[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Patel, 2015 - Google Patents

Development and Verification of Injection Systems for Proton Transfer Reaction Mass Spectrometry (PTR-MS) Analysis of Diverse Volatile Organic Compounds

Patel, 2015

View PDF
Document ID
6197138600215380640
Author
Patel M
Publication year

External Links

Snippet

The PTR-MS is the well-established technique in the field of analysis of volatile compounds from air, food and breath. The principal advantage of the technique is real time analysis, high sensitivity and less fragmentation. However, this technique requires the samples in the …
Continue reading at figshare.le.ac.uk (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode separating and identifying ionized molecules based on their mobility in a carrier gas, i.e. ion mobility spectrometry
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0404Capillaries used for transferring samples or ions
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/0027Methods for using particle spectrometers

Similar Documents

Publication Publication Date Title
Biasioli et al. Direct-injection mass spectrometry adds the time dimension to (B) VOC analysis
US8334505B2 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry
EP2212903B1 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole or time-of-flight mass spectrometer
Zhan et al. Recent developments of proton‐transfer reaction mass spectrometry (PTR‐MS) and its applications in medical research
Herbig et al. On-line breath analysis with PTR-TOF
CA2210766C (en) Apparatus and methods for the analysis of trace constituents in gases
Smith et al. Ambient analysis of trace compounds in gaseous media by SIFT-MS
Berchtold et al. Real‐time monitoring of exhaled drugs by mass spectrometry
Dane et al. Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry
Mulligan et al. Direct monitoring of toxic compounds in air using a portable mass spectrometer
Yang et al. Aliphatic hydrocarbon spectra by helium ionization mass spectrometry (HIMS) on a modified atmospheric-pressure source designed for electrospray ionization
Pang Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency
McEwan Direct analysis mass spectrometry
Zhao et al. An electrospray chemical ionization source for real-time measurement of atmospheric organic and inorganic vapors
JP5787457B1 (en) Connecting device for mass spectrometer
Taylor et al. Non-destructive and high-throughput—APCI-MS, PTR-MS and SIFT-MS as methods of choice for exploring flavor release
Španěl et al. Electrostatic switching and selection of H3O+, NO+, and O2+• reagent ions for selected ion flow-drift tube mass spectrometric analyses of air and breath
Dryahina et al. Sensitivity of secondary electrospray ionization mass spectrometry to a range of volatile organic compounds: Ligand switching ion chemistry and the influence of Zspray™ guiding electric fields
Španěl et al. Selected ion flow tube study of the reactions of H3O+ and NO+ with a series of primary alcohols in the presence of water vapour in support of selected ion flow tube mass spectrometry
Brůhová Michalčíková et al. Volatile compounds released by Nalophan; implications for selected ion flow tube mass spectrometry and other chemical ionisation mass spectrometry analytical methods
Cody et al. Direct analysis in real time (DART®)
Guo et al. Hyphenated techniques in gas chromatography
Usmanov et al. Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source
Beauchamp et al. Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) for aroma compound detection in real-time: technology, developments, and applications
Geng et al. Tee-shaped sample introduction device coupled with direct analysis in real-time mass spectrometry for gaseous analytes