NO122344B - - Google Patents
Download PDFInfo
- Publication number
- NO122344B NO122344B NO0686/68A NO68668A NO122344B NO 122344 B NO122344 B NO 122344B NO 0686/68 A NO0686/68 A NO 0686/68A NO 68668 A NO68668 A NO 68668A NO 122344 B NO122344 B NO 122344B
- Authority
- NO
- Norway
- Prior art keywords
- germanium
- alloys
- magnesium
- alloy
- copper
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 60
- 239000000956 alloy Substances 0.000 claims description 60
- 229910052732 germanium Inorganic materials 0.000 claims description 34
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 34
- 229910052749 magnesium Inorganic materials 0.000 claims description 31
- 239000011777 magnesium Substances 0.000 claims description 31
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 30
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 230000003679 aging effect Effects 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 230000032683 aging Effects 0.000 description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 238000007792 addition Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910018563 CuAl2 Inorganic materials 0.000 description 1
- 229910019688 Mg2Ge Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- SCCCLDWUZODEKG-UHFFFAOYSA-N germanide Chemical compound [GeH3-] SCCCLDWUZODEKG-UHFFFAOYSA-N 0.000 description 1
- SUBGURZSWAMWPI-UHFFFAOYSA-N germanium lead Chemical compound [Ge].[Pb] SUBGURZSWAMWPI-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- YTHCQFKNFVSQBC-UHFFFAOYSA-N magnesium silicide Chemical compound [Mg]=[Si]=[Mg] YTHCQFKNFVSQBC-UHFFFAOYSA-N 0.000 description 1
- 229910021338 magnesium silicide Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- -1 solv Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Silicon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Legeringer på aluminiumbasis. Aluminum-based alloys.
Oppfinnelsen angår legeringer på aluminiumbasis inneholdende The invention relates to aluminum-based alloys containing
kobber som en hovedlegeringsbestanddel og dessuten magnesium. copper as a main alloying element and also magnesium.
Legeringer på aluminiumbasis inneholdende kobber som en hovedlegeringsbestanddel eller både kobber og magnesium som hovedlegerings-bestanddeler, er utstragt anvendt på grunn av deres onskelige mekan- Aluminum-based alloys containing copper as a main alloying element or both copper and magnesium as main alloying elements have been widely used due to their undesirable mechanical
iske og fysikalske egenskaper og lette fremstilling. De er i den senere tid i okende grad blitt anvendt som sigeresistente materialer. ical and physical properties and ease of manufacture. They have recently been increasingly used as seepage-resistant materials.
Slike legeringer kan varmebehandles ved hoye temperaturer av Such alloys can be heat treated at high temperatures by
^50-550°C avhengig av sammensetningen (som regel kalt opplosningsbehandling), fulg.t av en hurtig avkjoling til en temperatur under 250°C, ^50-550°C depending on the composition (usually called dissolution treatment), followed by a rapid cooling to a temperature below 250°C,
hvorpå legeringene kan herdes ved eldning enten ved værelsetemperatur (naturlig eldning) eller ved forhoyet temperatur (kunstig eldning) after which the alloys can be hardened by aging either at room temperature (natural aging) or at an elevated temperature (artificial aging)
for derved å oke legeringenes styrke. Kunstig eldning gir en hurtigere herding og gjor det mulig å oppnå maksimal styrke. Det kan vise seg nodvendig å deformere legeringen, f.eks. for å lette fremstillingen eller for å fremme herdingen, og dette gjores fortrinnsvis så snart som mulig efter hurtig avkjoling efter opplosningsbehandling og for den hoyeste hårdhet nåes. thereby increasing the strength of the alloys. Artificial aging provides faster hardening and makes it possible to achieve maximum strength. It may prove necessary to deform the alloy, e.g. to facilitate manufacture or to promote hardening, and this is preferably done as soon as possible after rapid cooling after solution treatment and so that the highest hardness is achieved.
Det har nu vist seg at små tilsetninger av germanium inntil 0,5 % utover en god virkning på slike aluminiumlegeringer. It has now been shown that small additions of germanium up to 0.5% above have a good effect on such aluminum alloys.
