[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Palmer, 1962 - Google Patents

Detection of P32 in Vivo

Palmer, 1962

Document ID
4238433889818356147
Author
Palmer H
Publication year
Publication venue
Radiology

External Links

Snippet

The detection of gamma-ray-emitting isotopes in the human body has been successful during the last few years due to the development and use of whole-body counters (1). Body burdens as small as 1 mμc can easily be detected for many gamma-ray-emitting isotopes …
Continue reading at pubs.rsna.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Application in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1648Ancillary equipment for scintillation cameras, e.g. reference markers, devices for removing motion artifacts, calibration devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Application in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1644Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using an array of optically separate scintillation elements permitting direct location of scintillations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Application in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1647Processing of scintigraphic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/178Circuit arrangements not adapted to a particular type of detector for measuring specific activity in the presence of other radioactive substances, e.g. natural, in the air or in liquids such as rain water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas in situ measurement, e.g. floor contamination monitor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/06Glass dosimeters using colour change; including plastic dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • G01T1/11Thermo-luminescent dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/02Collecting means for receiving or storing samples to be investigated and possibly directly transporting the samples to the measuring arrangement; particularly for investigating radioactive fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T5/00Recording of movements or tracks of particles; Processing or analysis of such tracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by G01N21/00 or G01N22/00, e.g. X-rays or neutrons

Similar Documents

Publication Publication Date Title
Allemand et al. Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera
Phelps et al. Effect of positron range on spatial resolution
US10820880B2 (en) Method and apparatus for sensitivity calibration
US3808440A (en) Method and apparatus for measuring radioisotope distribution
GB1145713A (en) Method and apparatus for counting standardization in scintillation spectrometry
Heiss et al. Technical considerations in the use of a gamma camera 1,600-channel analyzer system for the measurement of regional cerebral blood flow
Mcintyre et al. Measurement of gamma-ray energies with one crystal
JP4893950B2 (en) Radioactivity absolute measurement method, radiation detector assembly detection efficiency determination method, and radiation measurement apparatus calibration method
Ranger The AAPM/RSNA physics tutorial for residents: radiation detectors in nuclear medicine
Palmer Detection of P32 in Vivo
JPH01134291A (en) Scintillation type dose rate meter
Vaninbroukx et al. The use of a calibrated gamma spectrometer for precision activity measurements of gamma emitters and EC-nuclides and for purity and sorption tests of solutions of radionuclides
Falk et al. Whole-body measurement techniques at the Swedish National Institute of Radiation Protection
Ferrant et al. Quantitative organ-uptake measurement with a gamma camera
Gregg et al. Information Storage and Recall in Scintiscanning
Raynaud et al. Measuring renal uptake of 197HGCl2 by gamma camera
Jones et al. Description of a new high count rate gamma camera system
Brill et al. An experimental comparison of scintillation and semiconductor detectors for isotope imaging and counting
Bunker et al. Disintegration of Y 91
Miller et al. The Use of Low-level Scintillation Spectroscopy in the Evaluation of the Radioactive Contamination of the Human Body
Tothill Limitations of the use of the geometric mean to obtain depth independence in scanning and whole body counting
Simons et al. An Investigation into the Usefulness of" Figure of Merit" as a Criterion of a Collimating System
Myhill et al. Multihole collimators for scanning
Al-Musawi et al. gamma ray spectra
Epstein et al. Apparatus for monitoring 239Pu in wounds