Peng et al., 2023 - Google Patents
A Unified Framework to Super-Resolve Face Images of Varied Low ResolutionsPeng et al., 2023
View PDF- Document ID
- 10535108550023240119
- Author
- Peng Q
- Jiang Z
- Huang Y
- Peng J
- Publication year
- Publication venue
- arXiv preprint arXiv:2306.03380
External Links
Snippet
The existing face image super-resolution (FSR) algorithms usually train a specific model for a specific low input resolution for optimal results. By contrast, we explore in this work a unified framework that is trained once and then used to super-resolve input face images of …
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6296—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/52—Extraction of features or characteristics of the image by deriving mathematical or geometrical properties from the whole image
- G06K9/527—Scale-space domain transformation, e.g. with wavelet analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
- G06T3/40—Scaling the whole image or part thereof
- G06T3/4053—Super resolution, i.e. output image resolution higher than sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding, e.g. from bit-mapped to non bit-mapped
- G06T9/001—Model-based coding, e.g. wire frame
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiang et al. | ATMFN: Adaptive-threshold-based multi-model fusion network for compressed face hallucination | |
Tu et al. | Maxim: Multi-axis mlp for image processing | |
Zamir et al. | Restormer: Efficient transformer for high-resolution image restoration | |
Fu et al. | Featup: A model-agnostic framework for features at any resolution | |
Shi et al. | Exploiting multi-scale parallel self-attention and local variation via dual-branch transformer-CNN structure for face super-resolution | |
Yu et al. | Hallucinating unaligned face images by multiscale transformative discriminative networks | |
Wang et al. | FaceFormer: Aggregating global and local representation for face hallucination | |
Bao et al. | SCTANet: A spatial attention-guided CNN-transformer aggregation network for deep face image super-resolution | |
Xin et al. | Facial attribute capsules for noise face super resolution | |
Ren et al. | Enhanced non-local total variation model and multi-directional feature prediction prior for single image super resolution | |
Tomar et al. | Deep hyfeat based attention in attention model for face super-resolution | |
CN113379597A (en) | Face super-resolution reconstruction method | |
Rios et al. | Scalability of learning tasks on 3d cae models using point cloud autoencoders | |
Liu et al. | Cdformer: When degradation prediction embraces diffusion model for blind image super-resolution | |
Du et al. | Expectation-maximization attention cross residual network for single image super-resolution | |
CN118379537A (en) | A general topological neural network layer approach based on persistent homology theory | |
Yu et al. | Multiprior learning via neural architecture search for blind face restoration | |
Zhang et al. | Patch-based selection and refinement for early object detection | |
Bai et al. | Survey of learning based single image super-resolution reconstruction technology | |
Zhang et al. | Cascaded sparse feature propagation network for interactive segmentation | |
Li et al. | Spatial frequency enhanced salient object detection | |
Peng et al. | A Unified Framework to Super-Resolve Face Images of Varied Low Resolutions | |
Zhang et al. | Network architecture for single image super‐resolution: A comprehensive review and comparison | |
CN118262360A (en) | SAM-based text segmentation method, device, equipment and storage medium | |
Zhou et al. | Single‐frame image super‐resolution inspired by perceptual criteria |