Oppfinnelsen angår således en legering på aluminiumbasis med . forbedrede eldningsegenskaper, og legeringen er særpreget ved at den inneholder 0,02 - 0,5 %, germanium, 0,1-0,5 % magnesium, 2 - 7 % kobber, 0-0,5 % silicium, 0-1,0 % mangan, 0-1,5 % jern, 0-2,5$ nikkel og eventuelt små mengder av en eller flere i og for seg kjente utskillings- eller kornforfinere, idet resten er aluminium og eventuelt forurensninger. The invention thus relates to an aluminum-based alloy with . improved aging properties, and the alloy is characterized by the fact that it contains 0.02 - 0.5% germanium, 0.1-0.5% magnesium, 2 - 7% copper, 0-0.5% silicon, 0-1, 0% manganese, 0-1.5% iron, 0-2.5$ nickel and possibly small amounts of one or more separation or grain refiners known per se, the rest being aluminum and possibly impurities.
Tysk patentskrift nr. <l>+9<1>+395 angår kobber-aluminiumlegeringer inneholdende magnesium, silicium og germanium. Ved eldning av legeringene utskilles magnesiumgermanid, magnesiumsilicid og en CuAl2~forbindelse. Det taes ifolge det tyske patentskrift sikte på å anvende inntil 5 % germanium, og ifolge eksemplene i patent-skriftet er 1% germanium anvendt. I det siste avsnitt av patent-skriftet er henvisning gjort til et innhold av 0,5-1 % germanium, men dette gjelder en legering inneholdende så meget som 2 % magnesium. I motsetning hertil er det et vesentlig trekk ved de foreliggende legeringer at germaniumatomet ikke skal utgjore noen del av utskillingen, men holdes i fast opplosning. Dette er en av grunnene til at germaniuminnholdet i de foreliggende legeringer er begrenset til hoyst 0,5$. Dersom vesentlige mengder germanium til-settes og forbindelsen Mg2Ge dannes, vil dette nemlig ha den virkning at det effektive innhold av magnesium nøytraliseres eller minskes slik at det ikke tar del i de andre utskillingsprosesser som bevirker herding. Mengdene av germanium og magnesium i de foreliggende legeringer er derfor noyaktig avpasset, og den kombinerte anvendelse av det lave germaniuminnhold og det lave magnesiuminn-hold i de foreliggende legeringer er ikke.beskrevet i det tyske patentskrift. German patent document No. <l>+9<1>+395 relates to copper-aluminium alloys containing magnesium, silicon and germanium. When the alloys are aged, magnesium germanide, magnesium silicide and a CuAl2~ compound are released. According to the German patent document, the aim is to use up to 5% germanium, and according to the examples in the patent document, 1% germanium is used. In the last paragraph of the patent, reference is made to a content of 0.5-1% germanium, but this applies to an alloy containing as much as 2% magnesium. In contrast, it is an essential feature of the present alloys that the germanium atom should not form any part of the precipitate, but be kept in solid solution. This is one of the reasons why the germanium content in the present alloys is limited to a maximum of 0.5$. If significant amounts of germanium are added and the compound Mg2Ge is formed, this will have the effect that the effective content of magnesium is neutralized or reduced so that it does not take part in the other excretion processes that cause hardening. The amounts of germanium and magnesium in the present alloys are therefore precisely adjusted, and the combined use of the low germanium content and the low magnesium content in the present alloys is not described in the German patent document.
