Wang et al., 2022 - Google Patents
Second-generation dual-channel visible light optical coherence tomography enables wide-field, full-range, and shot-noise limited retinal imagingWang et al., 2022
View PDF- Document ID
- 10806199401602996796
- Author
- Wang J
- Nolen S
- Song W
- Shao W
- Yi W
- Yi J
- Publication year
- Publication venue
- BioRxiv
External Links
Snippet
Visible light optical coherence tomography (VIS-OCT) is an emerging ophthalmic imaging method uniquely featured by ultrahigh depth resolution, retinal microvascular oximetry, and distinct scattering contrast in the visible spectral range. However, the clinical utility of VIS …
- 238000003384 imaging method 0 title abstract description 84
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/102—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/0059—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/0059—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02091—Tomographic low coherence interferometers, e.g. optical coherence tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/18—Arrangement of plural eye-testing or -examining apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02055—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by error reduction techniques
- G01B9/02075—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by error reduction techniques of particular errors
- G01B9/02076—Caused by motion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0208—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02083—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by particular signal processing and presentation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02001—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by manipulating or generating specific radiation properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Instruments as specified in the subgroups and characterised by the use of optical measuring means
- G01B9/02—Interferometers for determining dimensional properties of, or relations between, measurement objects
- G01B9/02041—Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by particular imaging or detection techniques
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B21/00—Microscopes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aumann et al. | Optical coherence tomography (OCT): principle and technical realization | |
Leitgeb | En face optical coherence tomography: a technology review | |
Liu et al. | Trans-retinal cellular imaging with multimodal adaptive optics | |
Srinivasan et al. | Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography | |
Pircher et al. | Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging | |
Ginner et al. | Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo | |
Zawadzki et al. | Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging | |
Grulkowski et al. | Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera | |
Cense et al. | Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography | |
Auksorius et al. | In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography | |
Chong et al. | Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope | |
Gora et al. | Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range | |
Fernández et al. | Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator | |
US8237835B1 (en) | Confocal imaging device using spatially modulated illumination with electronic rolling shutter detection | |
Jian et al. | Adaptive optics optical coherence tomography for in vivo mouse retinal imaging | |
Kolb et al. | Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates | |
CN108135466B (en) | Coherent gated wavefront-free sensor adaptive optics multiphoton microscopy and related systems and methods | |
Auksorius et al. | Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography | |
US10398306B2 (en) | Optical imaging device and method for imaging a sample | |
Poddar et al. | Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate | |
Meadway et al. | A dual-modal retinal imaging system with adaptive optics | |
Wells-Gray et al. | Volumetric imaging of rod and cone photoreceptor structure with a combined adaptive optics-optical coherence tomography-scanning laser ophthalmoscope | |
Song et al. | Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina | |
Torzicky et al. | Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser | |
Salas et al. | Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye |