比为1:1;The odd-numbered rows of the marked samples expressed in a two-dimensional matrix form are selected as training samples, and the even-numbered rows are selected as test samples, and the ratio of the number of training samples to the number of test samples is 1:1;
再由监督数据中抽取与二维矩阵形式表示的标记样本一一对应的地物类别数据,并排列成列向量,该列向量中地物类别数据的个数为标记样本的个数,每一个地物类别数据的数值为对应的一个标记样本的类别标号,该列向量中第奇数个元素作为训练样本的类别标号,第偶数个元素作为测试样本的类别标号。Then extract the feature category data corresponding to the marked samples expressed in the two-dimensional matrix form from the supervised data, and arrange them into a column vector. The number of feature category data in the column vector is the number of marked samples, and each The value of the feature category data is the category label of a corresponding labeled sample, the odd-numbered element in the column vector is used as the category label of the training sample, and the even-numbered element is used as the category label of the test sample.
对高光谱原始数据进行预处理,为后续特征提取及分类算法准备数据。主要包括读取高光谱数据、确定标记样本并选择训练样本和测试样本两个部分。在监督数据中,空间位置信息中各像素点的地物类别以整数值的形式标记出来,同一类别的像素点拥有相同的数值。根据监督数据得到的标记样本,用来训练和测试分类方法。Preprocess the hyperspectral raw data to prepare data for subsequent feature extraction and classification algorithms. It mainly includes two parts: reading hyperspectral data, determining labeled samples, and selecting training samples and test samples. In the supervised data, the feature category of each pixel in the spatial position information is marked in the form of an integer value, and the pixels of the same category have the same value. Labeled samples obtained from supervised data are used to train and test classification methods.
高光谱原始数据中同一空间位置的不同光谱位置形成的向量称为像素向量。标记样本的第一个像素向量排在第一行,第二个像素向量排在第二行,以此类推,最终形成一个二维矩阵。标记样本的像素向量与类别标号具有一一对应的关系。The vector formed by different spectral positions of the same spatial position in the hyperspectral raw data is called a pixel vector. The first pixel vector of the labeled samples is arranged in the first row, the second pixel vector is arranged in the second row, and so on, finally forming a two-dimensional matrix. There is a one-to-one correspondence between the pixel vectors of labeled samples and the class labels.
具体实施方式三:下面结合图1说明本实施方式,本实施方式对实施方式二作进一步说明,步骤二中构成多个存在差异的光谱集合的具体方法为:Specific embodiment three: the present embodiment will be described below in conjunction with FIG. 1. This embodiment will further describe embodiment two. The specific method for forming a plurality of different spectral sets in step two is:
在1至B之间抽取一组含有b个随机数的组合{i1,i2,…,ib},其中1≤ik≤B,k=1,2,…,b),然后由每一个标记样本中,按照k从1到b的顺序将第ik个向量元素抽取出来,分别构成一个含有b个元素的像素向量组合,该像素向量组合的个数与标记样本的个数相同,所有含有b个元素的像素向量组合作为一个光谱集合;From 1 to B, a group of b random numbers {i 1 , i 2 ,…,i b } is drawn, where 1≤i k ≤B, k=1,2,…,b), and then In each marked sample, the i kth vector element is extracted in the order of k from 1 to b to form a pixel vector combination containing b elements respectively, and the number of the pixel vector combination is the same as the number of marked samples , all pixel vectors containing b elements are combined as a spectral set;
将形成一个光谱集合的过程重复多次,在多次重复的过程中随机数均选择为b个,并使每一次随机数的组合存在差异,得到多个存在差异的光谱集合。The process of forming a spectrum set is repeated multiple times, and b random numbers are selected in the repeated process, and each combination of random numbers is different, so as to obtain multiple spectrum sets with differences.
