Huang et al., 2024 - Google Patents
Miniaturized Flow Sensor Based On Thermal Feedback And Digitized Power DistributionHuang et al., 2024
- Document ID
- 1140444982659383176
- Author
- Huang M
- Song X
- Hong L
- Xu R
- Xu W
- et al.
- Publication year
- Publication venue
- 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)
External Links
Snippet
In this paper, we have proposed a miniaturized flow sensor based on thermal feedback and digitized power distribution across two microheaters. The performance of the sensor has been verified by nitrogen (N 2) gas flow from-11 m/s to 11 m/s. Our findings show a …
- 238000009826 distribution 0 title abstract description 13
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using thermal effects
- G01F1/696—Circuits therefor, e.g. constant-current flow meters
- G01F1/698—Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow
- G01F1/32—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by detection of dynamic effects of the fluid flow by swirl flowmeter, e.g. using Karmann vortices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/125—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0042—Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/006—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of fluid seismic masses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P13/00—Indicating or recording presence, absence, or direction, of movement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of the preceding groups insofar as such details or appliances are not adapted to particular types of such apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | MEMS-based gas flow sensors | |
Liu et al. | A micromachined flow shear-stress sensor based on thermal transfer principles | |
Zhang et al. | A micro-Pirani vacuum gauge based on micro-hotplate technology | |
Ebefors et al. | Three dimensional silicon triple-hot-wire anemometer based on polyimide joints | |
Völklein et al. | Microstructured vacuum gauges and their future perspectives | |
Bruschi et al. | A double heater integrated gas flow sensor with thermal feedback | |
Huang et al. | A micro-electro-mechanical-system-based thermal shear-stress sensor with self-frequency compensation | |
Xu et al. | Low-cost temperature-compensated thermoresistive micro calorimetric flow sensor by using 0.35 μm CMOS MEMS technology | |
Meng et al. | A parylene MEMS flow sensing array | |
Xu et al. | CMOS compatible MEMS air velocity sensor with improved sensitivity and linearity for human thermal comfort sensing applications | |
Löfdahl et al. | Characteristics of a hot-wire microsensor for time-dependent wall shear stress measurements | |
Huang et al. | Miniaturized Flow Sensor Based On Thermal Feedback And Digitized Power Distribution | |
Wang et al. | Silicon monolithic microflow sensors: a review | |
Oda et al. | A silicon micromachined flow sensor using thermopiles for heat transfer measurements | |
Qiu et al. | A microsensor with integrated heat sink and flow guide for gas flow sensing applications | |
Wang et al. | A nanoscale hot-wire flow sensor based on CMOS-MEMS technology | |
Hautefeuille et al. | Miniaturised multi-MEMS sensor development | |
Zhang et al. | Investigating a micro Pirani gauge for multi-function sensing | |
Yi et al. | Modeling of packaged MEMS thermal wind sensor operating on CP mode | |
Zhang et al. | Single (111)-Wafer Single-Side Microfabrication of Suspended p+ Si/n+ Si Thermopile for Tiny-Size and High-Sensitivity Thermal Gas Flow Sensors | |
Li et al. | Monolithic integration of a micromachined piezoresistive flow sensor | |
Ye et al. | DRIE trenches and full-bridges design for sensitivity improvement of MEMS silicon thermal wind sensor | |
Kim et al. | Design and fabrication of a flow sensor detecting flow direction and velocity | |
Du et al. | A micro-wind sensor based on mechanical drag and thermal effects | |
Dumstorff et al. | Investigations into packaging technology for membrane-based thermal flow sensors |