Yao et al., 2024 - Google Patents
Rapid oxygen atom capture on perovskite surface boosting the activity and durability of cathode for solid oxide fuel cellsYao et al., 2024
- Document ID
- 8052658280975057191
- Author
- Yao C
- Zhang Z
- Zhang H
- Zhang Y
- Zhang W
- Wang H
- Di M
- Lang X
- Cai K
- Publication year
- Publication venue
- Chemical Engineering Journal
External Links
Snippet
The content and distribution of surface oxygen vacancies are crucial for the oxygen reduction reaction (ORR) activity of solid oxide fuel cell (SOFC) cathodes. Therefore, a facile and rapid oxygen atom capture strategy is developed to modulate the surface oxygen …
- 239000000446 fuel 0 title abstract description 41
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shen et al. | Medium-Entropy perovskites Sr (FeαTiβCoγMnζ) O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell | |
Anantharaman et al. | Potential of pyrochlore structure materials in solid oxide fuel cell applications | |
Wan et al. | A-site bismuth doping, a new strategy to improve the electrocatalytic performances of lanthanum chromate anodes for solid oxide fuel cells | |
Chung et al. | In situ preparation of a La 1.2 Sr 0.8 Mn 0.4 Fe 0.6 O 4 Ruddlesden–Popper phase with exsolved Fe nanoparticles as an anode for SOFCs | |
Hanif et al. | Performance evaluation of highly active and novel La0. 7Sr0. 3Ti0. 1Fe0. 6Ni0. 3O3-δ material both as cathode and anode for intermediate-temperature symmetrical solid oxide fuel cell | |
Tong et al. | Performance and stability of Ruddlesden-Popper La2NiO4+ δ oxygen electrodes under solid oxide electrolysis cell operation conditions | |
Zhou et al. | Effects of cerium doping on the performance of LSCF cathodes for intermediate temperature solid oxide fuel cells | |
Lay et al. | Preliminary studies of the new Ce-doped La/Sr chromo-manganite series as potential SOFC anode or SOEC cathode materials | |
Guo et al. | Thermal and electrochemical properties of layered perovskite PrBaCo2− xMnxO5+ δ (x= 0.1, 0.2 and 0.3) cathode materials for intermediate temperature solid oxide fuel cells | |
Huang et al. | Layer-structured Li1-xNaxNi0. 8Co0. 15Al0. 05O2-δ oxide anode for enhancing ceria electrolyte based solid ceramic fuel cell operating at lower temperatures down to 370° C | |
Li et al. | Investigation on Nd1–xCaxBaCo2O5+ δ double perovskite as new oxygen electrode materials for reversible solid oxide cells | |
Bai et al. | Bi0. 5Sr0. 5FeO3-δ perovskite B-site doped Ln (Nd, Sm) as cathode for high performance Co-free intermediate temperature solid oxide fuel cell | |
Cai et al. | Enhanced electrochemical performance of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3− δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells | |
Liu et al. | Nd3+-deficiency double perovskite Nd1− xBaCo2O5+ δ and performance optimization as cathode materials for intermediate-temperature solid oxide fuel cells | |
Bai et al. | Ni-doped Fe-based perovskite to obtain multifunctional and highly efficient electrocatalytic active IT-SOFC electrode | |
Shi et al. | Surface enhanced performance of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ cathodes by infiltration Pr-Ni-Mn-O progress | |
Bai et al. | Preparation of high-performance multiphase heterostructures IT-SOFC cathode materials by Pr-induced in situ assembly | |
Gong et al. | Characterization of B‐Site Sc‐doped La2Ni1-xScxO4+ δ (x= 0, 0.05, 0.10, and 0.15) perovskites as cathode materials for IT-SOFCs | |
Zhang et al. | Enhanced oxygen reduction kinetics of SrCoO3-δ by Ta/Cu or Nb/Cu co-doping as high-performance cathodes for SOFC | |
Chen et al. | Ca and Fe co-doped NdBaCo2O5+ δ double perovskites as high-performance cathodes for solid oxide fuel cells | |
Sun et al. | In situ self-reconstructed nanoparticle-coated cathode and anode by nitric acid etching for symmetric solid oxide fuel cells | |
Sun et al. | Highly durable Sr-doped LaMnO3-based cathode modified with Pr6O11 nano-catalyst for protonic ceramic fuel cells based on Y-doped BaZrO3 electrolyte | |
Wang et al. | Different alkaline earth metals doped Sm0. 5A0. 5Fe0. 9Ni0. 1O3-δ (A= Ca, Sr and Ba) for symmetric solid oxide fuel cells | |
Guo et al. | Preparation and characterization of highly active and stable NdBaCo0. 8Fe0. 8Ni0. 4O5+ δ oxygen electrode for solid oxide fuel cells | |
Meng et al. | Highly efficient and stable intermediate-temperature solid oxide fuel cells using Bi-deficient perovskite cathode |