高光谱原始数据包含几十甚至上百个波段,构造光谱集合采用的是随机波段抽取的方法。从高光谱数据的所有波段中随机的抽取一部分波段作为光谱集合的光谱成员,这样的随机抽取重复一定的次数将达到对应数目的光谱集合。具体步骤包括:The hyperspectral raw data contains dozens or even hundreds of bands, and the method of constructing the spectral collection adopts the method of random band extraction. A part of the bands is randomly selected from all the bands of the hyperspectral data as the spectral members of the spectral set. Such random extraction is repeated for a certain number of times to reach the corresponding number of spectral sets. Specific steps include:
1.随机波段抽取。在高光谱图像中,每一个像素点都有一个长度为B的像素向量,B为原始数据中包含的波段数目。在1-B之间生成一组含有b个随机数的组合{i1,i2,…,ib},从每一个标记样本(包括训练样本和测试样本)的像素向量中,按照k从1到b的顺序将第ik个向量元素抽取出来,从而构成一个含有b个元素的像素向量。这样对于所有的标记样本而言,都有一个随机波段抽取后长度为b的像素向量。将这些随机波段抽取后的标记样本作为一个光谱集合。经验表明,当b约为B的0.3倍时,b取整数值,后续的分类所取得的效果较好。1. Random band extraction. In a hyperspectral image, each pixel has a pixel vector of length B, where B is the number of bands contained in the original data. Generate a set of combinations {i 1 ,i 2 ,…,i b } containing b random numbers between 1-B, from the pixel vector of each labeled sample (including training samples and test samples), according to k from The sequence from 1 to b extracts the i kth vector element to form a pixel vector containing b elements. In this way, for all labeled samples, there is a pixel vector of length b after random band extraction. The labeled samples extracted from these random bands are regarded as a spectrum set. Experience shows that when b is about 0.3 times of B, b takes an integer value, and the effect of subsequent classification is better.
2.构造光谱集合。经过以上的随机波段抽取,仅形成一个光谱集合。将以上随机抽取的过程重复T次,在重复的过程中参数保持一致,但是生成的随机数组合存在差异,就可以得到T个光谱集合。经验表明,当T约为20-30左右时,后续的分类所取得的效果较好。2. Construct a collection of spectra. After the above random band extraction, only one spectrum set is formed. Repeat the above random extraction process T times, and the parameters are consistent during the repetition process, but there are differences in the combinations of generated random numbers, and then T spectral sets can be obtained. Experience shows that when T is about 20-30, the effect of subsequent classification is better.
图1可以较为直观的说明以上的过程,其中灰色为在T次重复过程中抽取的波段。Figure 1 can illustrate the above process more intuitively, where gray is the band extracted during the T repetition process.
具体实施方式四:本实施方式对实施方式三作进一步说明,步骤三中获得由Adaboost框架构成的内层集成的具体方法为:Specific implementation mode four: this implementation mode further explains the implementation mode three, and the specific method for obtaining the inner layer integration composed of the Adaboost framework in step three is:
以每个光谱集合为单位,选择支持向量机SVM作为Adaboost集成框架的弱分类器;对于第一个光谱集合,依据Adaboost的集成方法对该光谱集合内与训练样本相对应的像素向量组合进行迭代,设定迭代次数为F,则形成存在差异的系列弱分类器f(f=1,2,…,F);Taking each spectral set as a unit, select the support vector machine SVM as the weak classifier of the Adaboost integration framework; for the first spectral set, iterate the combination of pixel vectors corresponding to the training samples in the spectral set according to the integration method of Adaboost , set the number of iterations as F, then form a series of weak classifiers f(f=1,2,...,F) with differences;
首先为第一个光谱集合内与训练样本相对应的每个像素向量组合赋予相同的权值,然后通过弱分类器1对当前像素向量权重组合进行训练和测试,对于其中被错分的像素向量提高其权重,对于正确判决的像素向量降低其权重;将权重调整后的像素向量权重组合在所述当前像素向量权重组合上训练弱分类器2,依此类推,反复迭代F次,获得侧重于不同像素向量权重组合的F个弱分类器;First, assign the same weight to each pixel vector combination corresponding to the training sample in the first spectral set, and then use the weak classifier 1 to train and test the current pixel vector weight combination, for the misclassified pixel vector Increase its weight, and reduce its weight for the pixel vector of correct decision; the pixel vector weight combination after weight adjustment is used to train the weak classifier 2 on the current pixel vector weight combination, and so on, iterate F times repeatedly, and obtain the focus on F weak classifiers with different combinations of pixel vector weights;
再以每个光谱集合为单位,首先对第一个光谱集合内与测试样本相对应的每个像素向量组合使用F个弱分类器进行分类,每一个像素向量获得F个分类结果,由此获得相应的测试样本的F个分类结果,再由多数投票的方式确定相应测试样本的最终分类结果;Taking each spectral set as a unit, first use F weak classifiers to classify each pixel vector corresponding to the test sample in the first spectral set, and obtain F classification results for each pixel vector, thus obtaining F classification results of the corresponding test samples, and then the final classification results of the corresponding test samples are determined by majority voting;
设定共有T个光谱集合,对于第二个光谱集合至第T个光谱集合,重复上述分类过程,测试样本的最终分类结果构成T个由Adaboost框架构成的内层集成。Set a total of T spectral sets, repeat the above classification process for the second spectral set to the Tth spectral set, and the final classification results of the test samples constitute T internal integrations composed of the Adaboost framework.
