
Developing a Class Hierarchy for
Object-Oriented Transaction Processing

Daniel L. McCue

Computing Laboratory
University of Newcastle upon Tyne

Newcastle upon Tyne, NE1 7RU, UK.

Abstract. This paper describes the development of a class hierarchy to
support distributed transaction processing. Inheritance and
polymorphism, key features of the object oriented programming model,
have been used to develop a hierarchy of classes which convey to their
subclasses the behaviours of persistence, concurrency-control,
recoverability and identity necessary for distributed transaction
processing. The development is traced from the requirements of
distributed transaction processing to the definition of classes supporting
these key properties. The system is interesting in both its development
and its results. The development, not based on any rigourous design
methodology, illustrates some of the design decisions unique to
object-oriented systems. The resulting class hierarchy provides a flexible,
object-oriented interface for reliable distributed programming. The
paper includes a step-by-step description of the design of the classes and
the class hierarchy.

1 Introduction

To perform object-level transaction processing, an application programmer must
have a means for accessing and manipulating persistent objects through atomic
operations (or operation sequences). This paper explains the development of a class
hierarchy which provides such facilities. Starting from interface abstractions, concepts
of recovery, persistence, concurrency control, the discussion continues with the
development of a complete class hierarchy incorporating facilities for transaction
management.

To simplify program access to permanent objects, a programming language facility
is provided by which objects can be defined to be persistent (i.e., their state is maintained
across program executions). To relieve programmers of the burden of considering the
effects of concurrent access to objects or various kinds of system failure during
execution, we present a language construct that directly supports atomic actions.
Together, these tools allow the programmer to develop robust distributed applications
within an object-oriented programming framework.

414

The remainder of this paper is divided into two parts followed by a brief concluding
section. Section 2 describes the evolution of the class hierarchy from the desired
properties, at the leaves of the hierarchy, through the necessary supporting classes to
the root class, Checkpointing. Section 3 describes the class, AtomicAction, and its
relationship to the property classes. The development of this class l~rary is interesting
in itself as an example of an approach to object-oriented design. The concluding section
summarises the ideas presented and briefly describes the state of the current
implementation of this system.

2 Objects and Atomic Actions

A computational model that has been widely advocated for constructing robust
distributed applications uses atomic actions (atomic transactions) to provide
fault-tolerant operations on objects. An object is an instance of some class. Each object
consists of some variables (its instance variables) and a set of operations (its methods)
that determine the externally visible behaviour of the object. The operations of an
object have access to its instance variables and can thus modify the internal state. It is
assumed that, in the absence of failures and concurrency, the invocation of any of these
operations produces consistent (class specifiC) state changes to the object.

Operation invocations may be contained within atomic actions which have the
properties:

�9 serialisability
�9 failure atomicity
�9 permanence of effect

The first property ensures that the concurrent execution of programs which access
common objects is free from interference (i.e. a concurrent execution can be shown to
be equivalent to some serial order of execution). Some form of concurrency control
policy, such as that enforced by two-phase locking, is also required to ensure the
serialisability property of actions. The second property, failure atomicity, ensures that a
computation either terminates normally (commits), producing the intended results (and
intended state change to the objects involved) or it aborts producing no results and no
state change to the object(s). Once a computation commits, the results produced are not
destroyed by subsequent node crashes. This is ensured by the third property -
permanence of effect - which requires that any state changes produced (i.e. new states of
objects modified in the atomic action) are recorded on stable storage, a type of storage
which can survive node crashes with high probability. A commit protocol is required
during the termination of an atomic action to ensure that either all the objects updated
within the action have their new states recorded on stable storage (committed), or, if the
atomic action aborts, no updates get recorded [4].

The object and atomic action model provides a natural framework for designing
fault-tolerant systems with persistent objects. In our model, persistent objects are
passive and normally reside in object stores which are designed to be stable. Atomic
actions are used to ensure consistent state changes to objects, despite system failures.

