[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Birks et al., 2012 - Google Patents

“Photonic lantern” spectral filters in multi-core fibre

Birks et al., 2012

View HTML
Document ID
17920492385627236318
Author
Birks T
Mangan B
Díez A
Cruz J
Murphy D
Publication year
Publication venue
Optics Express

External Links

Snippet

Fibre Bragg gratings are written across all 120 single-mode cores of a multi-core optical fibre. The fibre is interfaced to multimode ports by tapering it within a depressed-index glass jacket. The result is a compact multimode “photonic lantern” filter with astrophotonic …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02376Longitudinal variation along fibre axis direction, e.g. tapered holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02057Optical fibre with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02057Optical fibre with cladding with or without a coating comprising gratings
    • G02B6/02066Gratings having a surface relief structure, e.g. repetitive variation in diameter of core or cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/036Optical fibre with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/12Light guides of the optical waveguide type of the integrated circuit kind
    • G02B6/122Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/02004Optical fibre with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/02Optical fibre with cladding with or without a coating
    • G02B6/028Optical fibre with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/10Light guides of the optical waveguide type
    • G02B6/105Light guides of the optical waveguide type having optical polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics

Similar Documents

Publication Publication Date Title
Birks et al. “Photonic lantern” spectral filters in multi-core fibre
Eggleton et al. Microstructured optical fiber devices
Noordegraaf et al. Efficient multi-mode to single-mode coupling in a photonic lantern
Lam et al. Characterization of single-mode optical fiber filters
Bouwmans et al. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength
Lindley et al. Demonstration of uniform multicore fiber Bragg gratings
Wang et al. Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing
Carter et al. Measurement of resonant bend loss in anti-resonant hollow core optical fiber
Yu et al. Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers
Martelli et al. Water-core Fresnel fiber
Trabold et al. Selective excitation of higher order modes in hollow-core PCF via prism-coupling
Xiang et al. Helical long-period grating manufactured with a CO2 laser on multicore fiber
Mathew et al. Air-cladded mode-group selective photonic lanterns for mode-division multiplexing
Wang et al. Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters
Harrington et al. Endlessly adiabatic fiber with a logarithmic refractive index distribution
Newkirk et al. Modal analysis of antiresonant hollow core fibers using S2 imaging
Bal et al. Uniformly thinned optical fibers produced via HF<? A3B2 tlsb-. 01w?><? A3B2 twb. 25w?> etching with spectral and microscopic verification
Junaid et al. Supercontinuum generation in a carbon disulfide core microstructured optical fiber
Rastogi et al. Analysis of segmented-cladding fiber by the radial-effective-index method
Tuniz et al. Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber
Beugin et al. Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber
Wang et al. Sensitive Mach–Zehnder interferometric sensor based on a grapefruit microstructured fiber by lateral offset splicing
Healy et al. High index contrast semiconductor ARROW and hybrid ARROW fibers
Wu et al. Low-loss multi-mode anti-resonant hollow-core fibers
Ahmad et al. Polarization-maintaining, large-effective-area, higher-order-mode fiber