[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Rivera et al., 2006 - Google Patents

Destabilized LiBH4/MgH2 for reversible hydrogen storage

Rivera et al., 2006

View PDF
Document ID
15655377742984161235
Author
Rivera L
Srinivasan S
Matthew S
Wolan J
Stefanakos E
Publication year

External Links

Snippet

DOE and FreedomCAR technical targets of 6.0 and 9.0 wt.% are set forth capacities to realize a “holy grail” for hydrogen storage systems for 2010 and 2015 respectively. Alkali metal complex hydrides with high theoretical hydrogen capacity, for example: LiBH4 (18 …
Continue reading at folk.ntnu.no (PDF) (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • Y02E60/324Reversible uptake of hydrogen by an appropriate medium
    • Y02E60/327Reversible uptake of hydrogen by an appropriate medium the medium being a metal or rare earth metal, an intermetallic compound or a metal alloy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources
    • Y02E60/364Hydrogen production from non-carbon containing sources by decomposition of inorganic compounds, e.g. splitting of water other than electrolysis, ammonia borane, ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources
    • Y02E60/362Hydrogen production from non-carbon containing sources by chemical reaction with metal hydrides, e.g. hydrolysis of metal borohydrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0052Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/06Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
    • C01B6/10Monoborane; Diborane; Addition complexes thereof
    • C01B6/13Addition complexes of monoborane or diborane, e.g. with phosphine, arsine or hydrazine
    • C01B6/15Metal borohydrides; Addition complexes thereof
    • C01B6/19Preparation from other compounds of boron
    • C01B6/21Preparation of borohydrides of alkali metals, alkaline earth metals, magnesium or beryllium; Addition complexes thereof, e.g. LiBH4.2N2H4, NaB2H7
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/24Hydrides containing at least two metals; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/04Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof

Similar Documents

Publication Publication Date Title
Nagar et al. Recent developments in state-of-the-art hydrogen energy technologies–review of hydrogen storage materials
Morioka et al. Reversible hydrogen decomposition of KAlH4
Zhou et al. Improved hydrogen storage properties of LiBH4 destabilized by in situ formation of MgH2 and LaH3
Mao et al. Enhanced hydrogen storage performances of NaBH4–MgH2 system
Mao et al. Enhanced hydrogen storage performance of LiAlH4–MgH2–TiF3 composite
Chen et al. Structure and hydrogen storage property of ball-milled LiNH2/MgH2 mixture
Li et al. Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li–Mg–N–H system
Ge Structure and energetics of LiBH4 and its surfaces: a first-principles study
Cao et al. Materials design and modification on amide-based composites for hydrogen storage
Li et al. Superior dehydrogenation/hydrogenation kinetics and long-term cycling performance of K and Rb Cocatalyzed Mg (NH2) 2-2LiH system
Gizer et al. Tuning the reaction mechanism and hydrogenation/dehydrogenation properties of 6Mg (NH2) 29LiH system by adding LiBH4
Wang et al. Improving hydrogen storage properties of MgH2 by addition of alkali hydroxides
Mao et al. Enhanced hydrogen storage properties of NaAlH 4 co-catalysed with niobium fluoride and single-walled carbon nanotubes
Bai et al. Role of metal electronegativity in the dehydrogenation thermodynamics and kinetics of composite metal borohydride–LiNH2 hydrogen storage materials
Qiu et al. Enhanced hydrogen storage properties of 2LiNH2/MgH2 through the addition of Mg (BH4) 2
Lu et al. Reversible de/hydriding reactions between two new Mg–In–Ni compounds with improved thermodynamics and kinetics
Zheng et al. Enhanced reversible hydrogen desorption properties and mechanism of Mg (BH4) 2-AlH3-LiH composite
Sørby et al. The crystal structure and stability of K2NaAlH6
Sun et al. Synergetic effects of hydrogenated Mg 3 La and TiCl 3 on the dehydrogenation of LiBH 4
Mao et al. Improvement of the LiAlH4− NaBH4 system for reversible hydrogen storage
Ping et al. Cyclic reaction-induced enhancement in the dehydrogenation performances of the KNH2-doped LiNH2 and LiH system
Yang et al. Novel Mg–Zr–A–H (A= Li, Na) hydrides synthesized by a high pressure technique and their hydrogen storage properties
Puszkiel et al. Reversible hydrogen storage in metal-doped Mg–LiBH4 composites
Liu et al. Dehydrogenation and rehydrogenation of a 0.62 LiBH4-0.38 NaBH4 mixture with nano-sized Ni
Huang et al. Reversible hydrogen sorption behaviors of the 3NaBH4-(x) YF3-(1-x) GdF3 system: The effect of double rare earth metal cations