Raynaldo et al., 2024 - Google Patents
Microchannel-based Droplet Generation Using Multiphase Flow: A ReviewRaynaldo et al., 2024
View PDF- Document ID
- 9982242554303424377
- Author
- Raynaldo K
- Whulanza Y
- Irwansyah R
- Publication year
- Publication venue
- Journal of Physics: Conference Series
External Links
Snippet
Microfluidics is a multidisciplinary field that allows for precise control of fluids at a micrometer scale, with the goal of generating encapsulated structures or droplets for specific purposes. However, producing monodispersed droplets remains a challenge, making it necessary for …
- 238000012552 review 0 title abstract description 14
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502746—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502769—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated micro-fluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING, DISPERSING
- B01F5/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F5/06—Mixers in which the components are pressed together through slits, orifices, or screens; Static mixers; Mixers of the fractal type
- B01F5/0602—Static mixers, i.e. mixers in which the mixing is effected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F5/0609—Mixing tubes, e.g. the material being submitted to a substantially radial movement or to a movement partially in reverse direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING, DISPERSING
- B01F13/00—Other mixers; Mixing plant, including combinations of mixers, e.g. of dissimilar mixers
- B01F13/0059—Micromixers
- B01F13/0061—Micromixers using specific means for arranging the streams to be mixed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING, DISPERSING
- B01F5/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F5/04—Injector mixers, i.e. one or more components being added to a flowing main component
- B01F5/0403—Mixing conduits or tubes, i.e. conduits or tubes through which the main component is flown
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING, DISPERSING
- B01F3/00—Mixing, e.g. dispersing, emulsifying, according to the phases to be mixed
- B01F3/08—Mixing, e.g. dispersing, emulsifying, according to the phases to be mixed liquids with liquids; Emulsifying
- B01F3/0807—Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING, DISPERSING
- B01F13/00—Other mixers; Mixing plant, including combinations of mixers, e.g. of dissimilar mixers
- B01F13/10—Mixing plant, including combinations of mixers, e.g. of dissimilar mixers
- B01F13/1013—Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sattari et al. | Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures | |
Wang et al. | Microflow extraction: A review of recent development | |
Zhao et al. | Two-phase microfluidic flows | |
Anna | Droplets and bubbles in microfluidic devices | |
Lee et al. | Passive mixers in microfluidic systems: A review | |
Christopher et al. | Microfluidic methods for generating continuous droplet streams | |
Zhang et al. | Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing | |
Baroud et al. | Dynamics of microfluidic droplets | |
Shui et al. | Multiphase flow in microfluidic systems–Control and applications of droplets and interfaces | |
Nunes et al. | Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis | |
Xu et al. | Preparation of highly monodisperse droplet in a T‐junction microfluidic device | |
Skurtys et al. | Applications of microfluidic devices in food engineering | |
Feng et al. | Advances in micro-droplets coalescence using microfluidics | |
Jiu-Sheng et al. | Droplet microfluidic technology: Mirodroplets formation and manipulation | |
Tetradis-Meris et al. | Novel parallel integration of microfluidic device network for emulsion formation | |
Sharma et al. | Droplet-based microfluidics | |
JP2013523431A (en) | Droplet forming device in microfluidic circuit | |
Shahriari et al. | Flow regime mapping of high inertial gas–liquid droplet microflows in flow-focusing geometries | |
Liu et al. | Effects on droplet generation in step-emulsification microfluidic devices | |
Singla et al. | Effects of surface topography on low Reynolds number droplet/bubble flow through a constricted passage | |
Xiaodong et al. | Multiphase flow in microfluidic devices | |
Hoseinpour et al. | Lattice Boltzmann simulation of droplets manipulation generated in lab-on-chip (LOC) microfluidic T-junction | |
Josephides et al. | Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices | |
Ma et al. | An effective method to facile coalescence of microdroplet in the symmetrical T-junction with expanded convergence | |
Li et al. | Dynamics of viscoelastic fluid droplet under very low interfacial tension in a serpentine T-junction microchannel |