Gan et al., 2021 - Google Patents
SS-JIRCS: Self-supervised joint image reconstruction and coil sensitivity calibration in parallel MRI without ground truthGan et al., 2021
View PDF- Document ID
- 12030380954810475740
- Author
- Gan W
- Hu Y
- Eldeniz C
- Liu J
- Chen Y
- An H
- Kamilov U
- Publication year
- Publication venue
- Proceedings of the IEEE/CVF International Conference on Computer Vision
External Links
Snippet
Parallel magnetic resonance imaging (MRI) is a widely-used technique that accelerates data collection by making use of the spatial encoding provided by multiple receiver coils. A key issue in parallel MRI is the estimation of coil sensitivity maps (CSMs) that are used for …
- 230000035945 sensitivity 0 title abstract description 18
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5611—Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
- G01R33/5612—Parallel RF transmission, i.e. RF pulse transmission using a plurality of independent transmission channels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5615—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56341—Diffusion imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5608—Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4806—Functional imaging of brain activation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/483—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bustin et al. | High‐dimensionality undersampled patch‐based reconstruction (HD‐PROST) for accelerated multi‐contrast MRI | |
Knoll et al. | Deep-learning methods for parallel magnetic resonance imaging reconstruction: A survey of the current approaches, trends, and issues | |
Lv et al. | Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction | |
Akçakaya et al. | Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: database‐free deep learning for fast imaging | |
CN111656392B (en) | System and method for synthesizing magnetic resonance images | |
Wang et al. | One-dimensional deep low-rank and sparse network for accelerated MRI | |
Lam et al. | Constrained magnetic resonance spectroscopic imaging by learning nonlinear low-dimensional models | |
Knoll et al. | Deep learning methods for parallel magnetic resonance image reconstruction | |
CN113971706B (en) | Rapid magnetic resonance intelligent imaging method | |
Liu et al. | High-performance rapid MR parameter mapping using model-based deep adversarial learning | |
CN105869192A (en) | Technology for reconstructing MRI fingerprint identification based on sliding window | |
Fessler | Optimization methods for MR image reconstruction (long version) | |
Gan et al. | SS-JIRCS: Self-supervised joint image reconstruction and coil sensitivity calibration in parallel MRI without ground truth | |
Zhang et al. | LARO: Learned acquisition and reconstruction optimization to accelerate quantitative susceptibility mapping | |
Gan et al. | Deep image reconstruction using unregistered measurements without groundtruth | |
Kleineisel et al. | Real‐time cardiac MRI using an undersampled spiral k‐space trajectory and a reconstruction based on a variational network | |
Levac et al. | Accelerated motion correction with deep generative diffusion models | |
Qian et al. | Physics-informed deep diffusion MRI reconstruction: Break the bottleneck of training data in artificial intelligence | |
Arefeen et al. | Latent signal models: learning compact representations of signal evolution for improved time‐resolved, multi‐contrast MRI | |
CN115471580A (en) | A physically intelligent high-definition magnetic resonance diffusion imaging method | |
US9709651B2 (en) | Compensated magnetic resonance imaging system and method for improved magnetic resonance imaging and diffusion imaging | |
Dar et al. | Learning deep mri reconstruction models from scratch in low-data regimes | |
El Gueddari et al. | Online MR image reconstruction for compressed sensing acquisition in T2* imaging | |
Hu et al. | SPICE: Self-supervised learning for MRI with automatic coil sensitivity estimation | |
Hu | SELF-SUPERVISED JOINT IMAGE RECONSTRUCTION AND COIL SENSITIVITY CALIBRATION IN PARALLEL MRI WITHOUT GROUND TRUTH |