De foreliggende legeringer kan foruten hovedlegeringsbestand-delene inneholde forurensninger eller elementer for å modifisere visse egenskaper, under den forutsetning at forurensningene eller de eventuelle elementer ikke er slike at de hindrer de heri beskrevne fordelaktige virkninger fra å oppnåes. Silicium kan f.eks. være tilstede i en mengde av inntil 0,1 % i legeringer som ikke må eldnes ved værelsetemperatur, eller i en mengde over 0,1 % dersom det ikke er av spesiell viktighet at fremstillingen må forlope lett, men hvor det er nodvendig med sigeresistens efter kunstig eldning. En hvilken som helst av de kjente, utskillings- eller kornforfinere kan også In addition to the main alloy components, the present alloys may contain impurities or elements to modify certain properties, provided that the impurities or possible elements are not such that they prevent the beneficial effects described herein from being achieved. Silicon can e.g. be present in an amount of up to 0.1% in alloys that must not be aged at room temperature, or in an amount above 0.1% if it is not of particular importance that the production must proceed easily, but where it is necessary to have resistance to seepage after artificial aging. Any of the known, excretory or grain refiners can also
være tilstede i de foreliggende legeringer, f.eks. solv, titan, krom, vanadium eller zirkonium, for å modifisere kornstorrelsen eller deres virkning på rekrystalliseringen. For visse anvendelser, spesielt hvor det er nodvendig med hoy temperaturmotstand, kan det være onskelig å tilsette inntil 2,5 % nikkel og 1,5 % jern. be present in the present alloys, e.g. solv, titanium, chromium, vanadium or zirconium, to modify the grain size or their effect on the recrystallization. For certain applications, especially where high temperature resistance is required, it may be desirable to add up to 2.5% nickel and 1.5% iron.
De ovennevnte fordelaktige virkninger består i at (i) herdings-hastigheten og den oppnådde storste hårdhet ved naturlig eldning re-duseres i betraktelig grad slik at det ikke er nodvendig å utfore noen behandlinger omfattende deformering umiddelbart efter brå-kjolingen efter opplosningsbehandlingen, (ii) herdehastigheten for oppnåelse av maksimal hårdhet og maksimale mekaniske egenskaper ved kunstig eldning er betraktelig hoyere enn i legeringer som ikke inneholder magnesium eller germanium eller som inneholder magnesium eller germanium alene, og (iii) motstandsevnen overfor for sterk eldning ved hoye temperaturer, spesielt under siging, er bedre enn i sammen-lignbare legeringer ikke inneholdende magnesium plus germanium. The above-mentioned beneficial effects consist in (i) the rate of hardening and the greatest hardness achieved by natural aging being reduced to a considerable extent so that it is not necessary to carry out any treatments including deformation immediately after the quenching after the dissolution treatment, (ii) the rate of hardening to achieve maximum hardness and maximum mechanical properties by artificial aging is considerably higher than in alloys that do not contain magnesium or germanium or that contain magnesium or germanium alone, and (iii) the resistance to excessive aging at high temperatures, especially during sintering, is better than in comparable alloys not containing magnesium plus germanium.
'Forsok har vist at tilsetninger av magnesium plus germanium forer til en langt mere effektiv kjernedannelse for 0'-utfellingen i aluminium-kobbersystemet enn andre spprelementer som kadmium, indium og tinn i aluminiumlegeringer inneholdende 2-7 % kobber, eller enn magnesium og silicium sammen i den velkjente legering inneholdende 5-6 % Cu, 0,3 $ Mg, 0,15 % Si og 0,25 % Mn, og det antaes at dette er grunnen til de ovennevnte fordelaktige virkninger. 'Experiments have shown that additions of magnesium plus germanium lead to far more efficient nucleation for the 0' precipitation in the aluminium-copper system than other sppr elements such as cadmium, indium and tin in aluminum alloys containing 2-7% copper, or than magnesium and silicon together in the well-known alloy containing 5-6% Cu, 0.3% Mg, 0.15% Si and 0.25% Mn, and it is believed that this is the reason for the above beneficial effects.
Egenskapene til to legeringer på aluminiumbasis inneholdende kobber som hovedlegeringsbestanddel, nemlig en velkjent legering som også inneholdt magnesium og silicium, og en legering ifolge oppfinnelsen og inneholdende også magnesium og germanium, ble sammen-lignet. Disse legeringer vil herefter bli betegnet som henholdsvis legering A og legering B, og legering A inneholdt 5 % kobber, 0,2$ magnesium, 0,15 % silicium, 0,5 % mangan og 0,15 $ jern mens legering B inneholdt 5 % kobber, 0,2 % magnesium, 0,15 % germanium, 0,15 % mangan og 0,15 % jern. The properties of two aluminum-based alloys containing copper as the main alloy component, namely a well-known alloy which also contained magnesium and silicon, and an alloy according to the invention and also containing magnesium and germanium, were compared. These alloys will hereafter be referred to as alloy A and alloy B, respectively, and alloy A contained 5% copper, 0.2% magnesium, 0.15% silicon, 0.5% manganese and 0.15% iron, while alloy B contained 5 % copper, 0.2% magnesium, 0.15% germanium, 0.15% manganese and 0.15% iron.
