Jiang et al., 2012 - Google Patents
Two photoluminescent polymers based on fluorene and 2, 4, 6‐triphenyl pyridine: Synthesis and electroluminescenceJiang et al., 2012
- Document ID
- 9025983425357258921
- Author
- Jiang H
- Gao Z
- Deng X
- Chen R
- Huang W
- Publication year
- Publication venue
- Journal of applied polymer science
External Links
Snippet
Two fluorene and triphenyl pyridine‐based linear and dendronized copolymers, P1 and P2, were synthesized and fully characterized by 1H‐NMR, 13C‐NMR, and matrix assistant laser desorption/ionization time‐of‐flight mass spectra, respectively. The absorption …
- 229920000642 polymer 0 title abstract description 55
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
- H01L51/0038—Poly-phenylenevinylene and derivatives
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
- H01L51/0039—Polyeflurorene and derivatives
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
- H01L51/0071—Polycyclic condensed heteroaromatic hydrocarbons
- H01L51/0072—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0043—Copolymers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/5012—Electroluminescent [EL] layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0059—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1441—Heterocyclic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/31—Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
- C08G2261/314—Condensed aromatic systems, e.g. perylene, anthracene or pyrene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1408—Carbocyclic compounds
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Red, green, and blue light‐emitting polyfluorenes containing a dibenzothiophene‐S, S‐dioxide unit and efficient high‐color‐rendering‐index white‐light‐emitting diodes made therefrom | |
Zhou et al. | Effect of Fluorenone Units on the Property of Polyfluorene and Oligofluorene Derivatives: Synthesis, Structure− Properties Relationship, and Electroluminescence | |
Huang et al. | High‐Efficiency and Color Stable Blue‐Light‐Emitting Polymers and Devices | |
Chen et al. | White electroluminescent single‐polymer achieved by incorporating three polyfluorene blue arms into a star‐shaped orange core | |
Lo et al. | Synthesis and electroluminescence properties of white‐light single polyfluorenes with high‐molecular weight by click reaction | |
Gopikrishna et al. | Synthesis and characterization of color tunable, highly electroluminescent copolymers of polyfluorene by incorporating the N-phenyl-1, 8-naphthalimide moiety into the main chain | |
Liu et al. | Novel spectrally stable saturated blue‐light‐emitting poly [(fluorene)‐co‐(dioctyldibenzothiophene‐S, S‐dioxide)] s | |
Lim et al. | Improved EL efficiency of fluorene‐thieno [3, 2‐b] thiophene‐based conjugated copolymers with hole‐transporting or electron‐transporting units in the main chain | |
Yang et al. | Light‐emitting copolymers based on fluorene and selenophene—Comparative studies with its sulfur analogue: Poly (fluorene‐co‐thiophene) | |
Su et al. | Polyfluorene containing diphenylquinoline pendants and their applications in organic light emitting diodes | |
Giovanella et al. | Stabilized blue emission from polyfluorene-based light-emitting diodes: The role of triphenylamine | |
Kim et al. | Synthesis and characterization of poly (fluorene)‐based copolymer containing triphenylamine group | |
Yuan et al. | Synthesis and characterization of a polyfluorene containing carbazole and oxadiazole dipolar pendent groups and its application to electroluminescent devices | |
Li et al. | Novel saturated red‐emitting poly (p‐phenylenevinylene) copolymers with narrow‐band‐gap units of 2, 1, 3‐benzothiadiazole synthesized by a palladium‐catalyzed Stille coupling reaction | |
Xie et al. | A π‐stacked and conjugated hybrid based on poly (N‐vinylcarbazole) postfunctionalized with terfluorene for stable deep‐blue hole‐transporting materials | |
Wu et al. | Bipolar copoly (aryl ether) containing distyrylbenzene, triphenylamine, and 1, 2, 4‐triazole moieties: Synthesis and optoelectronic properties | |
Peng et al. | An Efficient Blue‐Emitting Conjugated Copolymer Based on Fluorene and Carbazole with a Peripheral Dendritic Carbazole Pendant at the 9‐Position | |
Wang et al. | Stable and good color purity white light‐emitting devices based on random fluorene/spirofluorene copolymers doped with iridium complex | |
Pasini et al. | The Role of Triphenylamine in the Stabilization of Highly Efficient Polyfluorene‐Based OLEDs: A Model Oligomers Study | |
Shih et al. | Synthesis of New Blue Anthracene‐based Conjugated Polymers and Their Applications in Polymer Light‐Emitting Diodes | |
Bian et al. | Pure blue electroluminescent poly (aryl ether) s with dopant–host systems | |
Giovanella et al. | Core-type polyfluorene-based copolymers for low-cost light-emitting technologies | |
Vanjinathan et al. | Design, synthesis, photophysical, and electrochemical properties of DCM‐based conjugated polymers for light‐emitting devices | |
Guo et al. | Fluorene‐based copolymers containing dinaphtho‐s‐indacene as new building blocks for high‐efficiency and color‐stable blue LEDs | |
Liu et al. | Hyperbranched framework of interrupted π‐conjugated polymers end‐capped with high carrier‐mobility moieties for stable light‐emitting materials with low driving voltage |