Bayer et al., 1999 - Google Patents
Early detection of fatigue damage through ultrasonic non-destructive evaluation—Part II: ExperimentalBayer et al., 1999
- Document ID
- 14286414867772060262
- Author
- Bayer P
- Singher L
- Notea A
- Publication year
- Publication venue
- Journal of testing and evaluation
External Links
Snippet
Ultrasonic wave velocities (longitudinal and transverse waves) and the attenuation coefficient were used to investigate damage of aluminum 7075-T651 before and after progressive stages of fatigue. Repeated observations under controlled conditions allied to …
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02827—Elastic parameters, strength or force
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0237—Thin materials, e.g. paper, membranes, thin films
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/07—Analysing solids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/11—Analysing solids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/021—Treatment of the signal; Calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/46—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/269—Various geometry objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B17/00—Measuring arrangements characterised by the use of subsonic, sonic or ultrasonic vibrations
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0239275B1 (en) | Measuring oxide scale on inner surfaces of boiler tubes | |
US4924182A (en) | Eddy current method to measure distance between scanned surface and a subsurface defect | |
US4299128A (en) | Ultrasonic satellite-pulse technique for characterizing defects of arbitrary shape | |
US6234020B1 (en) | Method for residual stress measuring | |
Tymiak et al. | Highly localized acoustic emission monitoring of nanoscale indentation contacts | |
Bayer et al. | Early detection of fatigue damage through ultrasonic non-destructive evaluation—Part II: Experimental | |
Rokhlin et al. | Nondestructive sizing and localization of internal microcracks in fatigue samples | |
Kurashkin et al. | Variation of acoustic characteristics of an aluminum alloy during plastic deformation at room and subzero temperatures | |
Klima et al. | Monitoring crack extension in fracture toughness tests by ultrasonics | |
Zulkipli et al. | The evaluation for accuracy of non-destructive testing (NDT) in ultrasonic inspection on mild steel material by ultrasonic testing thickness measurement (UTTM) | |
Tanvir et al. | Identification of fatigue damage evolution in 316L stainless steel using acoustic emission and digital image correlation | |
Urbaha et al. | Three Stages of Composite Specimen Destruction in Static Failure | |
Prabhakaran et al. | Time of flight diffraction: an alternate non-destructive testing procedure to replace traditional methods | |
Klima et al. | Ultrasonic detection and measurement of fatigue cracks in notched specimens: A reflection technique is employed to detect and measure fatigue cracks, nondestructively during test, in circumferentially notched cylindrical specimens subjected to reversed axial-fatigue loading | |
JP2799824B2 (en) | Cavity generation evaluation method by hydrogen erosion | |
Johnson | Screening of metal matrix composites using ultrasonic C-scans | |
JP2002286702A (en) | Macro-segregation evaluating method for steel material | |
Cawley et al. | An automated coin-tap technique for the non-destructive testing of composite structures | |
Liber et al. | Ultrasonic techniques for inspecting flat and cylindrical composite specimens | |
RU2009479C1 (en) | Non-destructive control method | |
Scott | NDI and the detection of fatigue | |
Thomas et al. | Detection of Strain Induced Microstructural Changes in Aluminum (6061-T6) Using Ultrasonic Signal Analysis | |
Brosey | Ultrasonic determination of grain size in uranium | |
JPS60256052A (en) | Non-destructive inspection method | |
Kilpatrick et al. | Fatigue Crack Detection and Sizing in Welded Steel Structures |