内层结构是通过随机波段选择构成存在差异的光谱集合之后,以光谱集合为单位分别使用Adaboost的集成方法来训练,再对测试样本进行分类。具体步骤如下:The inner layer structure is composed of different spectral sets by random band selection, and then the integrated method of Adaboost is used to train the spectral sets, and then the test samples are classified. Specific steps are as follows:
1.以每个光谱集合为单位,设计并使用训练样本训练Adaboost集成框架。选择支持向量机SVM作为Adaboost集成框架的弱分类器。对于光谱集合1,依据Adaboost的集成方法对集合内的训练样本进行迭代,设定迭代次数为F,将形成存在差异的一系列分类器f(f=1,2,…,F)。首先为每个训练样本赋予相同的权值;然后通过弱分类器1对训练样本进行训练和测试,对于其中被错分的样本提高其权重,对于那些正确判决的样本降低其权重;最后根据权重调整后的训练集训练下一轮分类器2,此过程反复迭代F次就可以得到侧重于不同训练样本的F个弱分类器。1. Design and use training samples to train the Adaboost ensemble framework for each spectral collection. The support vector machine (SVM) is chosen as the weak classifier of the Adaboost ensemble framework. For spectral set 1, according to the integration method of Adaboost, the training samples in the set are iterated, and the number of iterations is set as F, which will form a series of classifiers f (f=1,2,...,F) with differences. First, assign the same weight to each training sample; then train and test the training samples through the weak classifier 1, increase the weight of the misclassified samples, and reduce the weight of those samples that are correctly judged; finally according to the weight The adjusted training set trains the next round of classifier 2, and this process can be repeated for F times to obtain F weak classifiers focusing on different training samples.
对于Adaboost集成的弱分类器可以由SVM替换为K近邻、决策树以及神经网络等分类器。经验表明,SVM的分类效果优于其他分类器。The weak classifiers integrated with Adaboost can be replaced by SVM classifiers such as K-nearest neighbors, decision trees, and neural networks. Experience shows that SVMs perform better than other classifiers.
2.以每个光谱集合为单位,对测试样本进行分类。使用F个弱分类器对测试样本分类,对于每一个样本将有F个分类结果,最终的类别由多数投票的方式确定。多数投票法的基本思想:集成框架中的多个弱分类器都进行分类预测并给出各自的分类结果,然后根据分类结果用投票的原则进行投票表决,采用少数服从多数。对于每一个测试样本,让F个弱分类器进行类别投票,得票数最多的那个类别作为对应样本的分类结果。2. Take each spectral set as a unit to classify the test samples. Use F weak classifiers to classify test samples, and there will be F classification results for each sample, and the final class is determined by majority voting. The basic idea of the majority voting method: Multiple weak classifiers in the integrated framework perform classification predictions and give their respective classification results, and then vote according to the classification results using the principle of voting, and the minority obeys the majority. For each test sample, let F weak classifiers perform class voting, and the class with the most votes is used as the classification result of the corresponding sample.