Smidde stenger av begge legeringer ble opplosningsbehandlet ved 530°C, bråkjblt i koldt vann og så eldet ved 170°C. Legering A fikk de hbyeste mekaniske egenskaper efter eldning i 2h timer mens legering B herdet hurtigere og nådde sitt maksimum efter 9>5 timer. Forged bars of both alloys were solution treated at 530°C, quenched in cold water and then aged at 170°C. Alloy A obtained the highest mechanical properties after aging for 2 hours, while alloy B hardened faster and reached its maximum after 9>5 hours.
Virkningen av tilsetningen av magnesium plus germanium var tydeligere ved hbyere eldningstemperaturer, f.eks. ved 190°C. The effect of the addition of magnesium plus germanium was more evident at higher aging temperatures, e.g. at 190°C.
'Videre ble prbvestykker bråkjblt i vann fra en temperatur av 530°C og eldet ved omgivelsestemperatur i lh dager. Legering A hadde en hårdhetsbkning fra 83 D.P.N. til 92 D.P.N. mens legeringens B hårdhet holdt seg konstant ved 8l D.P.N. Efter 23 dager hadde Furthermore, samples were quenched in water from a temperature of 530°C and aged at ambient temperature for 1h days. Alloy A had a hardness bend from 83 D.P.N. to 92 D.P.N. while the alloy B hardness remained constant at 8l D.P.N. After 23 days had
Den lavere utherdingshastighet til legeringen inneholdende magnesium plus germanium fremgår også av målinger av de mekaniske egenskaper til smidde stenger som var blitt opplosningsbehandlet ved 530°C, bråkjblt i koldt vann og eldet i 32 dager ved omgivelsestemperatur . The lower hardening rate of the alloy containing magnesium plus germanium is also evident from measurements of the mechanical properties of forged bars that had been solution treated at 530°C, quenched in cold water and aged for 32 days at ambient temperature.
Det fremgår således at legering B inneholdende germanium med magnesium ikke bare får hbyere mekaniske egenskaper i lbpet av en kortere eldningstid ved 170°C eller 190°C, men at legeringen også eldes langsommere ved værelsetemperatur efter opplosningsbehandling. It thus appears that alloy B containing germanium with magnesium not only has higher mechanical properties due to a shorter aging time at 170°C or 190°C, but that the alloy also ages more slowly at room temperature after solution treatment.
Eldningskurver for legeringene A og B ved 165°C er også gjengitt på fig. 1. Lignende virkninger fremkommer med noe lavere kobberinnhold og med legeringer fremstilt fra aluminium av hby ren-hetsgrad. Fig. 2 viser hårdhetseldningskurver ved l65°C for legeringer inneholdende ca. *+ , 0 % kobber og tilsetninger av magnesium eller germanium eller magnesium plus germanium. Det fremgår at en tilsetning av magnesium eller germanium alene er betraktelig mindre effektiv enn en kombinert tilsetning av magnesium og germanium. Den sistnevnte tilsething gir både påskyndet og forbedret herding ved eldning ved denne temperatur. Aging curves for alloys A and B at 165°C are also shown in fig. 1. Similar effects occur with somewhat lower copper content and with alloys made from aluminum of high purity. Fig. 2 shows hardness aging curves at 165°C for alloys containing approx. *+ , 0% copper and additions of magnesium or germanium or magnesium plus germanium. It appears that an addition of magnesium or germanium alone is considerably less effective than a combined addition of magnesium and germanium. The latter addition provides both accelerated and improved hardening by aging at this temperature.
