Xie et al., 2019 - Google Patents
Phase transition, domain structure and electrical properties of Mn-doped 0.3 Pb (In1/2Nb1/2) O3-0.4 Pb (Mg1/3Nb2/3) O3-0.3 PbTiO3 crystalsXie et al., 2019
- Document ID
- 12487643002643891683
- Author
- Xie Q
- Hu Y
- Xue S
- Ma J
- Zhao X
- Tang Y
- Wang F
- Chew K
- Lin D
- Luo H
- Publication year
- Publication venue
- Materials Chemistry and Physics
External Links
Snippet
Abstract The 0.5 mol.% Mn-doped 0.3 Pb (In 1/2 Nb 1/2) O 3-0.4 Pb (Mg 1/3 Nb 2/3) O 3-0.3 PbTiO 3 (Mn-PIMNT) single crystal was grown by a modified Bridgman technology. A comprehensive study involving the electrical properties, as well as phase transitions and …
- 229910019653 Mg1/3Nb2/3 0 title 1
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L41/00—Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L41/16—Selection of materials
- H01L41/18—Selection of materials for piezo-electric or electrostrictive devices, e.g. bulk piezo-electric crystals
- H01L41/187—Ceramic compositions, i.e. synthetic inorganic polycrystalline compounds incl. epitaxial, quasi-crystalline materials
- H01L41/1878—Bismuth based oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L41/00—Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L41/16—Selection of materials
- H01L41/18—Selection of materials for piezo-electric or electrostrictive devices, e.g. bulk piezo-electric crystals
- H01L41/187—Ceramic compositions, i.e. synthetic inorganic polycrystalline compounds incl. epitaxial, quasi-crystalline materials
- H01L41/1875—Lead based oxides
- H01L41/1876—Lead zirconate titanate based
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L41/00—Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L41/08—Piezo-electric or electrostrictive devices
- H01L41/09—Piezo-electric or electrostrictive devices with electrical input and mechanical output, e.g. actuators, vibrators
- H01L41/0926—Piezo-electric or electrostrictive devices with electrical input and mechanical output, e.g. actuators, vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L41/00—Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L41/22—Processes or apparatus specially adapted for the assembly, manufacture or treatment of piezo-electric or electrostrictive devices or of parts thereof
- H01L41/35—Forming piezo-electric or electrostrictive materials
- H01L41/39—Inorganic materials
- H01L41/43—Inorganic materials by sintering
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L41/00—Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L41/22—Processes or apparatus specially adapted for the assembly, manufacture or treatment of piezo-electric or electrostrictive devices or of parts thereof
- H01L41/31—Applying piezo-electric or electrostrictive parts or bodies onto an electrical element or another base
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
- C04B35/491—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L41/00—Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L41/02—Details
- H01L41/04—Details of piezo-electric or electrostrictive devices
- H01L41/047—Electrodes or electrical connection arrangements
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | High-performance sm-doped Pb (Mg1/3Nb2/3) O3-PbZrO3-PbTiO3-based piezoceramics | |
Zhang et al. | Characterization of hard piezoelectric lead-free ceramics | |
Zhang et al. | Recent developments on high Curie temperature PIN–PMN–PT ferroelectric crystals | |
Kamel et al. | Grain size effect on the poling of soft Pb (Zr, Ti) O3 ferroelectric ceramics | |
Qin et al. | Domain configuration and piezoelectric properties of (K0. 50Na0. 50) 1− xLix (Nb0. 80Ta0. 20) O3 ceramics | |
Wang et al. | Investigation of ternary system PbHfO 3–PbTiO 3–Pb (Mg 1/3 Nb 2/3) O 3 with morphotropic phase boundary compositions | |
Qin et al. | Domain structure of potassium‐sodium niobate ceramics before and after poling | |
Qi et al. | Electromechanical properties of Mn-doped Pb (In1/2Nb1/2) O3-Pb (Mg1/3Nb2/3) O3-PbTiO3 piezoelectric ceramics | |
Bian et al. | High-performance Pb (Ni1/3Nb2/3) O3-PbZrO3-PbTiO3 ceramics with the triple point composition | |
Wang et al. | Effect of PMN content on the phase structure and electrical properties of PMN–PZT ceramics | |
Luo et al. | Dielectric, ferroelectric and piezoelectric properties of MnO2-doped Pb (Yb1/2Nb1/2) O3-Pb (Zr, Ti) O3 ceramics | |
Rafiq et al. | Pairing high piezoelectric coefficients, d 33, with high curie temperature (TC) in lead-free (K, Na) NbO3 | |
Zhao et al. | Orientation-dependent energy-storage performance and electrocaloric effect in PLZST antiferroelectric thick films | |
Wang et al. | Improved thermal stability of [0 0 1] c poled 0.24 Pb (In1/2Nb1/2) O3–0.47 Pb (Mg1/3Nb2/3) O3–0.29 PbTiO3 single crystal with manganese doping | |
Liu et al. | Outstanding piezoelectric properties, phase transitions and domain configurations of 0.963 (K0. 48Na0. 52)(Nb0. 955Sb0. 045) O3− 0.037 (Bi0. 50Na0. 50) HfO3 ceramics | |
Zhao et al. | Structure and enhanced piezoelectric performance of BiScO3-PbTiO3-Pb (Ni1/3Nb2/3) O3 ternary high temperature piezoelectric ceramics | |
Chen et al. | Reduced dielectric loss and strain hysteresis in (0.97− x) BiScO3–xPbTiO3–0.03 Pb (Mn1/3Nb2/3) O3 piezoelectric ceramics | |
Wang et al. | Pb (In1/2Nb1/2) O3-PbZrO3-PbTiO3 ternary ceramics with temperature-insensitive and superior piezoelectric property | |
Zhang et al. | Enhanced piezoelectric property and promoted depolarization temperature in Fe doped Bi1/2 (Na0. 8K0. 2) 1/2TiO3 lead-free ceramics | |
Luo et al. | High piezoelectricity after field cooling AC poling in temperature stable ternary single crystals manufactured by continuous-feeding Bridgman method | |
Liu et al. | Large-strain 0.7 Pb (ZrxTi1− x) O3–0.1 Pb (Zn1/3Nb2/3) O3–0.2 Pb (Ni1/3Nb2/3) O3 piezoelectric ceramics for high-temperature application | |
Zhang et al. | Enhanced piezoelectric performance of BiScO3-PbTiO3 ceramics modified by 0.03 Pb (Sb1/2Nb1/2) O3 | |
Du et al. | Microstructure, temperature stability and electrical properties of ZnO-modified Pb (Ni1/3Nb2/3) O3–Pb (Fe1/2Nb1/2) O3–Pb (Zr0. 3Ti0. 7) O3 piezoelectric ceramics | |
Yu et al. | Enhancing high power performances of Pb (Mn1/3Nb2/3) O3–Pb (Zr, Ti) O3 ceramics by Bi (Ni1/2Ti1/2) O3 modification | |
Jiang et al. | Growth and properties of PMN–PT single crystals |