Jin et al., 2021 - Google Patents
Mutation Operators for Object Constraint Language Specification.Jin et al., 2021
View PDF- Document ID
- 8053895883185606846
- Author
- Jin K
- Lano K
- Publication year
- Publication venue
- STAF Workshops
External Links
Snippet
Mutation testing is a fault-based software testing technique for checking the effectiveness of a test suite through artificial defects. The mutation testing produces a satisfaction score, which is typically called the mutation score, to represent the quality of the input test suite. In …
- 230000035772 mutation 0 title abstract description 84
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3668—Software testing
- G06F11/3672—Test management
- G06F11/3688—Test management for test execution, e.g. scheduling of test suites
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3668—Software testing
- G06F11/3672—Test management
- G06F11/3676—Test management for coverage analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3604—Software analysis for verifying properties of programs
- G06F11/3608—Software analysis for verifying properties of programs using formal methods, e.g. model checking, abstract interpretation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3604—Software analysis for verifying properties of programs
- G06F11/3612—Software analysis for verifying properties of programs by runtime analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/362—Software debugging
- G06F11/3636—Software debugging by tracing the execution of the program
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/504—Formal methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
- G06F11/3664—Environments for testing or debugging software
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/22—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
- G06F11/2257—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using expert systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/70—Software maintenance or management
- G06F8/75—Structural analysis for program understanding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/34—Graphical or visual programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/57—Certifying or maintaining trusted computer platforms, e.g. secure boots or power-downs, version controls, system software checks, secure updates or assessing vulnerabilities
- G06F21/577—Assessing vulnerabilities and evaluating computer system security
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/70—Fault tolerant, i.e. transient fault suppression
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Parry et al. | A survey of flaky tests | |
Barr et al. | The oracle problem in software testing: A survey | |
Wang et al. | Automatic generation of acceptance test cases from use case specifications: an nlp-based approach | |
Martinez et al. | Automatic repair of real bugs in java: A large-scale experiment on the defects4j dataset | |
Harman et al. | A comprehensive survey of trends in oracles for software testing | |
Rushby | Quality measures and assurance for ai (artificial intelligence) software | |
Carrington et al. | A tale of two paradigms: Formal methods and software testing | |
Le Goues et al. | Specification mining with few false positives | |
Selim et al. | Model transformation testing: The state of the art | |
Arcaini et al. | Rigorous development process of a safety-critical system: from ASM models to Java code | |
Granda et al. | What do we know about the defect types detected in conceptual models? | |
Baker et al. | Detect, fix, and verify TensorFlow API misuses | |
Al-Lail et al. | An Approach to Analyzing Temporal Properties in UML Class Models. | |
Taromirad et al. | A literature survey of assertions in software testing | |
Jin et al. | Mutation Operators for Object Constraint Language Specification. | |
Wang et al. | Uncovering bugs in code coverage profilers via control flow constraint solving | |
Paige et al. | Specification-driven design with Eiffel and agents for teaching lightweight formal methods | |
Barringer et al. | Runtime Verification: First International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings | |
Nimmer | Automatic generation and checking of program specifications | |
Weidmann et al. | Tolerance in model-driven engineering: A systematic literature review with model-driven tool support | |
Fitzgerald et al. | Formal specification techniques in the commercial development process | |
Pimenta | Automated specification-based testing of graphical user interfaces | |
Li et al. | Analyzing the uses of a software modeling tool | |
Sun et al. | ClassInvGen: Class Invariant Synthesis using Large Language Models | |
Tahir et al. | Maintainability dynamic metrics data collection based on aspect-oriented technology |