Legering B viser også en bedre sigeresistens ved temperaturer i området 150°C. Smidde stenger av legering A og legering B ble bråkjblt i vann fra en temperatur av 530°C og eldet i henholdsvis 2h og 16 timer ved 170°C. De ble så utsatt for siging ved 150°C med en spenning av l88>+ kg/cm med fblgende resultater: Alloy B also shows a better seepage resistance at temperatures in the region of 150°C. Forged rods of alloy A and alloy B were quenched in water from a temperature of 530°C and aged for 2h and 16h respectively at 170°C. They were then subjected to sintering at 150°C with a stress of l88>+ kg/cm with the following results:
Den germaniumholdige legerings B overlegenhet med hensyn til siging fremgår også av den hbyere styrke efter å ha vært utsatt for en temperatur av l50°c i lengre tid. The superiority of the germanium-containing alloy B in terms of sag is also evident from the higher strength after being exposed to a temperature of 150°C for a longer time.
Da silicium er en naturlig forekommende forurensning i aluminium, ble også legeringer ifolge oppfinnelsen og inneholdende forskjellige siliciummengder samtidig med variasjoner i magnesium-og germaniuminnholdet undersdkt. As silicon is a naturally occurring impurity in aluminium, alloys according to the invention and containing different amounts of silicon at the same time as variations in the magnesium and germanium content were also investigated.
I siliciumfrie legeringer viste en tilsetning av over 0,2 % germanium seg å gi bare små fordeler med hensyn, til eldning eller mekaniske egenskaper. Tilstedeværelsen av silicium påvirker ikke virkninger av tilsetninger av magnesium plus germanium. Selv i nærvær av silicium vil en så liten mengde germanium som 0,02 % In silicon-free alloys, an addition of more than 0.2% germanium proved to give only small advantages in terms of aging or mechanical properties. The presence of silicon does not affect the effects of additions of magnesium plus germanium. Even in the presence of silicon, as little as 0.02% germanium will
gi en betraktelig forbedring av maksimumsstyrken, og en tilsetning av over ca. 0,2 % germanium vil, på samme måte som i forbindelse med siliciumfrie legeringer, bare gi små fordeler. provide a considerable improvement in maximum strength, and an addition of over approx. 0.2% germanium will, in the same way as in connection with silicon-free alloys, only give small advantages.
Dette fremgår av egenskapene til de folgende legeringer hvor-av smidde stenger ble bråkjolt i vann fra en temperatur av 530°C og eldet ved 170°C i de angitte tider: This can be seen from the properties of the following alloys where forged bars were quenched in water from a temperature of 530°C and aged at 170°C for the indicated times:
En sammenligning av legeringene C, D og E viser at nærvær av silicium ikke har noen innflydelse på den fordelaktige virkning som fåes ved tilsetning av magnesium plus germanium. En sammenligning mellom legeringene F og G viser at den eneste virkning som fåes ved ytterligere tilsetning av germanium, er en ytterligere påskyndelse av herdingen uten noen vesentlig okning. A comparison of alloys C, D and E shows that the presence of silicon has no influence on the beneficial effect obtained by the addition of magnesium plus germanium. A comparison between alloys F and G shows that the only effect obtained by further addition of germanium is a further acceleration of hardening without any significant increase.
Det kan fåes en hoyere styrke ved å oke legeringens kobberinnhold. Det vil således fremgå ved en sammenligning mellom legeringene H, I og J at med b% kobber kan det fåes en 0,1 % kon-vensjonell flytegrense av over ^+710 kg/cm . Smidde stenger ble som tidligere bråkjolt i koldt vann fra en temperatur av 530°C og eldet ved 170°C: A higher strength can be obtained by increasing the alloy's copper content. It will thus appear from a comparison between the alloys H, I and J that with b% copper a 0.1% conventional yield strength of over ^+710 kg/cm can be obtained. Forged bars were, as before, quenched in cold water from a temperature of 530°C and aged at 170°C:
En av siliciumets virkninger er å oke den herdemengde som inntreffer ved værelsetemperatur efter bråkjoling fra opplosningsbehandlingen. Selv om dette er uonsket dersom materialet skal formes for eldning ved forhbyet temperatur, er det tilfeller hvor en slik herding er onskelig, f.eks. efter sveising av opplbsnings-behandlet og eldet materiale dersom det er nodvendig med en for-sterkning av den på ny opplosningsbehandlede og bråavkjolte sone uten noen påfolgende kunstig eldning av hele gjenstanden. One of the silicon's effects is to increase the amount of hardening that occurs at room temperature after rapid cooling from the solution treatment. Although this is undesirable if the material is to be shaped for aging at an elevated temperature, there are cases where such hardening is desirable, e.g. after welding of solution-treated and aged material if it is necessary to strengthen the newly solution-treated and quenched zone without any subsequent artificial aging of the entire object.
