Athanasiou et al., 1997 - Google Patents
Methane activation on a La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3 perovsksite; catalytic and electrocatalytic resultsAthanasiou et al., 1997
View PDF- Document ID
- 15077962146264678296
- Author
- Athanasiou C
- Marnellos G
- ten Elshof J
- Tsiakaras P
- Bouwmeester H
- Stoukides M
- Publication year
- Publication venue
- Ionics
External Links
Snippet
The catalytic and electrocatalytic behaviour of the La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3 (LSCF) perovskite deposited on yttria stabilized zirconia (YSZ), was studied during the reaction of methane oxidation. Experiments were carried out at atmospheric pressure, and at …
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane   C 0 title abstract description 31
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5064733A (en) | Electrochemical conversion of CO2 and CH4 to C2 hydrocarbons in a single cell | |
Danilovic et al. | Correlation of fuel cell anode electrocatalytic and ex situ catalytic activity of perovskites La0. 75Sr0. 25Cr0. 5X0. 5O3− δ (X= Ti, Mn, Fe, Co) | |
Kharton et al. | Mixed conductivity and electrochemical behavior of (La0. 75Sr0. 25) 0.95 Cr0. 5Mn0. 5O3− δ | |
Primdahl et al. | Sr-doped LaCrO3 anode for solid oxide fuel cells | |
Kulkarni et al. | Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells | |
Tsiakaras et al. | Methane activation on a La0. 6Sr0. 4Co0. 8Fe0. 2O3 perovskite: Catalytic and electrocatalytic results | |
CA2306999C (en) | Two-phase hydrogen permeation membrane | |
Iwahara et al. | High temperature-type proton conductive solid oxide fuel cells using various fuels | |
Asano et al. | A novel solid oxide fuel cell system using the partial oxidation of methane | |
JP6728226B2 (en) | Method for co-processing carbon dioxide and hydrogen sulfide | |
Bausa et al. | Direct CO2 conversion to syngas in a BaCe0. 2Zr0. 7Y0. 1O3-δ-based proton-conducting electrolysis cell | |
EP2183044B9 (en) | Cheap thin film oxygen membranes | |
Kammer | Electrochemical DeNOx in solid electrolyte cells—an overview | |
Erning et al. | Catalysis of the electrochemical processes on solid oxide fuel cell cathodes | |
Fagg et al. | High oxygen permeability in fluorite-type Ce0. 8Pr0. 2O2− δ via the use of sintering aids | |
Pu et al. | Steam/CO2 electrolysis in symmetric solid oxide electrolysis cell with barium cerate-carbonate composite electrolyte | |
Choi et al. | High-performance ceramic composite electrodes for electrochemical hydrogen pump using protonic ceramics | |
Baral et al. | Electrochemical studies of Ruddlesden-Popper layered perovskite-type La0. 6Sr1. 4Co0. 2Fe0. 8O4+ δ cathode for solid oxide fuel cells and associated electrical loss phenomena | |
Park et al. | Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0. 2Sr0. 8Ti0. 9Ni0. 1O3− δ) anode of solid oxide fuel cell | |
Ding et al. | Double perovskite Ba2FeMoO6− δ as fuel electrode for protonic-ceramic membranes | |
Cui et al. | Syngas production through CH4-assisted co-electrolysis of H2O and CO2 in La0. 8Sr0. 2Cr0. 5Fe0. 5O3-δ-Zr0. 84Y0. 16O2-δ electrode-supported solid oxide electrolysis cells | |
Wang et al. | Electrochemical performance of mixed ionic–electronic conducting oxides as anodes for solid oxide fuel cell | |
Tsipis et al. | Mixed conducting components of solid oxide fuel cell anodes | |
Wang et al. | Analysis of the performance of the electrodes in a natural gas assisted steam electrolysis cell | |
Yaremchenko et al. | Direct oxidation of dry methane on nanocrystalline Ce0. 8Gd0. 2O2-δ/Pt anodes |