Jiang et al., 2020 - Google Patents
Synthesis of Ni-rich layered-oxide nanomaterials with enhanced Li-ion diffusion pathways as high-rate cathodes for Li-ion batteriesJiang et al., 2020
View PDF- Document ID
- 7054472380769824886
- Author
- Jiang M
- Zhang Q
- Wu X
- Chen Z
- Danilov D
- Eichel R
- Notten P
- Publication year
- Publication venue
- ACS applied energy materials
External Links
Snippet
Ni-rich LiNi0. 6Co0. 2Mn0. 2O2 nanomaterials with a high percentage of exposed {010} facets have been prepared by surfactant-assisted hydrothermal synthesis followed by solid- state reaction. Characterization by X-ray diffraction (XRD) and high-resolution transmission …
- 229910001416 lithium ion 0 title abstract description 205
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage for electromobility
- Y02T10/7005—Batteries
- Y02T10/7011—Lithium ion battery
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiang et al. | Synthesis of Ni-rich layered-oxide nanomaterials with enhanced Li-ion diffusion pathways as high-rate cathodes for Li-ion batteries | |
Yu et al. | Understanding the multiple effects of TiO2 coating on NaMn0. 33Fe0. 33Ni0. 33O2 cathode material for Na-ion batteries | |
Zha et al. | Surface modification of the LiNi0. 8Co0. 1Mn0. 1O2 cathode material by coating with FePO4 with a yolk–shell structure for improved electrochemical performance | |
Huang et al. | Improving the structure and cycling stability of Ni-rich layered cathodes by dual modification of yttrium doping and surface coating | |
Ren et al. | Systematic optimization of battery materials: Key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0. 6Mn0. 2Co0. 2O2 cathode material for lithium-ion batteries | |
Xin et al. | Electrochemical characterization and microstructure evolution of Ni-rich layered cathode materials by niobium coating/substitution | |
Hou et al. | Stabilizing the electrode/electrolyte interface of LiNi0. 8Co0. 15Al0. 05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries | |
Dong et al. | Enhanced cathode performance: mixed Al2O3 and LiAlO2 coating of Li1. 2Ni0. 13Co0. 13Mn0. 54O2 | |
Du et al. | Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying coating with nano-Al2O3 | |
Liang et al. | Ultralong layered NaCrO2 nanowires: a competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries | |
Zhou et al. | Formation and effect of residual lithium compounds on Li-rich cathode material Li1. 35 [Ni0. 35Mn0. 65] O2 | |
Shi et al. | High-thermal-and air-stability cathode material with concentration-gradient buffer for Li-ion batteries | |
Feng et al. | Dual-element-modified single-crystal LiNi0. 6Co0. 2Mn0. 2O2 as a highly stable cathode for lithium-ion batteries | |
Wang et al. | Thermal stability enhancement through structure modification on the microsized crystalline grain surface of lithium-rich layered oxides | |
Yu et al. | Spinel/layered heterostructured lithium-rich oxide nanowires as cathode material for high-energy lithium-ion batteries | |
Wu et al. | Flakelike LiCoO2 with exposed {010} facets as a stable cathode material for highly reversible lithium storage | |
Chen et al. | Layered lithium-rich oxide nanoparticles doped with spinel phase: acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery | |
Wu et al. | Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li [Li0. 2Fe0. 1Ni0. 15Mn0. 55] O2 cathode materials for lithium-ion batteries | |
Zheng et al. | N-Allyl-N, N-Bis (trimethylsilyl) amine as a novel electrolyte additive to enhance the interfacial stability of a Ni-rich electrode for Lithium-ion batteries | |
Li et al. | Enhanced structural stability of boron-doped layered@ spinel@ carbon heterostructured lithium-rich manganese-based cathode materials | |
Lu et al. | Nanoscale coating of LiMO2 (M= Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: toward better rate capabilities for Li-ion batteries | |
Bai et al. | Ionic conductor of Li2SiO3 as an effective dual-functional modifier to optimize the electrochemical performance of Li4Ti5O12 for high-performance Li-ion batteries | |
Razmjoo Khollari et al. | Electrochemical performance and elevated temperature properties of the TiO2-coated Li [Ni0. 8Co0. 1Mn0. 1] O2 cathode material for high-safety Li-ion batteries | |
Ju et al. | Surfactant-assisted synthesis of high energy {010} facets beneficial to Li-ion transport kinetics with layered LiNi0. 6Co0. 2Mn0. 2O2 | |
Wang et al. | Morphology control and Na+ doping toward high-performance Li-rich layered cathode materials for lithium-ion batteries |