Zhang et al., 2010 - Google Patents
Copolymers from benzodithiophene and benzotriazole: synthesis and photovoltaic applicationsZhang et al., 2010
- Document ID
- 12603852335670190504
- Author
- Zhang Z
- Peng B
- Liu B
- Pan C
- Li Y
- He Y
- Zhou K
- Zou Y
- Publication year
- Publication venue
- Polymer Chemistry
External Links
Snippet
Two new alternating low bandgap copolymers from benzodithiophene and benzotriazole units, namely poly {4, 8-bis (2-ethylhexyloxy) benzo [1, 2-b; 3, 4-b] dithiophene-2, 6-diyl-alt-2- octyl-4, 7-di (thiophen-2-yl)-2H-benzo [d][1, 2, 3] triazole-5′, 5′′-diyl}(PBDTDTBTz) and …
- 229920001577 copolymer 0 title abstract description 23
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0043—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/91—Photovoltaic applications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/42—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
- H01L51/4253—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture comprising bulk hetero-junctions, e.g. interpenetrating networks
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/34—Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
- C08G2261/344—Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/411—Suzuki reactions
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Copolymers from benzodithiophene and benzotriazole: synthesis and photovoltaic applications | |
Fan et al. | A New Polythiophene Derivative for High Efficiency Polymer Solar Cells with PCE over 9%. | |
Guo et al. | Design, synthesis and photovoltaic properties of a new D–π–A polymer with extended π-bridge units | |
Chen et al. | A new benzo [1, 2-b: 4, 5-b′] difuran-based copolymer for efficient polymer solar cells | |
Liu et al. | New alkylthienyl substituted benzo [1, 2-b: 4, 5-b′] dithiophene-based polymers for high performance solar cells | |
Lee et al. | Low band-gap polymers based on quinoxaline derivatives and fused thiophene as donor materials for high efficiency bulk-heterojunction photovoltaic cells | |
Liu et al. | Low bandgap isoindigo-based copolymers: design, synthesis and photovoltaic applications | |
WO2011156478A2 (en) | Polymers with tunable band gaps for photonic and electronic applications | |
Liu et al. | A benzo [1, 2-b: 4, 5-b′] difuran-and thieno-[3, 4-b] thiophene-based low bandgap copolymer for photovoltaic applications | |
Kim et al. | Synthesis and photovoltaic properties of benzo [1, 2-b: 4, 5-b′] dithiophene derivative-based polymers with deep HOMO levels | |
Liu et al. | High performance polymer solar cells based on a two dimensional conjugated polymer from alkylthienyl-substituted benzodifuran and benzothiadiazole | |
Li et al. | Design of three-component randomly incorporated copolymers as non-fullerene acceptors for all-polymer solar cells | |
Song et al. | A low-bandgap alternating copolymer containing the dimethylbenzimidazole moiety | |
Chen et al. | Side-chain engineering of benzodithiophene–thiophene copolymers with conjugated side chains containing the electron-withdrawing ethylrhodanine group | |
Meng et al. | Phosphonated conjugated polymers for polymer solar cells with a non-halogenated solvent process | |
Goker et al. | 2, 1, 3-Benzooxadiazole, thiophene and benzodithiophene based random copolymers for organic photovoltaics: thiophene versus thieno [3, 2-b] thiophene as π-conjugated linkers | |
Xiao et al. | Fluorine substituted benzothiazole-based low bandgap polymers for photovoltaic applications | |
Kim et al. | Donor–acceptor polymers with a regioregularly incorporated thieno [3, 4-b] thiophene segment as a π-bridge for organic photovoltaic devices | |
Chan et al. | Synthesis of indolo [3, 2-b] carbazole-based random copolymers for polymer solar cell applications | |
Shen et al. | Side chain effect on photovoltaic properties of D–A copolymers based on benzodithiophene and thiophene-substituted bithiazole | |
Kim et al. | Synthesis and characterization of indeno [1, 2-b] fluorene-based low bandgap copolymers for photovoltaic cells | |
Gao et al. | Efficient polymer solar cells based on poly (thieno [2, 3-f] benzofuran-co-thienopyrroledione) with a high open circuit voltage exceeding 1 V | |
Heo et al. | Multi-donor random terpolymers based on benzodithiophene and dithienosilole segments with different monomer compositions for high-performance polymer solar cells | |
Wen et al. | Synthesis and photovoltaic properties of dithieno [3, 2-b: 2′, 3′-d] silole-based conjugated copolymers | |
Piyakulawat et al. | Effect of thiophene donor units on the optical and photovoltaic behavior of fluorene-based copolymers |