Typiske egenskaper for smidde stenger av legeringene C, D, Typical properties for forged bars of the alloys C, D,
E, F, G og H efter opplosningsbehandling ved 530°C, bråavkjoling E, F, G and H after solution treatment at 530°C, rapid cooling
i vann og eldning ved omgivelsestemperatur i 21 dager er gjengitt i den efterfolgende tabell: in water and aging at ambient temperature for 21 days is shown in the following table:
En sammenligning mellom legeringene E og F viser at sa lite som 0,1 $ silicium plus 0,1$ magnesium vil forårsake noen herding ved omgivelsestemperatur selv i nærvær av 0,2$ germanium. A comparison between alloys E and F shows that as little as 0.1$ silicon plus 0.1$ magnesium will cause some hardening at ambient temperature even in the presence of 0.2$ germanium.
For videre bearbeidelse eller sveising opplosningsbehandles legeringene ifolge oppfinnelsen ved 530°C og bråkjoles i vann for den videre bearbeidelse eller sveising. For anvendelser hvor det er nodvendig med de hoyeste mekaniske egenskaper, kan legeringene eldes ved en temperatur av 150-210°C efter opplosningsbehandlingen. For further processing or welding, the alloys according to the invention are solution treated at 530°C and quenched in water for further processing or welding. For applications where the highest mechanical properties are required, the alloys can be aged at a temperature of 150-210°C after the solution treatment.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9285/67A GB1211563A (en) | 1967-02-27 | 1967-02-27 | Improvements relating to aluminium-base alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
NO122344B true NO122344B (en) | 1971-06-14 |
Family
ID=9869043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO0686/68A NO122344B (en) | 1967-02-27 | 1968-02-26 |
Country Status (11)
Country | Link |
---|---|
US (1) | US3561954A (en) |
AT (1) | AT305661B (en) |
BE (1) | BE711370A (en) |
CH (1) | CH515997A (en) |
DE (1) | DE1608148C3 (en) |
DK (1) | DK130356B (en) |
FR (1) | FR1602294A (en) |
GB (1) | GB1211563A (en) |
NL (1) | NL139564B (en) |
NO (1) | NO122344B (en) |
SE (1) | SE331584B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5376192A (en) * | 1992-08-28 | 1994-12-27 | Reynolds Metals Company | High strength, high toughness aluminum-copper-magnesium-type aluminum alloy |
US5630889A (en) * | 1995-03-22 | 1997-05-20 | Aluminum Company Of America | Vanadium-free aluminum alloy suitable for extruded aerospace products |
US5980657A (en) | 1998-03-10 | 1999-11-09 | Micron Technology, Inc. | Alloy for enhanced filling of high aspect ratio dual damascene structures |
US6316356B1 (en) | 1998-03-10 | 2001-11-13 | Micron Technology, Inc. | Thermal processing of metal alloys for an improved CMP process in integrated circuit fabrication |
US6130156A (en) * | 1998-04-01 | 2000-10-10 | Texas Instruments Incorporated | Variable doping of metal plugs for enhanced reliability |
US6645321B2 (en) | 1999-09-10 | 2003-11-11 | Geoffrey K. Sigworth | Method for grain refinement of high strength aluminum casting alloys |
US6368427B1 (en) | 1999-09-10 | 2002-04-09 | Geoffrey K. Sigworth | Method for grain refinement of high strength aluminum casting alloys |
US20030010411A1 (en) * | 2001-04-30 | 2003-01-16 | David Mitlin | Al-Cu-Si-Ge alloys |
US8468047B2 (en) * | 2002-04-29 | 2013-06-18 | SAP Akteiengesellschaft | Appraisal processing |