3.对于光谱集合2-T,重复上述步骤1-2,则将构成T个由Adaboost框架构成的内层集成。3. For the spectrum set 2-T, repeat the above steps 1-2, and T inner layer integrations composed of the Adaboost framework will be formed.
具体实施方式五:本实施方式对实施方式四作进一步说明,步骤四中构造Adaboost集成框架的外层结构的具体方法为:Specific implementation mode five: this implementation mode further explains implementation mode four, and the specific method of constructing the outer layer structure of Adaboost integrated framework in step four is:
对T个内层集成得到的测试样本的最终分类结果进行整合,再采用权重投票的方法对整合结果进行最终类别的确定,构造出Adaboost集成框架的外层结构。Integrate the final classification results of the test samples obtained by T internal integrations, and then use the method of weight voting to determine the final category of the integration results, and construct the outer structure of the Adaboost integration framework.
外层结构是将T个内层集成得到的分类结果进行整合,采用权重投票的方法确定样本的最终类别。The outer layer structure integrates the classification results obtained from T inner layer integrations, and uses the method of weight voting to determine the final category of the sample.
对于外部集成结构中的每一个内部集成,对于测试样本都将给出一个判定的类别,为了得到最终的集成决策,需要将这些个体分类器的输出进行一定策略的整合,得到分层的集成学习的分类结果。在面对多个分类结果时,需要寻求一种整合策略以获得最佳决策。此处选择权重投票的方法。每一个内部集成结构的权重是由其对于训练样本的分类精度决定的,某一个像素点的类别是通过投票之后权重的加和来判断的,权重的总和最大的类别作为最终的类别输出。For each internal integration in the external integration structure, a judgment category will be given for the test samples. In order to obtain the final integration decision, the output of these individual classifiers needs to be integrated with a certain strategy to obtain hierarchical integrated learning. classification results. In the face of multiple classification results, it is necessary to seek an integration strategy to obtain the best decision. Select the weight voting method here. The weight of each internal integration structure is determined by its classification accuracy for training samples. The category of a certain pixel is judged by the sum of weights after voting, and the category with the largest sum of weights is the final category output.
具体实施方式六:本实施方式对实施方式五作进一步说明,步骤五中获得分类主题图的具体方法为:Specific implementation mode six: This implementation mode further explains implementation mode five, and the specific method for obtaining the classification theme map in step five is:
采用从上到下,从左到右的遍历方式,对高光谱原始数据空间位置信息中各像素点进行上述方式中同样方法的像素向量的抽取,得到M×N个像素向量,再采用具有上述内层结构和外层结构的Adaboost集成框架对M×N个像素向量逐个进行分类,得到M×N个类别标签,再将M×N个类别标签转换为相应的M行×N列的二维矩阵,该M行×N列的二维矩阵作为二维图像显示获得分类主题图。Using the traversal method from top to bottom and from left to right, the pixel vectors in the same method as above are extracted for each pixel in the hyperspectral original data spatial position information, and M×N pixel vectors are obtained, and then the above-mentioned The Adaboost integrated framework of the inner structure and the outer structure classifies M×N pixel vectors one by one to obtain M×N category labels, and then converts the M×N category labels into corresponding two-dimensional arrays of M rows×N columns Matrix, the two-dimensional matrix of M rows×N columns is displayed as a two-dimensional image to obtain a classification theme map.
