Rivera et al., 2006 - Google Patents
Destabilized LiBH4/MgH2 for reversible hydrogen storageRivera et al., 2006
View PDF- Document ID
- 15655377742984161235
- Author
- Rivera L
- Srinivasan S
- Matthew S
- Wolan J
- Stefanakos E
- Publication year
External Links
Snippet
DOE and FreedomCAR technical targets of 6.0 and 9.0 wt.% are set forth capacities to realize a “holy grail” for hydrogen storage systems for 2010 and 2015 respectively. Alkali metal complex hydrides with high theoretical hydrogen capacity, for example: LiBH4 (18 …
- 239000001257 hydrogen 0 title abstract description 16
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
- Y02E60/324—Reversible uptake of hydrogen by an appropriate medium
- Y02E60/327—Reversible uptake of hydrogen by an appropriate medium the medium being a metal or rare earth metal, an intermetallic compound or a metal alloy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources
- Y02E60/364—Hydrogen production from non-carbon containing sources by decomposition of inorganic compounds, e.g. splitting of water other than electrolysis, ammonia borane, ammonia
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources
- Y02E60/362—Hydrogen production from non-carbon containing sources by chemical reaction with metal hydrides, e.g. hydrolysis of metal borohydrides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0031—Intermetallic compounds; Metal alloys; Treatment thereof
- C01B3/0047—Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
- C01B3/0052—Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing titanium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/065—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/06—Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
- C01B6/10—Monoborane; Diborane; Addition complexes thereof
- C01B6/13—Addition complexes of monoborane or diborane, e.g. with phosphine, arsine or hydrazine
- C01B6/15—Metal borohydrides; Addition complexes thereof
- C01B6/19—Preparation from other compounds of boron
- C01B6/21—Preparation of borohydrides of alkali metals, alkaline earth metals, magnesium or beryllium; Addition complexes thereof, e.g. LiBH4.2N2H4, NaB2H7
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/24—Hydrides containing at least two metals; Addition complexes thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/04—Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nagar et al. | Recent developments in state-of-the-art hydrogen energy technologies–review of hydrogen storage materials | |
Morioka et al. | Reversible hydrogen decomposition of KAlH4 | |
Zhou et al. | Improved hydrogen storage properties of LiBH4 destabilized by in situ formation of MgH2 and LaH3 | |
Mao et al. | Enhanced hydrogen storage performances of NaBH4–MgH2 system | |
Mao et al. | Enhanced hydrogen storage performance of LiAlH4–MgH2–TiF3 composite | |
Chen et al. | Structure and hydrogen storage property of ball-milled LiNH2/MgH2 mixture | |
Li et al. | Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li–Mg–N–H system | |
Ge | Structure and energetics of LiBH4 and its surfaces: a first-principles study | |
Cao et al. | Materials design and modification on amide-based composites for hydrogen storage | |
Li et al. | Superior dehydrogenation/hydrogenation kinetics and long-term cycling performance of K and Rb Cocatalyzed Mg (NH2) 2-2LiH system | |
Gizer et al. | Tuning the reaction mechanism and hydrogenation/dehydrogenation properties of 6Mg (NH2) 29LiH system by adding LiBH4 | |
Wang et al. | Improving hydrogen storage properties of MgH2 by addition of alkali hydroxides | |
Mao et al. | Enhanced hydrogen storage properties of NaAlH 4 co-catalysed with niobium fluoride and single-walled carbon nanotubes | |
Bai et al. | Role of metal electronegativity in the dehydrogenation thermodynamics and kinetics of composite metal borohydride–LiNH2 hydrogen storage materials | |
Qiu et al. | Enhanced hydrogen storage properties of 2LiNH2/MgH2 through the addition of Mg (BH4) 2 | |
Lu et al. | Reversible de/hydriding reactions between two new Mg–In–Ni compounds with improved thermodynamics and kinetics | |
Zheng et al. | Enhanced reversible hydrogen desorption properties and mechanism of Mg (BH4) 2-AlH3-LiH composite | |
Sørby et al. | The crystal structure and stability of K2NaAlH6 | |
Sun et al. | Synergetic effects of hydrogenated Mg 3 La and TiCl 3 on the dehydrogenation of LiBH 4 | |
Mao et al. | Improvement of the LiAlH4− NaBH4 system for reversible hydrogen storage | |
Ping et al. | Cyclic reaction-induced enhancement in the dehydrogenation performances of the KNH2-doped LiNH2 and LiH system | |
Yang et al. | Novel Mg–Zr–A–H (A= Li, Na) hydrides synthesized by a high pressure technique and their hydrogen storage properties | |
Puszkiel et al. | Reversible hydrogen storage in metal-doped Mg–LiBH4 composites | |
Liu et al. | Dehydrogenation and rehydrogenation of a 0.62 LiBH4-0.38 NaBH4 mixture with nano-sized Ni | |
Huang et al. | Reversible hydrogen sorption behaviors of the 3NaBH4-(x) YF3-(1-x) GdF3 system: The effect of double rare earth metal cations |