WO2008110269A1 (en) † | 2007-03-14 | 2008-09-18 | Aleris Aluminum Koblenz Gmbh | Ai-cu alloy product suitable for aerospace application |
WO2011122958A1 (en) | 2010-03-30 | 2011-10-06 | Norsk Hydro Asa | High temperature stable aluminium alloy |
-
1967
- 1967-02-27 GB GB9285/67A patent/GB1211563A/en not_active Expired
-
1968
- 1968-02-19 DK DK64968AA patent/DK130356B/en unknown
- 1968-02-19 US US707024A patent/US3561954A/en not_active Expired - Lifetime
- 1968-02-22 DE DE1608148A patent/DE1608148C3/en not_active Expired
- 1968-02-23 NL NL686802648A patent/NL139564B/en unknown
- 1968-02-26 NO NO0686/68A patent/NO122344B/no unknown
- 1968-02-26 SE SE02471/68A patent/SE331584B/xx unknown
- 1968-02-27 BE BE711370D patent/BE711370A/xx unknown
- 1968-02-27 FR FR1602294D patent/FR1602294A/fr not_active Expired
- 1968-02-27 CH CH283368A patent/CH515997A/en not_active IP Right Cessation
- 1968-02-27 AT AT185168A patent/AT305661B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US3561954A (en) | 1971-02-09 |
AT305661B (en) | 1973-03-12 |
SE331584B (en) | 1971-01-04 |
GB1211563A (en) | 1970-11-11 |
DE1608148B2 (en) | 1973-04-05 |
CH515997A (en) | 1971-11-30 |
DE1608148A1 (en) | 1972-04-20 |
NL139564B (en) | 1973-08-15 |
BE711370A (en) | 1968-07-01 |
DE1608148C3 (en) | 1973-10-25 |
DK130356B (en) | 1975-02-10 |
NL6802648A (en) | 1968-08-28 |
DK130356C (en) | 1975-07-07 |
FR1602294A (en) | 1970-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO122456B (en) | ||
JP3638188B2 (en) | Manufacturing method of high strength aluminum alloy extruded tube for front fork outer tube of motorcycle with excellent stress corrosion cracking resistance | |
NO122344B (en) | ||
US4049426A (en) | Copper-base alloys containing chromium, niobium and zirconium | |
US20050056353A1 (en) | High strength aluminum alloys and process for making the same | |
CN105568082A (en) | Heat treatment method for Al-Si-Cu-Mg casting alloy | |
AU2017208641A1 (en) | Hardenable AlMgSi-based aluminum alloy | |
US7125459B2 (en) | High strength aluminum alloy | |
US3649259A (en) | Titanium alloy | |
CN112899522B (en) | Ultralow-elastic-modulus ultrahigh-work-hardening-rate Ti-Al-Mo-Cr series beta titanium alloy and heat treatment process thereof | |
CN113755677A (en) | Ultra-high strength and high toughness maraging steel with superfine substructure and preparation method thereof | |
US3762916A (en) | Aluminum base alloys | |
EP1229141A1 (en) | Cast aluminium alloy | |
US4148635A (en) | High temperature softening resistance of alloy 688 and modified 688 through the addition of Nb | |
RU2690768C1 (en) | Titanium-based alloy and bar from titanium-based alloy | |
US3069259A (en) | Titanium base alloy | |
JPS602644A (en) | Aluminum alloy | |
US3337377A (en) | Process for the treatment of magnesium-silicon aluminum alloys | |
US2003297A (en) | Aluminum alloy | |
JP2608689B2 (en) | High strength and high ductility Ti alloy | |
US2026209A (en) | Copper alloy | |
SU128614A1 (en) | High Strength Aluminum Wrought Alloy | |
US2319538A (en) | Heat treatment of copper-chromium alloy steels | |
AT145078B (en) | Process for increasing the corrosion resistance of alloys of aluminum with about 3 to 16% magnesium. | |
CN114941094B (en) | High-strength 7-series aluminum alloy profile and processing method and application thereof |