Hänselmann et al., 2015 - Google Patents
Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interfaceHänselmann et al., 2015
View HTML- Document ID
- 14851610303526581750
- Author
- Hänselmann S
- Schneiders M
- Weidner N
- Rupp R
- Publication year
- Publication venue
- Journal of NeuroEngineering and Rehabilitation
External Links
Snippet
Background For the translation of noninvasive motor imagery (MI)-based brain-computer interfaces (BCIs) from the lab environment to end users at their homes, their handling must be improved. As a key component, the number of electroencephalogram (EEG)-recording …
- 230000000638 stimulation 0 title abstract description 37
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/36025—External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/36021—External stimulators, e.g. with patch electrodes for treatment of pain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0476—Electroencephalography
- A61B5/0484—Electroencephalography using evoked response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0402—Electrocardiography, i.e. ECG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0488—Electromyography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/04001—Detecting, measuring or recording bioelectric signals of the body of parts thereof adapted to neuroelectric signals, e.g. nerve impulses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times; Devices for evaluating the psychological state
- A61B5/165—Evaluating the state of mind, e.g. depression, anxiety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0531—Measuring skin impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N2/00—Magnetotherapy
- A61N2/02—Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bönstrup et al. | Low‐frequency brain oscillations track motor recovery in human stroke | |
Nidal et al. | EEG/ERP analysis: methods and applications | |
Gandolfi et al. | Quantification of Upper Limb Motor Recovery and EEG Power Changes after Robot‐Assisted Bilateral Arm Training in Chronic Stroke Patients: A Prospective Pilot Study | |
Gerloff et al. | Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke | |
Do et al. | Brain-computer interface controlled functional electrical stimulation system for ankle movement | |
Jerbi et al. | Task‐related gamma‐band dynamics from an intracerebral perspective: Review and implications for surface EEG and MEG | |
Leuthardt et al. | Electrocorticography-based brain computer interface-the Seattle experience | |
Krause et al. | Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease | |
Onishi et al. | Neuromagnetic activation following active and passive finger movements | |
Lencioni et al. | A randomized controlled trial on the effects induced by robot-assisted and usual-care rehabilitation on upper limb muscle synergies in post-stroke subjects | |
Soekadar et al. | Brain–computer interfaces in the rehabilitation of stroke and neurotrauma | |
Khan et al. | Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation | |
Tecchio et al. | Cortical short-term fatigue effects assessed via rhythmic brain–muscle coherence | |
Marty et al. | Effect of movement rate on corticokinematic coherence | |
Gharabaghi et al. | Learned self-regulation of the lesioned brain with epidural electrocorticography | |
Collinger et al. | Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury | |
D’Arcy et al. | Portable neuromodulation induces neuroplasticity to re-activate motor function recovery from brain injury: a high-density MEG case study | |
Voisin et al. | Modulation of the response to a somatosensory stimulation of the hand during the observation of manual actions | |
Gharabaghi et al. | Epidural electrocorticography of phantom hand movement following long-term upper-limb amputation | |
Muret et al. | Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex | |
Okawada et al. | Kinesthetic illusion induced by visual stimulation influences sensorimotor event-related desynchronization in stroke patients with severe upper-limb paralysis: A pilot study | |
Sugata et al. | Alpha band functional connectivity correlates with the performance of brain–machine interfaces to decode real and imagined movements | |
Rustamov et al. | Integration of bilateral nociceptive inputs tunes spinal and cerebral responses | |
Liu et al. | Functional role of induced gamma oscillatory responses in processing noxious and innocuous sensory events in humans | |
Hänselmann et al. | Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface |