Guo et al., 2014 - Google Patents
A novel tunnel Na 0.61 Ti 0.48 Mn 0.52 O 2 cathode material for sodium-ion batteriesGuo et al., 2014
- Document ID
- 8154101402531191888
- Author
- Guo S
- Yu H
- Liu D
- Tian W
- Liu X
- Hanada N
- Ishida M
- Zhou H
- Publication year
- Publication venue
- Chemical Communications
External Links
Snippet
A novel tunnel Na0. 61Ti0. 48Mn0. 52O2 material is explored as a cathode for sodium-ion batteries for the first time. It can deliver a reversible discharge capacity of 86 mA hg− 1 with an average voltage of 2.9 V at 0.2 C rate in a sodium half cell, exhibiting good rate capability …
- 229910001415 sodium ion 0 title abstract description 8
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | A novel tunnel Na 0.61 Ti 0.48 Mn 0.52 O 2 cathode material for sodium-ion batteries | |
Chong et al. | Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries | |
Wang et al. | Both cationic and anionic redox chemistry in a P2-type sodium layered oxide | |
Ruan et al. | Structural evolution and capacity degradation mechanism of LiNi0. 6Mn0. 2Co0. 2O2 cathode materials | |
Chen et al. | The effects of reversibility of H2-H3 phase transition on Ni-rich layered oxide cathode for high-energy lithium-ion batteries | |
Long et al. | Highly porous, low band-gap Ni x Mn 3− x O 4 (0.55≤ x≤ 1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries | |
Li et al. | Zr-doped P2-Na0. 75Mn0. 55Ni0. 25Co0. 05Fe0. 10Zr0. 05O2 as high-rate performance cathode material for sodium ion batteries | |
Hwang et al. | A comprehensive study of the role of transition metals in O3-type layered Na [Ni x Co y Mn z] O 2 (x= 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries | |
Chen et al. | Stable layered P3/P2 Na 0.66 Co 0.5 Mn 0.5 O 2 cathode materials for sodium-ion batteries | |
Jin et al. | Excellent rate capability of Mg doped Li [Li0. 2Ni0. 13Co0. 13Mn0. 54] O2 cathode material for lithium-ion battery | |
Zhou et al. | Stable, fast and high-energy-density LiCoO2 cathode at high operation voltage enabled by glassy B2O3 modification | |
Yu et al. | Novel titanium-based O3-type NaTi 0.5 Ni 0.5 O 2 as a cathode material for sodium ion batteries | |
Shiva et al. | NaFe 2 PO 4 (SO 4) 2: a potential cathode for a Na-ion battery | |
Sun et al. | Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio | |
Miao et al. | Li2ZrO3-coated 0.4 Li2MnO3· 0.6 LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery | |
Li et al. | LiNi 1/3 Co 1/3 Mn 1/3 O 2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries | |
Zhao et al. | Synthesis, characterization, and electrochemistry of cathode material Li [Li0. 2Co0. 13Ni0. 13Mn0. 54] O2 using organic chelating agents for lithium-ion batteries | |
Shen et al. | Improvement on the high-rate performance of Mn-doped Na 3 V 2 (PO 4) 3/C as a cathode material for sodium ion batteries | |
Chen et al. | Nano-sized LiMn2O4 spinel cathode materials exhibiting high rate discharge capability for lithium-ion batteries | |
Xu et al. | Facile synthesis of P2-type Na 0.4 Mn 0.54 Co 0.46 O 2 as a high capacity cathode material for sodium-ion batteries | |
Ye et al. | Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries | |
Anh et al. | Enhanced electrochemical performance of novel K-doped Co 3 O 4 as the anode material for secondary lithium-ion batteries | |
Li et al. | Structure and electrochemical performance modulation of a LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material by anion and cation co-doping for lithium ion batteries | |
Zhao et al. | The effect of chromium substitution on improving electrochemical performance of low-cost Fe–Mn based Li-rich layered oxide as cathode material for lithium-ion batteries | |
Sun et al. | Sodium insertion cathode material Na0. 67 [Ni0. 4Co0. 2Mn0. 4] O2 with excellent electrochemical properties |