采用从上到下,从左到右的遍历方式,对原始的高光谱图像内的所有像素点进行像素向量的抽取。将得到M×N个像素向量,使用分层的集成结构对所有的像素向量进行分类,将得到M×N个类别标签,该类别标签为一维向量,将类别标签转换为M行×N列的二维矩阵,将二维矩阵作为二维图像显示将得到分类的直观评价,即分类主题图。By traversing from top to bottom and from left to right, pixel vectors are extracted from all pixels in the original hyperspectral image. M×N pixel vectors will be obtained, and all pixel vectors will be classified using a hierarchical integrated structure, and M×N category labels will be obtained, which are one-dimensional vectors, and the category labels will be converted into M rows×N columns The two-dimensional matrix of , displaying the two-dimensional matrix as a two-dimensional image will give an intuitive evaluation of the classification, that is, the classification theme map.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410541909.8A CN104268579A (en) | 2014-10-14 | 2014-10-14 | Hyperspectral remote sensing image classifying method based on hierarchy ensemble learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410541909.8A CN104268579A (en) | 2014-10-14 | 2014-10-14 | Hyperspectral remote sensing image classifying method based on hierarchy ensemble learning |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104268579A true CN104268579A (en) | 2015-01-07 |
Family
ID=52160099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410541909.8A Pending CN104268579A (en) | 2014-10-14 | 2014-10-14 | Hyperspectral remote sensing image classifying method based on hierarchy ensemble learning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104268579A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105631480A (en) * | 2015-12-30 | 2016-06-01 | 哈尔滨工业大学 | Hyperspectral data classification method based on multi-layer convolution network and data organization and folding |
CN107194373A (en) * | 2017-06-16 | 2017-09-22 | 河海大学 | A kind of target in hyperspectral remotely sensed image feature extraction and classifying method |
CN108154094A (en) * | 2017-12-14 | 2018-06-12 | 浙江工业大学 | Hyperspectral image unsupervised waveband selection method based on subinterval division |
CN108363967A (en) * | 2018-01-30 | 2018-08-03 | 何德珍 | A kind of categorizing system of remote sensing images scene |
CN108388917A (en) * | 2018-02-26 | 2018-08-10 | 东北大学 | A kind of hyperspectral image classification method based on improvement deep learning model |
CN108596244A (en) * | 2018-04-20 | 2018-09-28 | 湖南理工学院 | A kind of high spectrum image label noise detecting method based on spectrum angle density peaks |
CN108875649A (en) * | 2018-06-22 | 2018-11-23 | 北京佳格天地科技有限公司 | A kind of terrain classification method, system, equipment and storage medium |
CN109145685A (en) * | 2017-06-19 | 2019-01-04 | 南京农业大学 | Fruits and vegetables EO-1 hyperion quality detecting method based on integrated study |
CN109325458A (en) * | 2018-09-30 | 2019-02-12 | 河海大学 | A combined classification method of hyperspectral images based on the four-color theorem |
CN110046674A (en) * | 2019-04-24 | 2019-07-23 | 哈尔滨工业大学 | Classification of hyperspectral remote sensing image method based on feedback arrangement |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8810658B2 (en) * | 2012-02-02 | 2014-08-19 | Xerox Corporation | Estimating a visible vector representation for pixels in an infrared image |
CN104021396A (en) * | 2014-06-23 | 2014-09-03 | 哈尔滨工业大学 | Hyperspectral remote sensing data classification method based on ensemble learning |
-
2014
- 2014-10-14 CN CN201410541909.8A patent/CN104268579A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8810658B2 (en) * | 2012-02-02 | 2014-08-19 | Xerox Corporation | Estimating a visible vector representation for pixels in an infrared image |
CN104021396A (en) * | 2014-06-23 | 2014-09-03 | 哈尔滨工业大学 | Hyperspectral remote sensing data classification method based on ensemble learning |
Non-Patent Citations (1)
Title |
---|
何灵敏: ""支持向量机集成及在遥感分类中的应用"", 《中国优秀博士学位论文全文数据库信息科技辑》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105631480A (en) * | 2015-12-30 | 2016-06-01 | 哈尔滨工业大学 | Hyperspectral data classification method based on multi-layer convolution network and data organization and folding |
CN105631480B (en) * | 2015-12-30 | 2018-10-26 | 哈尔滨工业大学 | The Hyperspectral data classification method folded based on multilayer convolutional network and data recombination |
CN107194373A (en) * | 2017-06-16 | 2017-09-22 | 河海大学 | A kind of target in hyperspectral remotely sensed image feature extraction and classifying method |
CN109145685A (en) * | 2017-06-19 | 2019-01-04 | 南京农业大学 | Fruits and vegetables EO-1 hyperion quality detecting method based on integrated study |
CN109145685B (en) * | 2017-06-19 | 2021-11-12 | 南京农业大学 | Fruit and vegetable hyperspectral quality detection method based on ensemble learning |
CN108154094A (en) * | 2017-12-14 | 2018-06-12 | 浙江工业大学 | Hyperspectral image unsupervised waveband selection method based on subinterval division |
CN108154094B (en) * | 2017-12-14 | 2020-04-24 | 浙江工业大学 | Hyperspectral image unsupervised waveband selection method based on subinterval division |
CN108363967A (en) * | 2018-01-30 | 2018-08-03 | 何德珍 | A kind of categorizing system of remote sensing images scene |
CN108388917A (en) * | 2018-02-26 | 2018-08-10 | 东北大学 | A kind of hyperspectral image classification method based on improvement deep learning model |
CN108596244A (en) * | 2018-04-20 | 2018-09-28 | 湖南理工学院 | A kind of high spectrum image label noise detecting method based on spectrum angle density peaks |
CN108875649A (en) * | 2018-06-22 | 2018-11-23 | 北京佳格天地科技有限公司 | A kind of terrain classification method, system, equipment and storage medium |
CN109325458A (en) * | 2018-09-30 | 2019-02-12 | 河海大学 | A combined classification method of hyperspectral images based on the four-color theorem |
CN109325458B (en) * | 2018-09-30 | 2021-10-15 | 河海大学 | A combined classification method of hyperspectral images based on the four-color theorem |
CN110046674A (en) * | 2019-04-24 | 2019-07-23 | 哈尔滨工业大学 | Classification of hyperspectral remote sensing image method based on feedback arrangement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104268579A (en) | Hyperspectral remote sensing image classifying method based on hierarchy ensemble learning | |
CN104102929B (en) | Hyperspectral remote sensing data classification method based on deep learning | |
Yang et al. | Building extraction at scale using convolutional neural network: Mapping of the united states | |
Hong et al. | Multimodal GANs: Toward crossmodal hyperspectral–multispectral image segmentation | |
Deng et al. | Deep metric learning-based feature embedding for hyperspectral image classification | |
Lee et al. | Motion feature network: Fixed motion filter for action recognition | |
CN108491849B (en) | Hyperspectral image classification method based on three-dimensional dense connection convolution neural network | |
CN104021396A (en) | Hyperspectral remote sensing data classification method based on ensemble learning | |
CN110222773B (en) | Hyperspectral image small sample classification method based on asymmetric decomposition convolution network | |
CN104361363B (en) | Depth deconvolution feature learning network, generation method and image classification method | |
Morchhale et al. | Classification of pixel-level fused hyperspectral and lidar data using deep convolutional neural networks | |
Xu et al. | Robust self-ensembling network for hyperspectral image classification | |
CN107292343A (en) | A kind of Classification of hyperspectral remote sensing image method based on six layers of convolutional neural networks and spectral space information consolidation | |
CN105590099B (en) | A kind of more people's Activity recognition methods based on improvement convolutional neural networks | |
CN107301380A (en) | One kind is used for pedestrian in video monitoring scene and knows method for distinguishing again | |
CN106529499A (en) | Fourier descriptor and gait energy image fusion feature-based gait identification method | |
CN111191528B (en) | Campus violence behavior detection system and method based on deep learning | |
CN112200123B (en) | A Hyperspectral Open Set Classification Method Joint Densely Connected Network and Sample Distribution | |
CN110414616B (en) | A Remote Sensing Image Dictionary Learning Classification Method Using Spatial Relationship | |
Liu et al. | Ground-based remote sensing cloud classification via context graph attention network | |
CN107194423A (en) | The hyperspectral image classification method of the integrated learning machine that transfinites of feature based random sampling | |
Makkar et al. | Adversarial learning based discriminative domain adaptation for geospatial image analysis | |
CN105930863A (en) | Determination method for spectral band setting of satellite camera | |
Gao et al. | Deep transformer network for hyperspectral image classification | |
CN115512164A (en) | A Substance Analysis Method Based on the Combination of Spectral Analysis and Video Classification Algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150107 |